-
摘要: 冰消期或冰期由于冰盖消融引起淡水排放,容易造成不同纬度之间海洋-大气传输的异常,由此引发一系列或明显或不明显的千年级气候突变事件,如Younger Dryas(YD,新仙女木)和类似YD事件。MIS11c(深海氧同位素11阶段)作为当前全新世的最佳参照物之一,对期间可能发生的类YD事件及触发机制的研究有助于认识极端气候事件的发生规律。文章通过对重庆金佛洞石笋J33 δ18O序列记录的研究结果显示:(1)在MIS11间冰期盛期之前,亚洲季风气候区石笋揭示了一次发生于410 ka BP左右的千年尺度弱季风事件;(2) 410 ka弱季风事件与YD事件均发生于间冰期盛期之前季风逐渐增强过程中以及北半球夏季太阳辐射上升阶段,期间都发生了AMOC(大西洋经向翻转环流)扰动,除了在变化幅度、冰量条件等方面有些差异,事件的持续时间、内部结构、变化模式相似; (3) 410 ka弱季风事件主要受太阳辐射和AMOC共同驱动主导,持续较强的变暖进程加速了格陵兰冰盖融化并导致了冰盖的不稳定,淡水持续注入北大西洋,造成短暂的AMOC振荡。AMOC的减弱使得北大西洋上空产生了冷异常,通过大气遥相关作用导致了较弱的ASM(亚洲夏季风)。
-
图 3 金佛洞石笋J33 δ18O与三宝洞石笋SB14 δ18O对比
(A)石笋J33 δ18O 记录和测年误差(本研究); (B)石笋SB14 δ18O记录和测年误差[14]
Figure 3. Comparison of J33 δ18O of Jinfo Cave stalagmite and SB14 δ18O of Sanbao cave stalagmite
图 4 410 ka BP弱季风事件
(A)65°N 7月21日太阳辐射(棕色)和倾斜率(黑色)记录[22];(B)石笋J33 δ18O记录和测年误差(本研究);(C)石笋SB14 δ18O记录和测年误差[14]; (D)北大西洋钻孔M23414 0-200 m TEXL 86温度重建记录[23]; (E)北大西洋钻孔ODP983% N. pachyderma(s)记录[24]; (F)基于磁化率的红海中部风沙浓度记录[21]; (G)北大西洋钻孔ODP958基于烯酮和有孔虫的海洋表面温度记录(绿色和浅绿)[25]和中大西洋IODP U1313基于烯酮的海洋表面温度记录(红色)[26]; (H)ODP980底栖有孔虫δ13C记录[27]; (I)ODP983 IRD记录[24]。图中蓝色条带指示弱季风事件或冷事件。
Figure 4. 410 ka BP weak monsoon event
图 5 410 ka弱季风事件与YD事件对比(改编自张日萍[38])
(A)石笋J33 δ18O记录(绿色,本研究)和65 °N 7月21日太阳辐射记录[22](黑色);(B)葫芦洞石笋H82 δ18O记录[39-40](粉色),董哥洞石笋D4 δ18O记录[41](蓝色)和65 °N 7月21日太阳辐射记录[22](红色);(C)采用AICC 2012年代标尺的NGRIP δ18O记录[42](绿色)和65 °N 7月21日太阳辐射记录[18](红色)。其中(A)使用上横轴时间坐标,(B)和(C)使用下横轴时间坐标。图中蓝色条带指示弱季风事件,黄色条带指示强季风事件,黑色虚线分别指示突变事件开始阶段的结束时间和结束阶段的开始时间。
Figure 5. Comparison of the 410 ka BP weak monsoon event with the YD event
图 6 410 ka弱季风事件与YD事件期间全球部分记录的对比
(A)65 °N 7月21日太阳辐射(棕色)和倾斜率(黑色)记录[22];(B)岁差记录[22];(C)左为石笋J33 δ18O记录(碧绿,本研究);右为葫芦洞石笋H82 δ18O记录[39-40](粉色),董哥洞石笋D4 δ18O记录[41](深蓝色); (D)左为ODP980底栖有孔虫δ13C记录[26];右为海洋沉积物的231Pa/230Th比率[48];(E)南极冰芯EDC CO2(灰色)和CH4(蓝色)记录[49]; (F)LR04 δ18O 记录[50]和ODP983 IRD记录[24]。图中蓝色条带指示弱季风事件或冷事件。
Figure 6. Comparison of selected global records during the 410 ka BP weak monsoon event and the YD event
表 1 石笋J33 230Th 测年结果(“*”指示新测得的数据)
Table 1. 230Th date results for stalagmite J33 (‘*’ indicates the new measured data)
样品
编号深度
/mm238U
/×10−9232Th
/×10−6230Th / 232Th
/atomic×10−6δ234U
/measured230Th / 238U
/activityAge (ka BP)
/uncorrectedAge (ka BP)
/correctedδ234UInitial
/correctedJ33-1 144.9 2516.4±0.1 884.9±10.2 72003.1±832.5 424.5±0.3 1.536±0.001 393.5±2.0 393.5±2.0 1288.5±7.5 J33-2 185.7 2875.4±0.1 429.4±10.7 167329.4±4184.0 406.4±0.3 1.516±0.001 400.6±1.5 400.6±1.5 1258.9±5.3 J33-3 196.9 2158.7±0.1 2182.9±11.0 24635.3±127.0 402.8±0.3 1.511±0.002 400.9±3.2 400.9±3.2 1248.6±11.2 J33-4 230.9 3113.8±0.2 1397.6±9.8 55814.2±391.3 406.0±0.3 1.519±0.001 409.4±1.6 409.4±1.6 1288.8±5.9 J33-5 268.7 2791.5±0.2 738.7±28.7 95730.9±3715.6 416.4±0.3 1.536±0.001 415.6±1.6 415.6±1.6 1345.7±6.1 J33-6 301.2 2906.0±0.1 479.0±8.4 154689.1±2718.8 422.2±0.3 1.546±0.001 420.5±1.8 420.5±1.8 1383.2±7.1 J33-7* 306.0 3621.9±8.7 672.0±1.6 137821.0±39.0 425.2±0.3 1.551±0.000 421.1±1.3 421.1±1.3 1395.4±5.3 J33-8* 333.0 3173.3±7.7 607.6±1.5 134437.0±38.0 431.6±0.4 1.561±0.000 425.2±1.5 425.2±1.5 1432.7±6.2 U 衰变常数: λ238 = 1.55125×10−10[13] 和 λ234 = 2.82206×10−6[11].衰减常数: λ230 = 9.1705×10−6[11]. δ234U = ([234U/238U] 活度 – 1) ×1000. δ234Uinitial was calculated based on 230Th age (T), i.e., δ234Uinitial = δ234Umeasured×eλ234×T. Corrected 230Th ages assume the initial 230Th/232Th atomic ratio of 4.4±2.2×10−6. Those are the values for a material at secular equilibrium, with the bulk earth 232Th/238U value of 3.8. The errors are arbitrarily assumed to be 50%. “BP” stands for “Before Present” where the “Present” is defined as the year 1950 CE. -
[1] Schulz M, Paul A, Timmermann A. Relaxation oscillators in concert: A framework for climate change at millennial timescales during the late Pleistocene[J]. Geophysical Research Letters, 2002, 29(24): 2193-2197. [2] Sima A, Paul A, Schulz M. The Younger Dryas—an intrinsic feature of late pleistocene climate change at millennial timescales[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 741-750. [3] 陈仕涛, 汪永进, 孔兴功, 刘殿兵, Edwards L R. 倒数第三次冰消期亚洲季风气候可能的类Younger Dryas事件[J]. 中国科学D辑:地球科学, 2006(5):445-452. [4] Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X G, Wang Y J, Zhang R, Wang X F. Ice age terminations[J]. Science, 2009, 326(5950): 248-252. doi: 10.1126/science.1177840 [5] Duan W H, Cheng H, Tan M, Ma Z B, Chen S T, Wang L S, Wang X F, Cui L L. Structural similarity between Termination III and I[J]. Quaternary Science Reviews, 2022(296): 0277-3791. [6] 赵彬. MIS11阶段亚洲夏季风演化的高分辨率落水洞记录[D]. 南京:南京师范大学, 2019. [7] Berger A L, Loutre M F. Climate 400,000 years ago, a key to the future?[A]//Droxler A W, Poore R Z, Burckle L H. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington, D C: American Geophysical Union, 2003: 17-26. [8] 刘殿兵. 新仙女木(YD)事件区域特征及动力机制研究新进展[J]. 地质论评, 2012, 58(2):341-349. doi: 10.3969/j.issn.0371-5736.2012.02.016 [9] 王建力, 何潇, 王昕亚, 张美良, 林玉石. 重庆金佛山石笋的同位素年龄和古气候信息[J]. 中国岩溶, 2005, 24(4):265-269. doi: 10.3969/j.issn.1001-4810.2005.04.002 [10] 张任, 朱学稳, 韩道山, 张远海, 房峰保. 重庆市南川金佛山岩溶洞穴发育特征初析[J]. 中国岩溶, 1998, 17(3):196-211. [11] Cheng H, Edwards R L, Shen C C, Polyak V J, Asmerom Y, Woodhead J, Hellstrom J, Wang Y J, Kong X G, Spötl C, Wang X F, Alexander Jr E C. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372(1): 82-91. [12] 李辰丝. 重庆地区精确定年的MIS11时期石笋记录研究[D]. 重庆:西南大学, 2015. [13] Jaffey A H, Flynn K F, Glendenin L E, Bentley W C, Essling A M. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5): 1889-1906. [14] Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S T, Kelly M, kathayat G, Wang X F, Li X L, Kong X G, Wang Y J, Ning Y F, Zhang H W. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646. [15] Dorale J A, Liu Z H. Limitations of hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication[J]. Journal of Cave and Karst Studies, 2009, 71(1): 73-80. [16] Cheng H, Sinha A, Wang X F, Cruz F W, Edwards R L. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062. doi: 10.1007/s00382-012-1363-7 [17] 覃嘉铭, 林玉石, 张美良, 王华, 冯玉梅, 涂林玲. 末次冰期东亚季风气候的变迁:贵州都匀七星洞石笋的δ18O记录[J]. 中国岩溶, 2003, 22(3):167-173. [18] Liu Z Y, Wen X Y, Brady E C. Chinese cave records and the East Asia summer monsoon[J]. Quaternary Science Reviews, 2014, 83(1): 115-128. [19] Zhang W H, Wu J Y, Wang Y, Wang Y J, Cheng H, Kong X G, Duan F C. A detailed East Asian monsoon history surrounding the 'Mystery Interval' derived from three Chinese speleothem records[J]. Quaternary Research, 2014, 82(1): 154-163. doi: 10.1016/j.yqres.2014.01.010 [20] Porter S, Zhisheng A. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375: 305-308. doi: 10.1038/375305a0 [21] Rohling E J, Braun K, Grant K, Kucera M, Roberts A P, Siddall M, Trommer G. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories[J]. Earth and Planetary Science Letters, 2010, 291(1-4): 96-105. [22] Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. doi: 10.1051/0004-6361:20041335 [23] Kandiano E S, Meer M, Schouten S, Fahl Kirsten, Sinninghe Damsté J S, Bauch H A. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS11[J]. Scientific Reports, 2017, 7(1): 46192. [24] Barker S, Chen J, Gong X, Jonkers L, Knorr G, Thornalley D. Icebergs not the trigger for North Atlantic cold events[J]. Nature Geoscience, 2015, 520: 333-336. [25] Kandiano E S, Bauch H A, Fahl K, Helmke J P, Röhl U, Pérez Folgado M, Cacho I. The meridional temperature gradient in the eastern North Atlantic during MIS11 and its link to the ocean–atmosphere system[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334: 24-39. [26] Stein R, Hefter J, Grützner J, Voelker A, Naafs B D A. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from IODP Site U1313 (MIS16–9)[J]. Paleoceanography, 2009, 24(2): 2203. [27] McManus J F, Oppo D W, Cullen J L, Healey S L. Marine isotope stage 11 (MIS 11): Analog for Holocene and future climate?[A]//Droxler A W, Poore R Z, Burckle L H. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington D C: American Geophysical Union, 2003: 69-85. [28] Prokopenko A A, Bezrukova E V, Khursevich G K, Solotchina E P, Kuzmin M I, Tarasov P E. Climate in continental interior Asia during the longest interglacial of the past 500,000 years: The new MIS11 records for Lake Baikal, SE Siberia[J]. Climate of the Past, 2010, 6(1): 31-48. doi: 10.5194/cp-6-31-2010 [29] Oliveira D, Desprat S, Rodrigues T, Naughton F, Hodell D, Trigo R, Goni M. The complexity of millennial-scale variability in Southwestern Europe during MIS11[J]. Quaternary Research, 2016, 86(3): 373-387. doi: 10.1016/j.yqres.2016.09.002 [30] Tzedakis P C, Pälike H, Roucoux K H, de Abreu L. Atmospheric methane, Southern European vegetation and low-mid latitude links on orbital and millennial timescales[J]. Earth and Planetary Science Letters, 2009, 277(3-4): 307-317. [31] Dickson A J, Beer C, Dempsey C J, Dempsey C, Maslin M A, Bendle J A, McClymont E L, Pancost R D. Oceanic forcing of the Marine Isotope Stage 11 interglacial[J]. Nature Geoscience, 2009, 2(6): 428–433. [32] 张涛涛, 李廷勇, 韩立银, 程海, 李俊云, 赵鑫, 周菁俐. MIS 5a/5b时期亚洲夏季风变化的高分辨率石笋记录[J]. 中国岩溶, 2017, 36(2):162-170. doi: 10.11932/karst20170202 [33] John M D, Yuet F L, Christelle N, Dirk E, Henning A B, Adina P, Benoit T. Freshening, stratification and deep-water formation in the Nordic Seas during Marine Isotope Stage 11[J]. Quaternary Science Reviews, 2021, 272: 107231. [34] 张浣荻, 郝青振. 深海和冰芯证据指示氧同位素阶段MIS 11~10时期北极冰盖增长滞后[J]. 第四纪研究, 2019, 39(3):786-788. doi: 10.11928/j.issn.1001-7410.2019.03.23 [35] Galaasen E V, Ninnemann U S, Kessler A, Irvali N, Rosenthal Y, Tjiputra J, Bouttes N, Roche D M, Kleiven H F, Hodell D A. Interglacial instability of North Atlantic deep water ventilation[J]. Science, 2020, 367(6485): 1485-1489. doi: 10.1126/science.aay6381 [36] Voelker A H L, Rodrigues T, Billups K, Oppo D, McManus J, Stein R, Hefter J, Grimalt J O. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS9–14) and their implications for the thermohaline circulation[J]. Climate of the Past, 2010, 6(4): 531-552. doi: 10.5194/cp-6-531-2010 [37] Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): 1-4. [38] 张日萍. 重庆金佛洞石笋记录的MIS11内部精细结构及其与全新世对比研究[D]. 重庆:西南大学, 2022. [39] Wang X F, Auler A S, Edwards R, Cheng H, Ito E, Wang Y J, Kong X G, Solheid M. Millennial-scale precipitation changes in Southern Brazil over the past 90,000 years[J]. Geophysical Research Letters, 2007, 34(23): 135-147. [40] Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu cave, China[J]. Science, 2001, 294(29): 2345-2348. [41] Cheng H, Zhang H W, Spötl C, Baker J, Sinha A, Li H Y, Bartolomé M, Moreno A, Kathayat G, Zhao J Y, Dong X Y, Li Y W, Ning Y F, Jia X, Zong B Y, Brahim Y A, Pérez Mejiás C, Cai Y J, Novello V F, Cruz F W, Severinghaus J P, An Z S, Edwards R L. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences, 2020, 117(38): 1-10. [42] EPICA community members. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429: 623-628. doi: 10.1038/nature02599 [43] Stuiver M, Grootes P M. GISP2 oxygen isotope ratio[J]. Quaternary Research, 2000, 53(3): 277-284. doi: 10.1006/qres.2000.2127 [44] Haug G H, Hughen K A, Sigman D M, Peterson L C, Rohl U. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533): 1304-1308. doi: 10.1126/science.1059725 [45] Hughen K A, Overpeck J T, Peterson L C, Trumbore S E. Rapid climate changes in the tropical Atlantic region during the last deglaciation[J]. Nature, 1996, 380(7): 51-54. [46] Hughen K A, Southon J R, Lehman S J, Overpeck J T. Synchronous radiocarbon and climate shifts during the last deglaciation[J]. Science, 2000, 290(5498): 1951-1954. [47] Cheng H, Li H Y, Sha L J, Sinha A, Shi Z G, Yin Q Z, Lu Z Y, Zhao D B, Cai Y J, Hu Y Y, Hao Q Z, Tian J, Kathayat G, Dong X Y, Zhao J Y, Zhang H W. Milankovitch theory and monsoon[J]. The Innovation, 2022, 3(6): 100338. [48] Böhm E, Lippold J, Gutjahr M, Frank M, Blaser P, Antz B, Fohlmeister J, Frank N, Andersen M B, Deininger M. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle[J]. Nature, 2015, 517(7532): 73-76. doi: 10.1038/nature14059 [49] Jouzel J, Masson Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. Orbital and millennial Antarctic climate variability over the past 800,000 years[J]. Science, 2007, 317(5839): 793-796. doi: 10.1126/science.1141038 [50] Lisiecki L E, Raymo M E. A Pliocene–Pleistocene stack of 57 globally-distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1003. [51] Yin Q Z, Berger A. Interglacial analogues of the Holocene and its natural near future[J]. Quaternary Science Reviews, 2015, 120: 28-46. [52] Peter H, Carl W. Obliquity pacing of the late Pleistocene glacial terminations[J]. Nature, 2005, 434(7032): 1476-4687. [53] Masson Delmotte V, Dreyfus G, Braconnot P, Johnsen S, Jouzel J, Kageyama M, Landais A, Loutre M F, Nouet J, Parrenin F, Raynaud D, Stenni B, Tuenter E. Past temperature reconstructions from deep ice cores: Relevance for future climate change[J]. Climate of the Past, 2006, 2(2): 145-165. [54] Yin Q Z, Wu Z P, Berger A, Goosse H, Hodell D. Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials[J]. Science, 2021, 373(6558): 1035-1040.