Identification of key areas for the ecological restoration of karst mountainous territorial space based on the construction of ecological security pattern: A case study of Guanling, Guizhou Province
-
摘要: 为识别县域国土空间生态修复关键区,以滇黔桂石漠化片区的贵州省关岭县为例,选取2020年国土变更调查数据、“三区三线”划定成果、高程DEM等数据,利用MSPA、景观连通性指数、电路理论等方法,通过构建生态安全格局,识别生态夹点、生态障碍点等作为生态修复关键区。结果表明:(1)识别关岭县37块生态源地(449.78 km2),其受不同石漠化程度影响呈现东西部集中成片、中部零星离散的空间分布特征;(2)提取74条生态廊道(140.775 km)有效连接零散分布的源地,等级较高的生态廊道多分布在石漠化程度较低区域。共识别36处生态夹点和14处生态障碍点作为国土空间生态修复关键区,构建出“三区、两轴、多点”的国土空间生态修复格局以提高生态修复成效;(3)确定生态夹点区的生态修复面积为757.84 hm2,主要分布在研究区中部的低阻力区域,确定的生态障碍点区的生态修复面积为364.48 hm2,主要集中在研究区中部的人类活动密集区,其分布范围受人类活动与大面积、深程度石漠化的双重干扰;(4)生态修复措施需结合实际石漠化治理成效及修复成本科学推进,并根据胁迫因子的差异性提出有利于关岭县生态修复与岩溶地区环境保护的规划布局。Abstract:
As one of the most ecologically fragile regions in the world, the ecosystem in the karst area is characterized by low environmental bearing capacity, high vulnerability and acute conflicts between human and land use, and thus the karst area requires strict ecological protection and effective ecological restoration. Guanling Buyi Miao Autonomous County (hereinafter referred to as Guanling county) is located in Anshun City, Guizhou Province. The karst landform accounts for 83.83% of the total land area of this county. Guanling county is a desertification area of Yunnan, Guangxi and Guizhou, with the ecological protection red line area amounting to 25.10% of the land area of this county; therefore, Chinese government listed it as a key county receiving assistance for rural revitalization. The karst mountainous area of Guanling county is distributed with a wide area of severe rocky desertification, with prominent conflicts between human and land use, and at the same time a number of national ecological zones are located there. In recent years, ecological degradation problems have caused habitat fragmentation and poor capacity for ecosystem supply in this county. Therefore, the identification of key areas for ecological restoration of national territorial space is of great significance to the ecological security of the Beipan river basin and even the Pearl river basin. The objectives of this study are: (1) to determine the importance level of ecological source areas, and to identify these areas by combining multiple factors such as MSPA, ecological protection red line, landscape connectivity analysis, etc.; (2) to construct the ecological resistance surface by synthesizing the impacts of human beings and nature, and to construct the regional ecological security pattern by using the circuit theory to extract the ecological elements such as ecological corridors, ecological pinch points, ecological barriers, etc.; (3) to classify the ecological control area based on the regional ecological background, and to propose targeted ecological restoration measures for territorial space. The results of the study show that: (1) Thirty-seven ecological source areas (449.78 km2), affected by different degrees of rocky desertification, in Guanling county have been identified. These areas are contiguously concentrated in the east and west, and scattered in the central part of the county. (2) Seventy-four ecological corridors (140.775 km) have been extracted, with important ecological corridors concentrated in the areas in a lower degree of rock desertification. At the same time, 36 ecological pinch-points and 14 ecological barriers have been identified as key areas for ecological restoration of territorial space, and the ecological restoration effectiveness have been improved by the construction of an ecological restoration pattern of "three zones, two axes and multiple points". (3) The ecological restoration area of the identified ecological pinch-points covers 757.84 hm2, which is mainly distributed in the low-resistance area in the central part of the study area. The ecological restoration area of the identified ecological barriers covers 364.48 hm2, which is mainly concentrated in the central part of the study area with intensive human activities, and its distribution is subjected to the double interference of human activities and extensive and severe rocky desertification. (4) Ecological restoration measures need to be promoted scientifically in combination with the actual effectiveness of rock desertification management and the restoration cost. Besides, the planning conducive to ecological restoration and environmental protection of karst areas in Guanling county should be proposed according to the variability of stress factors. -
Key words:
- security pattern /
- ecological node /
- ecological restoration /
- karst mountain /
- Guanling county
-
表 1 生态阻力因子赋值及权重
Table 1. Weight and assignment of ecological resistance factors
阻力因子 亚 类 阻力值 权重 土地利用类型 林地 3 0.45 草地 5 其他用地 150 园地 150 耕地 400 水域及水利设施用地 400 交通设施用地 800 城镇村及工矿用地 1 000 高程/m 360~500 50 0.15 500~1 000 100 1 000~1 500 150 1 500~1 841 200 坡度/° 0~8 100 0.15 8~15 200 15~25 300 25~35 400 >35 500 距道路距离/m 30~500 100 0.25 500~1 000 20 1 000~1 500 10 1 500~2 000 5 >2000 1 表 2 景观类型分类统计表
Table 2. Classification of landscape types
景观类型 总面积/km2 占前景要素比例 占研究区面积比例 核心区 621.94 64.03% 42.47% 边缘区 176.07 18.13% 12.02% 桥接区 76.07 7.83% 5.19% 支线 42.93 4.42% 2.93% 环岛 22.02 2.27% 1.50% 孤岛 16.51 1.70% 1.13% 孔隙 15.74 1.62% 1.07% 表 3 生态源地重要性指数
Table 3. Index of the importance of ecological source areas
编号 面积/km2 指数 dIIC dPC 15 93.88 55.53 51.61 28 45.19 36.30 27.83 18 34.67 29.05 18.54 31 12.12 18.38 11.13 10 38.46 17.29 16.48 32 29.25 13.81 8.58 33 17.79 11.54 8.81 17 19.68 11.30 8.26 16 18.94 9.36 8.48 3 16.70 7.60 6.70 22 15.96 7.59 5.39 11 13.43 6.14 5.22 26 6.75 6.08 2.55 23 15.78 5.30 5.56 30 13.37 5.30 4.19 7 7.26 3.28 2.91 20 1.53 3.10 0.55 27 1.72 2.98 0.51 19 7.50 2.50 3.15 25 3.64 1.80 1.23 36 4.36 1.50 1.21 21 4.56 1.46 1.35 35 2.79 1.19 0.78 37 2.47 1.05 0.69 2 2.21 1.03 0.88 34 1.80 0.98 0.58 14 1.53 0.77 0.61 1 1.40 0.69 0.61 4 1.37 0.69 0.46 6 1.29 0.62 0.44 5 1.81 0.57 0.50 9 1.09 0.49 0.56 13 1.01 0.49 0.34 12 1.11 0.45 0.36 8 1.16 0.42 0.62 24 3.71 0.42 0.33 29 2.50 0.41 0.02 表 4 生态源地重要性等级面积及占比
Table 4. Importance levels of area and proportion of ecological source areas
生态源
地等级数量 占源地总
数比例面积/
hm2占源地总面
积的比例一级 8 21.62% 291.0360 57.30% 二级 11 29.73% 118.9489 31.99% 三级 18 48.65% 39.7965 10.70% 表 5 关岭县生态“夹点”分布情况
Table 5. Distribution of ecological pinch-points in Guanling county
生态区 乡镇 数量 面积/hm2 分布位置 土地利用类型 东部岩溶山地生态区 八德乡 2 62.8573 八一村、法宜村、郎宫居委会、民族村 耕地、林地、水域及水利设施用地、园地 白水镇 3 25.8230 凡化村、坑边居委会、乌拉居委会、新寨村 耕地、林地、园地 坡贡镇 2 32.7064 凡化村、新寨村 耕地、林地、园地 西部国家湿地生态区 普利乡 2 21.1030 东关村、月霞村、云峰村 耕地、林地、水域及水利设施用地 新铺乡 2 33.6982 江龙村、新龙村 草地、耕地、林地、水域及水利设施用地、园地 永宁镇 3 63.0072 白岩村、东关村、云峰村、
中兴村耕地、林地、水域及水利设施用地、园地 中部高原峡谷生态区 板贵乡 5 119.4564 多德村、花嘎村、坪寨村、
中寨村耕地、林地、水域及水利设施用地、园地 顶云乡 2 41.1327 谷新村、木厂村 耕地、林地、园地 断桥镇 1 0.9474 福农村、戈尧村、红星村 林地 关索镇 5 125.0503 北口村、菠萝沟村、场坝社区、龙潭村、落叶新村、西龙村、
许土村草地、耕地、林地、水域及水利设施用地、园地 花江镇 8 138.9281 厂上村、多德村、莲花村、前峰村、桃源村、锡厂村、向阳村、永睦村 耕地、林地、水域及水利设施用地、园地 上关镇 5 74.9895 场坝村、福农村、戈尧村、红星村、三合村 耕地、林地、水域及水利设施用地、园地 永宁镇 2 18.1463 东方红村、围墙村 耕地、林地 表 6 关岭县生态“障碍点”分布情况
Table 6. Distribution of ecological barriers in Guanling county
生态区 乡镇 数量 面积/hm2 分布位置 土地利用类型 东部岩溶山地生态区 八德乡 2 67.0832 大理村、法宜村、后寨村、
民族村草地、城镇村及工矿用地、耕地、交通运输用地、林地、其他土地、水域及水利设施用地、园地 中部高原峡谷生态区 顶云乡 1 18.5574 谷新村 耕地、交通运输用地、林地、园地 关索镇 4 93.3678 北口村、红星村、龙潭村、落叶新村、许土村 草地、城镇村及工矿用地、耕地、交通运输用地、林地、其他土地、水域及水利设施用地、园地 花江镇 2 50.0638 前峰村、下石村 城镇村及工矿用地、耕地、交通运输用地、林地、园地 上关镇 7 135.4073 场坝村、冬足村、福农村、红星村、乐安村、龙潭村、
落哨村草地、城镇村及工矿用地、耕地、交通运输用地、林地、其他土地、水域及水利设施用地、园地 -
[1] 付刚, 肖能文, 乔梦萍, 齐月, 闫冰, 刘高慧, 高晓奇, 李俊生. 北京市近二十年景观破碎化格局的时空变化[J]. 生态学报, 2017, 37(8):2551-2562.FU Gang, XIAO Nengwen, QIAO Mengping, QI Yue, YAN Bing, LIU Gaohui, GAO Xiaoqi, LI Junsheng. Spatial-temporal changes of landscape fragmentation patterns in Beijing in the last two decades[J]. Acta Ecologica Sinica, 2017, 37(8): 2551-2562. [2] 苏冲, 董建权, 马志刚, 乔娜, 彭建. 基于生态安全格局的山水林田湖草生态保护修复优先区识别:以四川省华蓥山区为例[J]. 生态学报, 2019, 39(23):8948-8956.SU Chong, DONG Jianquan, MA Zhigang, QIAO Na, PENG Jian. Identifying priority areas for ecological protection and restoration of mountains-rivers-forests-farmlands-lakes-grasslands based on ecological security patterns: A case study in Huaying mountain, Sichuan Province[J]. Acta Ecologica Sinica, 2019, 39(23): 8948-8956 [3] 马克明, 傅伯杰, 黎晓亚, 关文彬. 区域生态安全格局:概念与理论基础[J]. 生态学报, 2004, 24(4):761-768. doi: 10.3321/j.issn:1000-0933.2004.04.017MA Keming, FU Bojie, LI Xiaoya, GUAN Wenbin. The regional pattern for ecological security (RPES): The concept and theoretical basis[J]. Acta Ecologica Sinica, 2004, 24(4): 761-768. doi: 10.3321/j.issn:1000-0933.2004.04.017 [4] 董晓超, 熊康宁, 朱大运, 蓝家程, 廖建军, 曹洋, 刘兴宜. 喀斯特生态环境风险评价:以贵州省为例[J]. 中国岩溶, 2019, 38(5):713-721.DONG Xiaochao, XIONG Kangning, ZHU Dayun, LAN Jiacheng, LIAO Jianjun, CAO Yang, LIU Xingyi. Risk assessment of karst ecological environments: A case study of Guizhou Province[J]. Carsologica Sinica, 2019, 38(5): 713-721. [5] 易行, 白彩全, 梁龙武, 赵子聪, 宋伟轩, 周妍. 国土生态修复研究的演进脉络与前沿进展[J]. 自然资源学报, 2020, 35(1):37-52.YI Xing, BAI Caiquan, LIANG Longwu, ZHAO Zicong, SONG Weixuan, ZHOU Yan. The evolution and frontier development of land ecological restoration research[J]. Journal of Natural Resources, 2020, 35(1): 37-52. [6] 梁坤宇, 金晓斌, 张晓琳, 宋家鹏, 李权荃, 应苏辰, 祁曌, 周寅康.耦合生态系统服务供需的生态安全格局构建:以苏南地区为例[J].生态学报,2024,44(9):3880-3896.LIANG Kunyu, JIN Xiaobin, ZHANG Xiaolin, SONG Jiapeng, LI Quanquan, YING Suchen, QI Zhao, ZHOU Yinkang.Construction of ecological security patterns coupling supply and demand of ecosystem services: a case study of Southern Jiangsu Province[J].Acta Ecological Sinica,2024, 44(9):3880-3896. [7] 姜虹, 张子墨, 徐子涵, 丹宇卓, 叶玉瑶, 李家志, 彭建. 整合多重生态保护目标的广东省生态安全格局构建[J]. 生态学报, 2022, 42(5):1981-1992.JIANG Hong, ZHANG Zimo, XU Zihan, DAN Yuzhuo, YE Yuyao, LI Jiazhi, PENG Jian. Constuction of ecological security pattern integrating multiple ecological protection objective in Guangdong Province[J]. Acta Ecologica Sinica, 2022, 42(5): 1981-1992. [8] 冯琰玮, 甄江红, 田桐羽. 基于生态安全格局的国土空间保护修复优化:以内蒙古呼包鄂地区为例[J]. 自然资源学报, 2022, 37(11):2915-2929. doi: 10.31497/zrzyxb.20221111FENG Yanwei, ZHENG Jianghong, TIAN Tongyu. Optimization of land protection and restoration based on ecological security pattern: A case study of Hohhot-Baotou-Ordos region in Inner Mongolia[J]. Journal of Natural Resources, 2022, 37(11): 2915-2929. doi: 10.31497/zrzyxb.20221111 [9] 邓欧, 李亦秋, 杨广斌, 李若霜, 贵州喀斯特石漠化防治的国家重点生态功能区生态系统健康度评价[J]. 中国岩溶, 2020, 39(5):689-696.DENG Ou, LI Yiqiu, YANG Guangbin, LI Ruoshuang. Evaluation on the ecosystem health of national key ecological function areas for karst rocky desertification prevention and control in Guizhou Province[J]. Carsologica Sinica, 2020, 39(5): 689-696. [10] 陈起伟, 熊康宁, 周梅, 徐丰. 关岭县不同等级石漠化区土壤侵蚀特征[J]. 水土保持研究, 2018, 25(5):24-28.CHEN Qiwei, XIONG Kangning, ZHOU Mei, XU Feng. Characteristics of soil and water loss in different rocky desertification areas in Guanling county[J]. Research of Soil and Water Conservation, 2018, 25(5): 24-28 [11] 张军以, 戴明宏, 王腊春, 苏维词. 中国岩溶生态功能优先背景下的西南岩溶区石漠化治理问题[J]. 中国岩溶, 2014, 33(4):464-472.ZHANG Junyi, DAI Minghong, WANG Lachun, SU Weici. Rocky desertification control issues in the context of priority for ecological function in karst areas of Southwest China[J]. Carsologica Sinica, 2014, 33(4): 464-472. [12] 赵恬茵, 吴媛媛, 孙连群, 高长春, 潘网生, 许玉凤, 程富东. 岩溶地区水土漏失的定量研究进展[J]. 中国岩溶, 2023, 42(1):61-70, 108.ZHAO Tianyin, WU Yuanyuan, SUN Lianqun, GAO Changchun, PAN Wangsheng, XU Yufeng, CHENG Fudong. Progress of quantitative research on soil and water loss in karst areas[J]. Carsologica Sinica, 2023, 42(1): 61-70, 108. [13] 韩会庆, 苏志华. 喀斯特生态系统服务研究进展与展望[J]. 中国岩溶, 2017, 36(3):352-358. doi: 10.11932/karst20170309HAN Huiqing, SHU Zhihua. Research progress and prospects of karst ecosystem services[J]. Carsologica Sinica, 2017, 36(3): 352-358. doi: 10.11932/karst20170309 [14] 易浪, 孙颖, 尹少华, 魏晓. 生态安全格局构建:概念、框架与展望[J]. 生态环境学报, 2022, 31(4):845-856.YI Lang, SUN Ying, YIN Shaohua, WEI Xiao. Construction of ecological security pattern: Concept, framework and prospect[J]. Ecology and Environmental Sciences, 2022, 31(4): 845-856. [15] 王晓玉, 冯喆, 吴克宁, 林倩. 基于生态安全格局的山水林田湖草生态保护与修复[J]. 生态学报, 2019, 39(23):8725-8732.WANG Xiaoyu, FENG Zhe, WU Kening, LIN Qian. Ecological conservation and restoration of Life Community Theory based on the construction of ecological security pattern[J]. Acta Ecologica Sinica, 2019, 39(23): 8725-8732. [16] Alan Vergnes, Christian Kerbiriou, Philippe Clergeau. Ecological corridors also operate in an urban matrix: A test case with garden shrews[J]. Urban Ecosystems, 2013, 16(3): 511-525. [17] 吴健生, 张理卿, 彭建, 冯喆, 刘洪萌, 赫胜彬. 深圳市景观生态安全格局源地综合识别[J]. 生态学报, 2013, 33(13):4125-4133.WU Jiansheng, ZHANG Liqing, PENG Jian, FENG Zhe, LIU Hongmeng, HE Shengbin. The integrated recognition of the source area of the urban ecological security pattern in Shenzhen[J]. Acta Ecologica Sinica, 2013, 33(13): 4125-4133. [18] 黄丽萍, 向芳芳, 陈荣清. 基于生态安全格局的县域国土空间生态保护修复关键区域识别:以抚州市宜黄县为例[J]. 环境工程技术学报, 2023, 13(4):1334-1344.HUANG Liping, XIANG Fangfang, CHEN Rongqing. Identification of key areas for ecological protection and restoration of county territorial space based on ecological security pattern: A case study in Yihuang county of Fuzhou City[J]. Journal of Environmental Engineering Technology, 2023, 13(4): 1334-1344. [19] 彭建, 赵会娟, 刘焱序, 吴建生. 区域生态安全格局构建研究进展与展望[J]. 地理研究, 2017, 36(3):407-419.PENG Jian, ZHAO Huijuan, LIU Yanxu, WU Jiansheng. Research progress and prospect on regional ecological security pattern construction[J]. Geographical Research, 2017, 36(3): 407-419. [20] 黄木易, 岳文泽, 冯少茹, 蔡接接. 基于MCR模型的大别山核心区生态安全格局异质性及优化[J]. 自然资源学报, 2019, 34(4):771-784.HUANG Muyi, YUE Wenze, FENG Shaoru, CAI Jiejie. Analysis of spatial heterogeneity of ecological security based on MCR model and ecological pattern optimization in the Yuexi county of the Dabie mountain area[J]. Journal of Natural Resources, 2019, 34(4): 771-784. [21] 赵伟, 邹欣怡, 蒲海霞. 成渝地区双城经济圈生态安全格局构建[J]. 中国环境科学, 2021, 41(5):2423-2433. doi: 10.3969/j.issn.1000-6923.2021.05.050ZHAO Wei, ZOU Xinyi, PU Haixia. Construction of ecological security pattern in Chengdu-Chongqing Twin-City Economic Circle[J]. China Environmental Science, 2021, 41(5): 2423-2433. doi: 10.3969/j.issn.1000-6923.2021.05.050 [22] 许峰, 尹海伟, 孔繁花, 徐建刚. 基于MSPA与最小路径方法的巴中西部新城生态网络构建[J]. 生态学报, 2015, 35(19):6425-6434.XU Feng, YIN Haiwei, KONG Fanhua, XU Jiangang. Developing ecological networks based on MSPA and the least-cost path method: A case study in Bazhong western new district[J]. Acta Ecologica Sinica, 2015, 35(19): 6425-6434. [23] 朱琪, 袁泉, 于大炮, 周旺明, 周莉, 韩艳刚, 齐麟. 基于电路理论的东北森林带生态安全网络构建[J]. 生态学杂志, 2021, 40(11):3463-3473.ZHU Qi, YUAN Quan, YU Dapao, ZHOU Wangming, ZHOU Li, HAN Yangang, QI Lin.Construction of ecological security network of Northeast China forest belt based on the circuit theory[J]. Chinese Journal of Ecology, 2021, 40(11): 3463-3473. [24] 马阔, 吴起鑫, 韩贵琳, 董爱国. 南、北盘江流域枯水期水化学特征及离子来源分析[J]. 中国岩溶, 2018, 37(2):192-202.MA Kuo, WU Qixin, HAN Guilin, DONG Aiguo. Hydrochemical characteristics and sources of Nanpanjiang and Beipanjiang river basins during dry seasonss[J]. Carsologica Sinica, 2018, 37(2): 192-202. [25] 胡大儒, 郑克勋, 赵代尧, 陈占恒. 复杂岩溶水系统势汇区建坝成库可行性研究:以北盘江流域普岔河水库为例[J]. 中国岩溶, 2022, 41(5):736-745.HU Daru, ZHENG Kexun, ZHAO Daiyao, CHEN Zhanheng. Feasibility study on dam and reservoir construction in the catchment area of complex karst water system: Taking Pucha reservoir of Beipan river as an example[J]. Carsologica Sinica, 2022, 41(5): 736-745. [26] Ying Bin, Liu Ting, Ke Li, Xiong Kangning, Li Sensen, Sun Ruonan, Zhu Feihu. Identifying the landscape security pattern in karst rockydesertification area based on ecosystem services andecological sensitivity: A case study of Guanling county, Guizhou Province[J]. Forests, 2023, 14: 613. [27] 姚采云, 安睿, 窦超, 刘耀林. 基于MSPA与MCR模型的三峡库区林地生态网络构建与评价研究[J]. 长江流域资源与环境, 2022, 31(9):1953-1962.YAO Caiyun, AN Rui, DOU Chao, LIU Yaolin. Research on construction and evalution of forest land ecological network in Three Gorges Reservior Area baseds on MSPA and MCR model[J]. Resources and Evironment in the Yangtze Basin, 2022, 31(9): 1953-1962. [28] 李权荃, 金晓斌, 张晓琳, 韩博, 李寒冰, 周寅康. 基于景观生态学原理的生态网络构建方法比较与评价[J]. 生态学报, 2023, 43(4):1461-1473.LI Quanquan, JIN Xiaobin, ZHANG Xiaolin, HAN Bo, LI Hanbing, ZHOU Yinkang. Comparition and evalution of the ecological network construction method based on principles of landscape ecology[J]. Acta Ecologica Sinica, 2023, 43(4): 1461-1473. [29] 尹海伟, 孔繁花, 祈毅, 王红扬, 周艳妮, 秦正茂. 湖南省城市群生态网络构建与优化[J]. 生态学报, 2011, 31(10):2863-2874.YIN Haiwei, KONG Fanhua, QI Yi, WANG Hongyang, ZHOU Yanni, QIN Zhengmao. Developing and optimizing ecological network in urban agglomeration of Hunan Province, China[J]. Acta Ecologica Sinica, 2011, 31(10): 2863-2874. [30] 李志英, 李媛媛, 李文星, 薛梦柯. 基于形态学空间格局分析与最小累积阻力模型的昆明市生态安全格局构建研究[J]. 生态与农村环境学报, 2023, 39(1):69-79.LI Zhiying, LI Yuanyuan, LI Wenxing, XUE Mengke. Study on the constuction of ecological security pattern in Kunming based on MSPA and MCR model[J]. Journal of Ecology and Rural Environment, 2023, 39(1): 69-79. [31] 王越, 赵雯琳, 刘纯青. 基于MSPA-Conefor-MCR路径的生态网络优化及其构建:以彭泽县为例[J]. 江西农业大学学报, 2022, 44(2):504-518.WANG Yue, ZHAO Wenlin, LIU Chunqing. Optimization and construction of ecological network based on MSPA-Conefor-MCR path: Take Pengze county as an example[J]. Acta Agriculturae Universitis Jiangxiensis, 2022, 44(2): 504-518. [32] 陈南南, 康帅直, 赵永华. 基于MSPA和MCR模型的秦岭(陕西段)山地生态网络构建[J]. 应用生态学报, 2021, 32(5):1545-1553.CHEN Nannan, KANG Shuaizhi, ZHAO Yonghua. Construction of ecological network in Qinling mountains of Shaanxi, China based on MSPA and MCR model[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1545-1553. [33] 蒋若琳, 龚本海, 王艺锦, 王凌晖. 基于MSPA与MCR的崇左市生态网络构建与优化[J]. 江西农业学报, 2022, 34(7):122-129.JIANG Ruolin, GONG Benhai, WANG Yijin, WANG Linghui. Construction and optimization of ecological network in Chongzuo City based on MSPA and MCR model[J]. Acta Agriculturae Jiangxi, 2022, 34(7): 122-129. [34] 乔治, 陈嘉悦, 王楠, 卢应爽, 贺曈, 孙宗耀, 徐新良, 杨浩, 李莹, 王方. 基于MSPA和电路理论的京津冀城市群热环境空间网络[J]. 环境科学, 2022, 44(6):3034-3042.QIAO Zhi, CHEN Jiayue, WANG Nan, LU Yingshuang, HE Tong, SUN Zongyao, XU Xinliang, YANG Hao, LI Ying, WANG Fang. Spatial network of urban thermal environment in Beijing-Tianjin-Hebei urban agglomeration based on MSPA and circuit theory[J]. Environmental Science, 2022, 44(6): 3034-3042. [35] 王悦露, 董威, 张云龙, 傅伯杰, 赵正嫄, 吕一河, 张建军, 伍星. 基于生态系统服务的生态安全研究进展与展望[J]. 生态学报, 2023, 43(19):1-9.WANG Yuelu, DONG Wei, ZHANG Yunlong, FU Bojie, ZHAO Zhengyuan, LYU Yihe, ZHANG Jianjun, WU Xing. Research progress and prospect of ecological security based on ecosystem services[J]. Acta Ecological Sinica, 2023, 43(19): 1-9. [36] 宋利利, 秦明周. 整合电路理论的生态廊道及其重要性识别[J]. 应用生态学报, 2016, 27(10):3344-3352.SONG Lili, QIN Mingzhou. Identification of ecological corridors and its importance by integrating circuit theory[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3344-3352. [37] McRae Brad H, Dickson Brett G, Keitt Timothy H, Shah Viral B. Using circuit theory to model connectivity in ecology, evolution, and conservation[J]. Ecology, 2008, 89(10): 2712-2714. [38] Peng Jian, Pan Yajing, Liu Yanxu, Zhao Huijuan, Wang Yanglin. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape[J]. Science of the Total Environment, 2018, 71: 110-124. [39] 杜雨阳, 王征强, 于庆和, 杨永崇, 张全文. 基于生境质量模型和电路理论的区域生态安全格局构建:以秦岭(陕西段)为例[J]. 农业资源与环境学报, 2022, 39(5):1069-1078.DU Yuyang, WANG Zhengqiang, YU Qinghe, YANG Yongchong, ZHANG Quanwen. Construction of a regional ecological security pattern based on a habitat quality model and circuit theory: A case study of the Qinling mountains (Shaanxi section)[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 1069-1078. [40] 史学民, 秦明周, 李斌, 李仓宇, 宋利利. 基于MSPA和电路理论的郑汴都市区绿色基础设施网络研究[J]. 河南大学学报(自然科学版), 2018, 48(6):631-638.SHI Xuemin, QIN Mingzhou, LI Bin, LI Cangyu, SONG Lili. Research on the green infrastructure network in the Zhengzhou-Kaifeng metropolian area based on MSPA and circuit theory[J]. Journal of Henan University (Natural Science), 2018, 48(6): 631-638. [41] 李涛, 巩雅博, 戈健宅, 齐增湘, 谢水波. 基于电路理论的城市景观生态安全格局构建:以湖南省衡阳市为例[J]. 应用生态学报, 2021, 32(7):2555-2564.LI Tao, GONG Yabo, GE Jianzhai, QI Zengxiang, XIE Shuibo. Construction of urban landscape ecological security pattern based on circuit theory: A case study of Hengyang City, Hunan Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2555-2564. [42] 吴映梅, 李琛, 高彬嫔, 王梦娇, 武燕, 郑可君. 高原湖泊城市生态安全格局构建:以大理市为例[J]. 生态学报, 2023, 43(19):8153-8166.WU Yingmei, LI Chen, GAO Binpin, WANG Mengjiao, WU Yan, ZHENG Kejun. Construction of urban ecological security pattern in highland lakes cites: The case of Dali City[J]. Acta Ecological Sinica, 2023, 43(19): 8153-8166. [43] 贵州地质调查院. 贵州省区域地质志[M]. 北京:地质出版社, 2017:495-604.Guizhou Institute of Geological Survey. Regional Geology of Guizhou Province[M]. Beijing: Geological Publishing House, 2017: 495-604.