Composition and diversity of microbial communities in high-altitude karst soil
-
摘要: 高寒岩溶是四川黄龙风景区独特的地质特征。为分析高寒岩溶区土壤微生物群落组成特征与土壤理化性质间的相关性,以黄龙风景区土壤为研究对象,对土壤细菌的16SrRNA基因序列和真菌ITS序列进行高通量测序。结果表明:不同岩溶区的土壤细菌多样性和丰富度具有显著差异,但土壤真菌差异不显著,且土壤细菌群落占主导地位;细菌群落以变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)为主;真菌群落以子囊菌门(Ascomycota)、担子菌门(Basidiomycota)为主,真菌在门和属水平的差异较大。冗余分析发现总磷和温度是黄龙风景区土壤微生物群落结构变化的重要环境因子,pH是第二重要的环境因子。Abstract:
As a World Natural Heritage Site, Huanglong Scenic Area, is located in the eastern part of the Qinghai–Tibet Plateau in Songpan county, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province. Huanglong valley is 3.50 km long, with an altitude of 3,145–3,578 m. In the Huanglong Scenic Area, there is a six-month freezing period, with a minimum temperature of 3 ℃. The main vegetation types are coniferous and broad-leaved mixed forests and coniferous forests, belonging to a typical plateau temperate to subfrigid monsoon climate. This scenic area is renowned at home and abroad for its rare and colorful karst landscape. At present, there is still a research gap in the structure and function of soil microorganisms of high-altitude karst habitats. Therefore, in order to explore the characteristics of soil microbial communities in Huanglong Scenic Area—a high-altitude karst area, we compared the differences in soil microbial community structure and diversity between high-altitude karst and non-high-altitude karst areas, with typical primary karst in Guilin—a non-high-altitude karst area. By analyzing the structural characteristics of soil microbial communities and their correlation with environmental impact factors, we laid a theoretical foundation for the relationship between soil microbial communities and ecological environment in high-altitude karst areas. In this study, we collected and analyzed soil samples from Huanglong valley, the main scenic area of the Huanglong Scenic Area. A total of 27 (three replicates) samples were collected and compared with the samples from the typical primary karst area in Guilin. We collected data on environmental factor, such as Total Organic Carbon (TOC), Soil Organic Matter (SOM), Total Nitrogen (TN), Total Product (TP), Temperature (T), Soil Water Content (SWC), and pH. Meanwhile, we employed high-throughput sequencing techniques such as 16SrRNA and ITS gene sequencing to perform bioinformatics analysis on sequencing data, including species diversity and β diversity. Then, we identified the main driving factors affecting soil in the Huanglong Scenic Area through principal component analysis (PCA), and explored the relationship between environmental factors and soil microbial communities by Spearman correlation analysis and redundancy analysis (RDA). The results show that the soil pH at each sampling point in Huanglong valley indicates a neutral to alkaline property, with no significant difference. But there are significant temperature differences at various sampling points. Compared to the soil from slopes of the Yaji test site in the non-high-altitude karst area of Guilin, the SOC, SOM, and TN contents in soil at various points in the Huanglong Scenic Area are relatively higher. There are differences in the bacterial chao1 index and observed OTUs index between Guilin's primary karst area and Huanglong valley. Similarly, the ACE index of bacteria and fungi also shows differences. These results may be attributed to the influence of vegetation types, soil types, and topographical factors on the distribution of soil microorganisms. The diversity indices of Shannon and Chao1 at HJ.4 sampling point in Huanglong valley are higher than those of other sampling points, indicating the richest biodiversity in this sampling point. At a phylum level, the bacterial community is mainly composed of Proteobacteria and Acidobacteria. Ascomycota and Basidiomycota are the dominant microbial groups in the high-altitude karst habitat of the Huanglong area. At a subordinate level, the main dominant bacteria in Huanglong valley are Pseudomonas, RB41, and Candidatus_Udaeobacter, with an average abundance of 14.57%, 3.11%, and 2.29%, respectively. The most dominant group in the primary karst area of Guilin is Candidatus_Udaeobacter, with an abundance of 6%. At a genus level, the dominant fungi in Huanglong valley are Humicola (22%) and Mortierella (22%). The dominant groups of the primary karst area in Guilin are Staphylococcum (5%), Absidia (5%), and Fusarium (4%). The differences in fungi at the phylum and genus levels are greater than those in bacteria. In summary, the proportion of dominant microorganisms in the primary karst area is relatively low, and the community types differ significantly compared to those in Huanglong valley. Samples collected from nine sampling points (three replicates) in Huanglong valley and in the primary karst area of Guilin show varying degrees of dispersion. UPGMA clustering analysis shows a high degree of similarity in various eukaryotic communities in Huanglong valley, while there are certain differences in the composition of prokaryotes among them. Redundancy analysis indicates that in bacteria, TP is the most correlated factor with community distribution, while T is the second most important environmental factor. In fungi, TP is also the most correlated factor, while T and pH are the second most important environmental factors. Both soil TP and T have a significant impact on the distribution of fungal and bacterial communities. -
图 1 采样区位置图
注:HJ.1.迎宾池左; HJ.2.盆景池右; HJ.3.接仙桥左; HJ.4.黄龙古寺右; HY.1.迎宾池右; HY.2.盆景池左; HY.3.接仙桥右; HY.4.黄龙古寺左; YS.桂林原生岩溶(丫吉岩溶试验场)
Figure 1. Location of sampling points in Huanglong Scenic Area
Note: HJ.1. the left of Yingbin pool; HJ.2. the right of Penjing pool; HJ.3. the left of Jiexianqiao pool; HJ.4. the right of Huanglong ancient temple; HY.1. the right of Yingbin pool; HY.2. the left of Penjing pool; HY.3. the right of Jiexianqiao pool; HY.4. the left of Huanglong ancient temple; YS. primary karst (Yaji karst experimental site in Guilin, China).
表 1 采样信息
Table 1. Information of sample points
采样区 样品 纬度 经度 海拔 迎宾池左 HJ.1 32°74′96″N 103°82′58″E 3 200.00 m 盆景池右 HJ.2 32°74′63″N 103°82′84″E 3 300.00 m 接仙桥左 HJ.3 32°73′42″N 103°83′39″E 3 400.00 m 黄龙古寺右 HJ.4 32°72′68″N 103°83′20″E 3 500.00 m 迎宾池右 HY.1 32°74′96″N 103°82′35″E 3 200.00 m 盆景池左 HY.2 32°74′64″N 103°82′95″E 3 300.00 m 接仙桥右 HY.3 32°73′71″N 103°83′04″E 3 400.00 m 黄龙古寺左 HY.4 32°72′77″N 103°83′40″E 3 500.00 m 桂林原生岩溶 YS 25°10′60″N 110°45′21″E 150 m 表 2 土壤环境因子分析
Table 2. Analysis of soil environmental factors
理化指标 HJ.1 HJ.2 HJ.3 HJ.4 HY.1 HY.2 HY.3 HY.4 YS T ℃ 13.07±1.01b 5.5±0.76ef 5.4±0.15f 10±0.15c 6.2±0.10ef 7.9±0.21d 6.8±0.25e 9.47±0.50c 26.55±0.66a pH 7.64±0.15ab 7.31±0.19bc 7.59±0.34ab 7.39±0.34bc 7.38±0.23bc 7.77±0.17ab 7.14±0.04bc 7.16±0.12bc 8.58±0.24a TP/mg·L−1 2.24±1.43d 4.18±0.73ab 2.94±0.56bcd 3.55±1.07abc 4.87±0.11a 2.78±1.06cd 5.47±0.26abc 2.55±0.27cd 2.65±0.13b TN/mg·L−1 0.96±0.14d 3.28±0.24b 1.65±0.06c 1.05±0.12d 0.13±0.19e 1.93±0.33c 0.33±0.16e 1.35±0.68cd 7.77±0.18a Ec/us 172.87±39.43abc 225.17±35.37a 223.60±27.58ab 160.57±19.86bc 168.70±49.62abc 180.27±18.07abc 126.50±36.00cd 86.40±10.92d 193.30±3.46b SOC/g·kg−1 26.48±5.84b 51.36±5.96a 17.21±1.99bc 28.21±11.47b 18.31±6.25bc 18.37±1.96bc 27.43±2.38b 20.83±1.88bc 10.23±5.24c SOM/g·kg1 45.66±10.06ab 29.79±3.46bc 29.66±3.43bc 64.46±28.11a 31.57±10.77bc 31.68±3.38bc 47.31±4.10ab 35.91±3.24bc 17.77±62c SWC/ % 21.77±0.40f 50±7.21bc 44.67±2.52cd 38.77±0.68de 54.67±3.06b 32.73±0.64e 48.33±2.08bc 63.37±4.15a 14.92±1.32b 注:表中数据为平均值±标准差,不同小写字母代表差异显著(P<0.05)。
Note: Data in the Table 2 indicate mean ± standard deviation. Lowercase letters represent significant differences (P<0.05).表 3 土壤微生物α多样性
Table 3. Alpha diversity of soil microorganism
样品 Chao1指数 Shannon指数 Simpson指数 Observed_OTUs指数 ACE指数 细菌 真菌 细菌 真菌 细菌 真菌 细菌 真菌 细菌 真菌 HJ.1 1199.54±326.40c 326.04±143.87b 6.66±0.91b 2.67±1.42c 0.90±0.04bc 0.51±0.22b 1195.33±326.76c 324.33±142.62c 2648.93±500.73e 787.50±305.84de HJ.2 1737.44±21.77ab 678.86±230.88ab 9.85±0.05a 4.93±1.02abc 1.00±0.00a 0.78±0.19a 1734.00±22.11ab 675.00±233.22abc 3961.61±155.55ab 1723.36±673.85abcd HJ.3 1839.00±63.00a 627.37±213.97ab 9.97±0.04a 4.65±1.14bc 1.00±0.00a 0.81±0.16a 1837.33±63.22a 624.67±214.15abc 3876.56±267.65ab 1535.09±638.65bcde HJ.4 2019.37±52.47a 975.64±153.96a 10.21±0.03a 7.3±0.61a 1.00±0.00a 0.98±0.01a 2017.33±52.00a 974.33±152.72a 4269.48±273.22a 2751.19±870.78a HY.1 1770.97±130.19a 971.38±160.10a 9.86±0.03a 7.39±0.50a 1.00±0.00a 0.98±0.01a 1769.33±129.33a 968.67±159.48a 3755.03±77.57bc 2490.57±633.04ab HY.2 1301.99±504.66bc 569.99±170.57ab 6.66±2.79b 5.15±1.47abc 0.84±0.14c 0.87±0.09a 1301.00±505.35bc 569.00±170.84abc 3059.07±134.61de 1319.98±479.86cde HY.3 1788.48±38.07a 769.33±97.95a 9.97±0.05a 6.17±0.77ab 1.00±0.00a 0.93±0.06a 1786.00±40.04a 766.33±95.97ab 4065.98±52.40ab 2062.51±219.78abc HY.4 1631.30±189.07abc 699.15±327.77ab 8.95±0.75a 5.35±2.24ab 0.98±0.03ab 0.87±0.09a 1630.00±188.75abc 694.67±331.24abc 3383.84±184.75cd 1409.53±405.28bcde YS 760.42±59.05d 545.08±297.01ab 5.94±0.03b 3.7±0.81bc 1.00±0.00a 0.89±0.07a 748.00±52.83d 522.67±280.45bc 761.43±304.62f 547.22±304.62e 注:表中数据为平均值±标准差,不同小写字母代表差异显著(P<0.05)。
Note: Data in table indicate mean ± standard deviation. Lowercase letters represent significant differences (P<0.05). -
[1] Wei X C, Deng X W, Xiang W H, Lei P F, Ouyang S, Wen H F. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China[J]. Biogeosciences, 2018, 15(9): 2991-3002. doi: 10.5194/bg-15-2991-2018 [2] Jiang Z C, Lian Y Q, Qin X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132: 1-12. doi: 10.1016/j.earscirev.2014.01.005 [3] Xiang Y Z, Chang S X, Shen Y Y, Chen G, Liu Y, Yao B, Xue J M, Li Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China[J]. Applied Soil Ecology, 2023, 182: 104720. doi: 10.1016/j.apsoil.2022.104720 [4] 李阳兵. 中国西南岩溶山地石漠化转型演变解析[J]. 中国岩溶, 2021, 40(4):698-706.LI Yangbing. Analysis on transformation and evolution of rocky desertification in karst mountainous areas of Southwest China[J]. Carsologica Sinica, 2021, 40(4): 698-706. [5] 张浪, 李俊, 潘晓东, 黄晓荣, 彭聪. 西南某岩溶区地下水系统示踪试验与解析[J]. 中国岩溶, 2020, 39(1):42-47. doi: 10.11932/karst2019y36ZHANG Lang, LI Jun, PAN Xiaodong, HUANG Xiaorong, PENG Cong. Tracer test and analysis of groundwater system in a karst area of Southwest China[J]. Carsologica Sinica, 2020, 39(1): 42-47. doi: 10.11932/karst2019y36 [6] Pan L D, Li R, Shu D C, Zhao L N, Chen M, Jing J. Effects of rainfall and rocky desertification on soil erosion in karst area of Southwest China[J]. Journal of Mountain Science, 2022(19): 3118-3130. [7] 李成芳, 王忠诚, 李振炜, 徐宪立. 西南喀斯特区土壤侵蚀研究进展[J]. 中国岩溶, 2022, 41(6):962-974.LI Chengfang, WANG Zhongcheng, LI Zhenwei, XU Xianli. Research progress of soil erosion in karst areas of Southwest China[J]. Carsologica Sinica, 2022, 41(6): 962-974. [8] 张薰元, 周运超, 黄梅, 白云星, 张春来. 两种地质背景条件下群落物种组成及多样性与土壤因子的相关性研究:以桂林毛村为例[J]. 中国岩溶, 2022, 41(6):940-951.ZHANG Xunyuan, ZHOU Yunchao, HUANG Mei, BAI Yunxing, ZHANG Chunlai. Correlation between the composition and diversity of community species and soil factors under two geological conditions: A case study of Mao village in Guilin[J]. Carsologica Sinica, 2022, 41(6): 940-951. [9] Torsvik V, Sorheim R, Goksoyr J. Total bacterial diversity in soil and sediment communities-areview[J]. Journal of lndustrial Microbiology, 1996, 17(3): 170-178. [10] 张春来, 陆来谋, 杨慧, 黄芬. 岩溶区土壤有机质空间变异性分析[J]. 中国岩溶, 2022, 41(2):228-239.ZHANG Chunlai, LU Laimou, YANG Hui, HUANG Fen. Spatial variation analysis of soil organic matter in karst area[J]. Carsologica Sinica, 2022, 41(2): 228-239. [11] 蒋忠诚. 广西弄拉白云岩环境元素的岩溶地球化学迁移[J]. 中国岩溶, 1997, 16(4):304-312.JIANG Zhongcheng. Element migration in karst geochemical processes of the dolomite in Nongla, Guangxi[J]. Carsologica Sinica, 1997, 16(4): 304-312. [12] 邓艳, 蒋忠诚, 罗为群, 曾玉和, 黄红慧. 不同岩溶生态系统中元素的地球化学迁移特征比较:以广西弄拉和弄岗自然保护区为例[J]. 中国岩溶, 2006, 25(2):168-171. doi: 10.3969/j.issn.1001-4810.2006.02.014DENG Yan, JIANG Zhongcheng, LUO Weiqun, ZENG Yuhe, HUANG Honghui. Comparison of geochemical leaching characteristics of elements between different karst ecosystems: A case study in Guangxi Nongla and Nonggang natural forest reserve areas[J]. Carsologica Sinica, 2006, 25(2): 168-171. doi: 10.3969/j.issn.1001-4810.2006.02.014 [13] 李先琨, 何成新, 蒋忠诚. 岩溶脆弱生态区生态恢复、重建的原理与方法[J]. 中国岩溶, 2003, 22(1):12-17. doi: 10.3969/j.issn.1001-4810.2003.01.003LI Xiankun, HE Chengxin, JIANG Zhongcheng. Method and principles of ecological rehabilitation and reconstruction in fragile karst ecosystem[J]. Carsologica Sinica, 2003, 22(1): 12-17. doi: 10.3969/j.issn.1001-4810.2003.01.003 [14] Zhang Q, Wu J J, Yang F, Lei Y, Zhang Q F, Cheng X L. Alterations in soil microbial community composition and biomass following agricultural land use change[J]. Scientific Reports, 2016, 6(1): 36587. doi: 10.1038/srep36587 [15] Li D J, Wen L, Jiang S, Song T Q, Wang K L. Responses of soil nutrients and microbial communities to three restoration strategies in a karst area, Southwest China[J]. Journal of Environmental Management, 2018, 207(1): 456-464. [16] 杜雄峰, 于皓, 王尚, 邓晔. 宏基因组方法揭示草地土壤微生物群落响应全球变化[J]. 生态学杂志, 2019, 38(11):3516-3526.DU Xiongfeng, YU Hao, WANG Shang, DENG Ye. Metagenomics reveal responses of soil microbial community in grassland to global changes[J]. Chinese Journal of Ecology, 2019, 38(11): 3516-3526. [17] 贾远航, 靳振江, 袁武, 程跃扬, 邱江梅, 梁锦桃, 潘复静, 刘德深. 会仙岩溶湿地、稻田与旱地土壤细菌群落结构特征比较[J]. 环境科学, 2019, 40(7):3313-3323.JIA Yuanhang, JIN Zhenjiang, YUAN Wu, CHENG Yueyang, QIU Jiangmei, LIANG Jintao, PAN Fujing, LIU Desen. Comparison of soil bacterial community structure between paddy fields and dry land in the Huixian karst wetland, China[J]. Environmental Science, 2019, 40(7): 3313-3323. [18] 张双双, 靳振江, 贾远航, 李 强. 岩溶区与非岩溶区3种土地利用方式下土壤细菌群落结构比较[J]. 中国岩溶, 2019, 38(2):164-172.ZHANG Shuangshuang, JIN Zhenjiang, JIA Yuanhang, LI Qiang. Comparison of soil bacterial community structures from three soil land-use between karst and non-karst areas under three kinds of land use[J]. Carsologica Sinica, 2019, 38(2): 164-172. [19] Kang Enze, Li Yong, Zhang Xiaodong, Yan Zhongqing, Wu Haidong, Li Meng, Yan Liang, Zhang Kerou, Wang Jinzhi, Kang Xiaoming. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland[J]. Science of the Total Environment, 2021, 774: 145780. [20] Xia Pinhua, Zhang Jian, Liu Jinbo, Yu Lifei. Shifts of sediment bacterial community and respiration along a successional gradient in a typical karst plateau lake wetland (China)[J]. Journal of Oceanology and Limnology, 2021, 39(3): 880-891. doi: 10.1007/s00343-020-0073-y [21] Wang Xiayu, Li Wei, Xiao Yutian, Cheng Aoqi, Shen Taiming, Zhu Min, Yu Longjiang. Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems[J]. Catena, 2021, 204: 105418. [22] 侯天文, 金辉, 刘红霞, 安德军, 罗毅波. 四川黄龙沟优势兰科植物菌根真菌多样性及其季节变化[J]. 生态学报, 2010, 30(13):3424-3432.HOU Tianwen, JIN Hui, LIU Hongxia, AN Dejun, LUO Yibo. The variations of mycorrhizal fungi diversity among different growing periods of the dominant orchids from two habitats in the Huanglong valley, Sichuan[J]. Acta Ecologica Sinica, 2010, 30(13): 3424-3432. [23] 邓艳, 蒋忠诚, 徐烨, 岳祥飞, 李旭尧, 梁锦桃. 典型表层岩溶泉域植被对降雨的再分配研究[J]. 中国岩溶, 2018, 37(5):714-721.DENG Yan, JIANG Zhongcheng, XU Ye, YUE Xiangfei, LI Xuyao, LIANG Jintao. Redistribution of precipitation by vegetation and its ecohydrological effects in a typical epikarst spring catchment[J]. Carsologica Sinica, 2018, 37(5): 714-721. [24] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000. [25] Li B, Zhang X X, Guo F, Wu W M, Zhang T. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis[J]. Water Research, 2013, 47(13): 4207-4216. doi: 10.1016/j.watres.2013.04.021 [26] C E Shannon. The mathematical theory of communication. 1963[J]. Computers in Medical Practice, 1997, 14(4): 306-317. [27] Kruskal J B. Nonmetric multidimensional scaling: A numerical method[J]. Psychometrika, 1964, 29(2): 115-129. doi: 10.1007/BF02289694 [28] Bastida F, Eldridge D J, García C. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes[J]. The ISME Journal, 2021, 15(7): 2081-2091. doi: 10.1038/s41396-021-00906-0 [29] Cai Z Q, Zhang Y H, Yang C, Wang S. Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China[J]. Catena, 2018, 165: 369-380. doi: 10.1016/j.catena.2018.02.018 [30] 李阳兵, 王世杰, 李瑞玲. 岩溶生态系统的土壤[J]. 生态环境, 2004,13(3):434-438.LI Yangbing, WANG Shijie, LI Ruiling. Some soil features of karst ecosystem[J]. Ecology and Environment, 2004,13(3): 434-438. [31] 梁建宏, 崔旭东, 文来艳, 刘鼎, 伊晨旭, 黄可尊, 王俊. 桂林典型岩溶区和非岩溶区土壤剖面钙镁形态迁移对比[J]. 中国岩溶, 2022, 41(2):220-227.LIANG Jianhong, CUI Xudong, WEN Laiyan, LIU Ding, YI Chenxu, HUANG Kezun, WANG Jun. Comparison of soil calcium and magnesium fractions transport in classic karst and non-karst region, Guilin[J]. Carsologica Sinica, 2022, 41(2): 220-227. [32] 侯卓男, 张新军, 王瑞红, 李傲, 李欣彤, 魏雨泉. 不同海拔高寒森林凋落物分解过程中土壤微生物群落的变化[J]. 中国农业大学学报, 2024, 29(2):36-46. doi: 10.11841/j.issn.1007-4333.2024.02.04HOU Zhuonan, ZHANG Xinjun, WANG Ruihong, LI Ao, LI Xintong, WEI Yuquan. Changes of soil microbial communities during litter decomposition in alpine forests at different elevations[J]. Journal of China Agricultural University, 2024, 29(2): 36-46. doi: 10.11841/j.issn.1007-4333.2024.02.04 [33] 马婵华, 徐争强. 若尔盖高寒泥炭湿地土壤有机碳研究进展[J]. 黑龙江环境通报, 2024, 37(3):1-3.MA Chanhua, XU Zhengqiang. Research progress on soil organic carbon in Zoige Alpine peat wetland[J]. Heilongjiang Environmental Journal, 2024, 37(3): 1-3. [34] Eyles A, Coghlan G, Hardie M, Hovenden M, Bridle K. Soil carbon sequestration in cool-temperate dryland pastures: Mechanisms and management options[J]. Soil Research, 2015, 53(4): 349-365. doi: 10.1071/SR14062 [35] 聂秀青, 王冬, 周国英 , 任立宁, 陈永哲, 杜岩功, 平才吉. 三江源地区高寒湿地土壤微生物群落特征[J]. 土壤通报, 2023, 54(6):1401-1408.NIE Xiuqing, WANG Dong, ZHOU Guoying, REN Lining, CHEN Yongzhe, DU Yangong, PING Caiji. Characteristics of soil microbial community structure in three rivers source regions alpine wetlands[J]. Chinese Journal of Soil Science, 2023, 54(6): 1401-1408. [36] Mukhopadhya I D, Hansen R, Elor E M, Hold G L. IBD-what role do Proteobacteria play?[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(4): 219-230. [37] Weissbecker C, Wubet T, Lentendu G, Kuhn P, Scholten T, Bruelheide H, Buscot F. Experimental evidence of functional group-dependent effects of tree diversity on soil fungi in subtropical forests[J]. Frontiers in Microbiolgy, 2018, 9: 2312. doi: 10.3389/fmicb.2018.02312 [38] Zhou J, Jiang X, Zhou B K, Zhao B S, Ma M C, Guan D W, Li J, Chen S F, Cao F M, Shen D L. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in Northeast China[J]. Soil Biology & Biochemistry, 2016, 95: 135-143. [39] Lynd L R, Weimer P J, van Z W H, Pretorius I S. Microbial cellulose utilization: Fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577. doi: 10.1128/MMBR.66.3.506-577.2002 [40] 徐润宏, 谭梅, 刘泽华, 朱锦福. 高寒湿地土壤微生物区系组成对氮添加的响应[J]. 生态科学, 2022, 41(1):120-128.XU Runhong, TAN Mei, LIU Zehua, ZHU Jinfu. Response of microbial flora to nitrogen addition in alpine wetlands[J]. Ecological Science, 2022, 41(1): 120-128. [41] 邵颖, 曹四平, 刘长海, 罗梦娇. 基于高通量测序的南泥湾湿地土壤细菌多样性分析[J]. 干旱区资源与环境, 2019, 33(2):158-163.SHAO Ying, CAO Siping, LIU Changhai, LUO Mengjiao. Bacterial diversity in soils of Nanniwan wetland based on high-throughput sequencing[J]. Journal of Arid Land Resources and Environment, 2019, 33(2): 158-163. [42] 赵萌, 印春生, 厉成伟, 钟胜财, 于克锋, 方淑波. Miseq 测序分析围垦后海三棱藨草湿地土壤微生物群落多样性的季节变化[J]. 上海海洋大学学报, 2018, 27(5):718-727.ZHAO Meng, YIN Chunsheng, LI Chengwei, ZHONG Shengcai, YU Kefeng, FANG Shubo. Using Miseq sequencing to analyze seasonal soil microbial community dynamics in reclaimed Scirpus mariqueter coastal wetlands[J]. Journal of Shanghai Ocean University, 2018, 27(5): 718-727. [43] 王鹏, 陈波, 张华. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析[J]. 生态学报, 2017, 37(5):1650-1658.WANG Peng, CHEN Bo, ZHANG Hua. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang lake wetland[J]. Acta Ecologica Sinica, 2017, 37(5): 1650-1658. [44] 庞丹波, 吴梦瑶, 赵娅茹, 杨娟, 董立国, 吴旭东, 陈林, 李学斌, 倪细炉, 李静尧, 梁咏亮. 贺兰山东坡不同海拔土壤做生物群落特征及其影响因素[J]. 应用生态学报, 2023, 34(7):1957-1967.PANG Danbo, WU Mengyao, ZHAO Yaru, YANG Juan, DONG Liguo, WU Xudong, CHEN Lin, LI Xuebin, NI Xilu, LI Jingyao, LIANG Yongliang. Soil microbial community characteristics and the inluencing factors at different elevations on the easternslope of Helan mountain, Northwest China[J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1957-1967. [45] Wang X J, Ren Y X, Yu Z Q, Shen G F, Cheng H F, Tao S. Effects of environmental factors on the distribution of microbial communities across soils and lake sediments in the Hoh Xil Nature Reserve of the Qinghai-Tibetan Plateau[J]. Science of the Total Environment, 2022, 838: 156148. doi: 10.1016/j.scitotenv.2022.156148 [46] Kumar S, Suyal D C, Yadav A, Shouche Y, Goel R. Microbial diversity and soil physiochemical characteristic of higher altitude[J]. PLoS One, 2019, 14(3): 0213844. [47] 曹丽花, 刘台满, 杨红, 连玉珍. 色季拉山不同海拔土壤微生物及真菌群落组成特征[J]. 水士保持学报, 2022, 36(6):371-78.CAO Lihua, LIU Taiman, YANG Hong, LIAN Yuzhen. Soil microbial distribution and fungal community composition at different altitudes on Sejila mountain, southeastern Tibet[J]. Jounal of Soil and Water Corsenvation, 2023, 36(6): 371-378. [48] Perez M C, Frey B, Frossard A. Functional and structural responses of Arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of different frequencies[J]. Frontiers in Microbiology, 2020, 11: 982. doi: 10.3389/fmicb.2020.00982 [49] Chu H, Gao G F, Ma Y, Fan K, Delgado Baquerizo M. Soil microbial biogeography in a changing world: Recent advances and future perspectives[J]. mSystems, 2020, 5(2): e00803-19. [50] An F J, Niu Z R, Liu T N, Su Y Z. Succession of soil bacterial community along a 46-year choronsequence artificial revegetation in an arid oasis-desert ecotone[J]. Science of the Total Environment, 2021, 814: 152496. [51] 陆志成, 温远光, 周晓果, 王磊, 孙冬婧, 朱宏光, 李景文. 岩溶地区森林自然恢复过程中植物和土壤微生物多样性的关联分析[J]. 广西科学, 2022, 29(1):108-119.LU Zhicheng, WEN Yuanguang, ZHOU Xiaoguo, WANG Lei, SUN Dongjing, ZHU Hongguang, LI Jingwen. Correlation analysis of plant and soil microbial diversity during forest natural restoration in karst region, Southwest China[J]. Guangxi Sciences, 2022, 29(1): 108-119.