• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正SWAT模型在喀斯特小流域的径流模拟研究

杨丽 杨广斌 李亦秋 李蔓

杨 丽,杨广斌,李亦秋,等. 修正SWAT模型在喀斯特小流域的径流模拟研究−以羊鸡冲小流域为例[J]. 中国岩溶,2024,43(2):291-301 doi: 10.11932/karst2024y011
引用本文: 杨 丽,杨广斌,李亦秋,等. 修正SWAT模型在喀斯特小流域的径流模拟研究−以羊鸡冲小流域为例[J]. 中国岩溶,2024,43(2):291-301 doi: 10.11932/karst2024y011
YANG Li, YANG Guangbin, LI Yiqiu, LI Man. Runoff simulation of modified SWAT model in karst watershed: A case study of Yangjichong sub-watershed[J]. CARSOLOGICA SINICA, 2024, 43(2): 291-301. doi: 10.11932/karst2024y011
Citation: YANG Li, YANG Guangbin, LI Yiqiu, LI Man. Runoff simulation of modified SWAT model in karst watershed: A case study of Yangjichong sub-watershed[J]. CARSOLOGICA SINICA, 2024, 43(2): 291-301. doi: 10.11932/karst2024y011

修正SWAT模型在喀斯特小流域的径流模拟研究——以羊鸡冲小流域为例

doi: 10.11932/karst2024y011
基金项目: 贵州省科技重大计划项目(黔科合重大专项 [2022]001);贵州省科技支撑项目(黔科合支撑[2023]一般176);贵州省基础研究(自然科学)项目(黔科合基础-ZK[2024]一般445)
详细信息
    作者简介:

    杨丽(2000-),女,硕士研究生,研究方向:3S技术与水土保持。E-mail:1125832457@qq.com

    通讯作者:

    杨广斌(1973-),男,教授,研究方向:地理信息系统与遥感。E-mail:ygbyln@163.com

  • 中图分类号: P333.1

Runoff simulation of modified SWAT model in karst watershed: A case study of Yangjichong sub-watershed

  • 摘要: 在贵州喀斯特地区,地表径流通过土壤裂隙、岩溶管道等途径流失,限制了地表径流的形成。文章以龙里羊鸡冲小流域为研究区,基于2013—2019年的实测数据,修正SWAT(Soil and Water Assessment Tool)模型的裂隙流模块,修改了裂缝入渗的表示方法,对修正前后的日径流模拟进行对比分析。结果表明:率定期内纳什系数由0.32提升到0.60,决定系数由提高0.37提升到0.58。在验证期内,纳什系数由0.52提高到0.55,决定系数由0.56提高到0.60,修正后的模型与原模型相比具有更好的适用性。修正后模型的径流时间序列与实测数据更吻合,能合理估算研究区的入渗水量,为喀斯特小流域的水资源管理提供参考依据。

     

  • 图  1  研究区地理位置示意图

    Figure  1.  Geographical location of the study area

    图  2  SWAT模型修正流程

    Figure  2.  Modification process of SWAT model

    图  3  SWAT模型修正前后径流量模拟对比

    Figure  3.  Simulation comparison of runoff capacity before and after the modification of SWAT model

    图  4  2017年径流量模拟对比图

    Figure  4.  Comparison of runoff simulation in 2017

    图  5  SWAT模型修正前后径流模拟散点图

    Figure  5.  Scatter plot of runoff simulation before and after the modification of SWAT model

    图  6  模型修正前后的月均入渗量与地表径流的变化

    Figure  6.  Changes of average monthly infiltration and surface runoff before and after the modification of SWAT model

    图  7  SWAT模型修正前后月入渗量随降雨量的变化

    Figure  7.  Changes of monthly infiltration with rainfall before and after the modification of SWAT model

    表  1  数据详情及来源

    Table  1.   Data details and sources

    数据类型 数据描述 数据来源
    数字高程模型 DEM数据分辨率10 m×10 m 由1∶10 000地形图采集生成
    土壤类型和属性数据 10 m×10 m 查阅自《贵州土种志》[21]、中国土壤属性库
    土地利用数据 10 m×10 m 高分辨率影像解译与实地调查验证获取
    气象数据 2013—2019年逐日气象数据(降雨量、最高和
    最低温度、相对湿度、风速和日照时数)
    国家气象科学数据中心(http://data.cma.cn
    水文数据(龙里羊鸡冲站) 2013—2019年逐日流量数据 龙里羊鸡冲监测站提供
    下载: 导出CSV

    表  2  参数敏感性分析结果对比

    Table  2.   Comparison of parameter sensitivity

    参数名称 参数含义 取值范围 修正SWAT 原始SWAT
    t-Stat P-Value 排名 t-Stat P-Value 排名
    SOL_BD(..).sol 土壤表层湿容重 [−0.5,0.5] 9.14 0.00 1 0.89 0.38 7
    SOL_CRK.sol 土壤剖面潜在或最大裂隙体积 [0,1] 2.61 0.01 2 1.24 0.23 3
    CANMX.hru 最大根系深度 [0,100] 2.07 0.04 3 −0.90 0.38 6
    CN2.mgt SCS径流曲线数 [−0.5,0.5] −1.44 0.15 4 0.30 0.77 16
    GW_DELAY.gw 地下水滞后时间 [1,500] 1.40 0.16 5 −0.76 0.45 10
    LAT_TTIME.hru 侧向流的运动时间 [0,180] 1.33 0.19 6 0.21 0.84 17
    SLSUBBSN.hru 平均坡长 [10,150] −0.98 0.33 7 0.01 0.99 21
    HRU_SLP.hru 平均坡度 [0,0.6] 0.8 0.42 8 −4.02 0.00 1
    CH_N2.rte 主河道曼宁系数值 [0,0.3] 0.05 0.96 9 1.37 0.18 2
    下载: 导出CSV

    表  3  模型日径流模拟评价指标

    Table  3.   Evaluation index of daily runoff simulation of the model

    率定期验证期
    NSER2PBIASNSER2PBIAS
    原始 SWAT0.320.3722.5%0.520.5619.9%
    修正 SWAT0.600.5821.0%0.550.6021.0%
    下载: 导出CSV

    表  4  HRU在模型修正前后的入渗量和地表径流

    Table  4.   Infiltration and surface runoff of HRU before and after the modification of SWAT model

    模型 入渗量/mm 土壤含水量/mm 地表径流/mm
    SWAT 0.23 139.53 3.98
    修正 SWAT 0.84 158.30 3.14
    下载: 导出CSV
  • [1] 熊康宁, 池永宽. 中国南方喀斯特生态系统面临的问题及对策[J]. 生态经济, 2015, 31(1):23-30. doi: 10.3969/j.issn.1671-4407.2015.01.006

    XIONG Kangning, CHI Yongkuan. The problems in Southern China karst ecosystem in southern of China and its countermeasures[J]. Ecological Economy, 2015, 31(1): 23-30. doi: 10.3969/j.issn.1671-4407.2015.01.006
    [2] 卢卫中. 岩溶流域水文模型初步研究[J]. 水文, 1995(2):29-33.
    [3] 杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究:以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123. doi: 10.11932/karst20220106

    YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J]. Carsologica Sinica, 2022, 41(1): 111-123. doi: 10.11932/karst20220106
    [4] Pang S, Wang X, Melching C S, Feger K H. Development and testing of a modified SWAT model based on slope condition and precipitation intensity[J]. Journal of Hydrology, 2020, 588: 125098. doi: 10.1016/j.jhydrol.2020.125098
    [5] Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large area hydrologic modeling and assessment part I: Model development[J]. JAWRA Journal of the American Water Resources Association, 1998, 34(1): 73-89. doi: 10.1111/j.1752-1688.1998.tb05961.x
    [6] 杨明德, 谭明, 梁虹. 喀斯特流域水文地貌系统[M]. 北京:地质出版社, 1998.
    [7] 刘文冲, 赵良杰, 崔亚莉, 曹建文, 王莹, 李美玲. 基于SWAT-MODFLOW地表–地下水耦合模型的结构与应用研究[J]. 中国岩溶, 2023, 42(6):1131-1139.

    LIU Wenchong, ZHAO Liangjie, CUI Yali, CAO Jianwen, WANG Ying, LI Meiling. Structure and application of SWAT-MODFLOW coupling model for surface-groundwater[J]. Carsologica Sinica, 2023, 42(6): 1131-1139.
    [8] 张金存, 芮孝芳. 分布式水文模型构建理论与方法述评[J]. 水科学进展, 2007(2):286-292.

    ZHANG Jincun, RUI Xiaofang. Discussion of theory and methods for building a distributed hydrologic model[J]. Advances in Water Science, 2007(2): 286-292.
    [9] 张程鹏, 张凤娥, 耿新新, 冀俊杰, 陈永康. 岩溶地下河在SWAT中的概化方法:以毕节倒天河流域为例[J]. 中国岩溶, 2020, 39(5):665-672.

    ZHANG Chengpeng, ZHANG Feng'e, GENG Xinxin, JI Junjie, CHEN Yongkang. Generalization method of karst underground river in SWAT: An example of the Daotian riverwatershed in Bijie, Guizhou[J]. Carsologica Sinica, 2020, 39(5): 665-672.
    [10] 赖格英, 易姝琨, 刘维, 盛盈盈, 彭小娟, 熊家庆, 潘思怡, 吴青. 基于修正SWAT模型的岩溶地区非点源污染模拟初探:以横港河流域为例[J]. 湖泊科学, 2018, 30(6):1560-1575.

    LAI Geying, YI Shukun, LIU Wei, SHENG Yingying, PENG Xiaojuan, XIONG Jiaqing, PAN Siyi. WU Qing. Non-point source pollution simulation in karst region based on modified SWAT Model: A case study in Henggang river basin[J]. Journal of Lake Sciences, 2018, 30(6): 1560-1575.
    [11] 梁桂星, 覃小群, 崔亚莉, 陈爽, 黄奇波. 分布式水文模型在岩溶地区的改进与应用研究[J]. 水文地质工程地质, 2020, 47(2):60-67.

    LIANG Guixing, QIN Xiaoqun, CUI Yali, CHEN Shuang, HUANG Qibo. Improvement and application of a distributed hydrological model in karst regions[J]. Hydrogeology and Engineering Geology, 2020, 47(2): 60-67.
    [12] Nguyen V T, Dietrich J, Uniyal B. Modeling interbasin groundwater flow in karst areas: Model development, application, and calibration strategy[J]. Environmental Modelling & Software, 2020, 124: 104606.
    [13] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 2018, 33(11):1130-1141. doi: 10.11867/j.issn.1001-8166.2018.11.1130.

    MA Qianhong, ZHANG Keli. Progresses and prospects of the research on soil erosion in karst area of Southwest China[J]. Advances in Earth Science, 2018, 33(11): 1130-1141. doi: 10.11867/j.issn.1001-8166.2018.11.1130.
    [14] 张家俊, 龚壁卫, 胡波, 周小文, 王军. 干湿循环作用下膨胀土裂隙演化规律试验研究[J]. 岩土力学, 2011, 32(9):2729-2734. doi: 10.3969/j.issn.1000-7598.2011.09.028

    ZHANG Jiajun, GONG Biwei, HU Bo, ZHOU Xiaowen, WANG Jun. Study of evolution law of fissures of expansive clay under wetting and drying cycles[J]. Rock and Soil Mechanics, 2011, 32(9): 2729-2734. doi: 10.3969/j.issn.1000-7598.2011.09.028
    [15] 罗舒玉, 邓羽松, 陈洪松, 王金悦, 廖达兰. 干湿交替条件下喀斯特峰丛洼地土壤裂隙发育规律[J]. 应用生态学报, 2023, 34(2):387-395.

    LUO Shuyu, DENG Yusong, CHEN Hongsong, WANG Jinyue, LlAO Dalan. Development law of soil cracks in karst peak-cluster depressions under dry and wet alternations[J]. Chinese Journal of Applied Ecology, 2023, 34(2): 387-395
    [16] Novák V, Simunek J Jirka, Van Genuchten M. Infiltration of water into soil with cracks[J]. Journal of Irrigation and Drainage Engineering, 2000, 126: 41-47. doi: 10.1061/(ASCE)0733-9437(2000)126:1(41)
    [17] Tuong T P, Cabangon R J, Wopereis M C S. Quantifying flow processes during land soaking of cracked rice soils[J]. Soil Science Society of America Journal, 1996, 60(3): 872-879. doi: 10.2136/sssaj1996.03615995006000030028x
    [18] 王晓朋, 乔飞, 雷坤, 任广军, 王小龙. SWAT模型在我国的研究和应用进展[J]. 中国农村水利水电, 2015(5):109-113.

    WANG Xiaopeng, QIAO Fei, LEI Kun, REN Guangjun, WANG Xiaolong. Research on and application of SWAT model in China[J]. China Rural Water and Hydropower, 2015(5): 109-113.
    [19] 谢晖, 邱嘉丽, 董建玮, 高田田, 赖锡军. 流域水文模型在面源污染模拟与管控中的应用研究进展[J]. 生态学报, 2022, 42(15):6076-6091.

    XIE Hui, QIU Jiali, DONG Jianwei, GAO Tiantian, LAI Xijun. Research of the HSPF model on nonpoint source pollution modeling and management: Progresses and perspectives[J]. Journal of Ecology, 2022, 42(15): 6076-6091.
    [20] 景珂星, 毛欢, 宋进喜, 黄鹏, 吴琼, 庞国伟. 岔巴沟流域汛期径流模拟及地表产流特征分析[J]. 水土保持研究, 2023, 30(1):62-69.

    JING Kexing, MAO Huan, SONG Jinxi, HUANG Peng, WU Qiong, PANG Guowei. Simulation of runoff in flood season and analysis of surface runoff characteristics in Chabagou watershed[J]. Research of Soil and Water Conservation, 2023, 30(1): 62-69.
    [21] 贵州省土壤普查办公室. 贵州土种志[M]. 贵阳:贵州科技出版社, 1994.
    [22] Zhang J M, Luo Y, Zhou Z, Chong L, Victor C, Zhang Y F. Effects of preferential flow induced by desiccation cracks on slope stability[J]. Engineering Geology, 2021, 288: 106164. doi: 10.1016/j.enggeo.2021.106164
    [23] 张中彬, 彭新华. 土壤裂隙及其优先流研究进展[J]. 土壤学报, 2015, 52(3):477-488.

    ZHANG Zhongbin, PENG Xinhua. A review of researches on soil cracks and their impacts on preferential flow[J]. Acta Pedologica Sinica, 2015, 52(3): 477-488.
    [24] 陈洪松, 杨静, 傅伟, 何菲, 王克林. 桂西北喀斯特峰丛不同土地利用方式坡面产流产沙特征[J]. 农业工程学报, 2012, 28(16):121-126. doi: 10.3969/j.issn.1002-6819.2012.16.019

    CHEN Hongsong, YANG Jing, FU Wei, HE Fei, WANG Kelin. Characteristics of slope runoff and sediment yield on karst hill-slope with different land-use types in northwest Guangxi[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16): 121-126. doi: 10.3969/j.issn.1002-6819.2012.16.019
    [25] Salmani H, Javadi S, Eini M R, Golmohammadi G. Compilation simulation of surface water and groundwater resources using the SWAT-MODFLOW model for a karstic basin in Iran[J]. Hydrogeology Journal, 2023, 31(3): 571-587.
    [26] Reza Eini M, Javadi S, Delavar M, Gassman P W, Jarihani B. Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed[J]. Catena, 2020, 195: 104801. doi: 10.1016/j.catena.2020.104801
    [27] Santhi C, Arnold J G, Williams J R, Hauck L M, Dugas W A. Application of a watershed model to evaluate management effects on point and nonpoint source pollution[J]. Transactions of the ASAE, 2001, 44(6): 1559.
    [28] 桑灿, 李兆华, 冯学高, 张劲. 白莲河流域总磷关键源区识别与最佳管理措施(BMPs)研究[J]. 长江流域资源与环境, 2024, 33(2):374-386.

    SANG Can, LI Zhaohua, FENG Xuegao, ZHANG Jin. Identification of phosphorus emission critical source areas and evaluation of best management practices in Bailian river basin based on SWAT model[J]. Resources and Environment in the Yangtze Basin, 2024, 33(2): 374-386.
    [29] 袁江, 李瑞, 舒栋才, 黄凯, 盘礼东, 张琳卿. 基于SWAT模型的喀斯特流域产流特征对石漠化治理措施的响应[J]. 水土保持学报, 2021, 35(6):151-160.

    YUAN Jiang, LI Rui, SHU Dongcai, HUANG Kai, PAN Lidong, ZHANG Linqing. Response of runoff characteristics of karst watershed to rocky desertification control measures based on SWAT model[J]. Journal of Soil and Water Conservation, 2021, 35(6): 151-160.
    [30] Moriasi D N, Arnold J G, Van Liew M W, Bingner R D, Harmel R D, Veith T L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.
    [31] 董力轩, 常顺利, 张毓涛. SWAT模型在天山林区林冠截留过程中的改进应用[J]. 生态学报, 2022, 42(18):7630-7640.

    DONG Lixuan, CHANG Shunli, ZHANG Yutao. Improvement and application of SWAT model in canopy interception in Tianshan forest area[J]. Acta Ecologica Sinica, 2022, 42(18): 7630-7640.
    [32] 许昆. 降水量与地下水补给量的关系分析[J]. 地下水, 2004(4):272-274.

    XU Kun. Analysis on relationship between the precipitation & groundwater replenishment[J]. Ground Water, 2004(4): 272-274.
    [33] 李占斌, 朱冰冰, 李鹏. 土壤侵蚀与水土保持研究进展[J]. 土壤学报, 2008(5):802-809.

    LI Zhanbin, ZHU Bingbing, LI Peng. Advancement in study on soil erosion and soil and water conservation[J]. Acta Pedologica Sinica, 2008(5): 802-809.
    [34] 霍思远, 靳孟贵. 不同降水及灌溉条件下的地下水入渗补给规律[J]. 水文地质工程地质, 2015, 42(5):6-13, 21.

    HUO Siyuan, JIN Menggui. Effects of precipitation and irrigation on vertical groundwater recharge[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 6-13, 21.
    [35] 闫钇全, 刘琦, 邓大鹏, 王涵. 表层岩溶裂隙带土壤地表流失/地下漏失室内模拟实验[J]. 中国岩溶, 2022, 41(2):240-248.

    YAN Yiquan, LIU Qi, DENG Dapeng, WANG Han. Laboratory simulation study on soil surface loss and underground leakage in the epikarst fissure zone[J]. Carsologica Sinica, 2022, 41(2): 240-248.
    [36] Jafari T, Kiem A S, Javadi S, Nakamura T, Nishida K. Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration tool[J]. Journal of Hydrology: Regional Studies, 2021, 35: 100822. doi: 10.1016/j.ejrh.2021.100822
    [37] 李航, 郑丽萍, 甘永德, 王尚涛, 吴玉帅, 李润杰, 郭立. 膨胀性土壤干缩裂隙对入渗产流影响[J]. 中国农村水利水电, 2023(10):114-120. doi: 10.12396/znsd.222193

    LI Hang, ZHENG Liping, GAN Yongde, WANG Shangtao, WU Yushuai, LI Runjie, GUO Li. Influence of swelling soil shrinkage cracks on rainfall infiltration tests[J]. China Rural Water and Hydropower, 2023(10): 114-120. doi: 10.12396/znsd.222193
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  126
  • HTML浏览量:  42
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 录用日期:  2024-01-29
  • 修回日期:  2024-01-26
  • 网络出版日期:  2024-04-28
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回