Development mechanism of covered karst collapses induced by groundwater drawdown
-
摘要: 岩溶塌陷是岩溶区主要的地质灾害类型,具有突发性和隐蔽性的特征,给当地人们的生命财产安全造成威胁。文章以曲靖市马龙区东侧岩溶塌陷为研究对象,以多元结构盖层的地面塌陷为例,在室内构建了与原型相符的地质物理模型,开展两种典型工况下的地下水位下降触发岩溶塌陷试验。基于试验数据分析,提出此类型盖层的致塌机理,并分析透-阻-透型塌陷变形演化特征。研究表明:(1)地下水位下降导致盖层和溶洞中均出现负压带,盖层内的孔隙水压力和溶洞中的真空压强会随着排水波动增长至峰值,地下水位降速越大,压强的增长速率和峰值就越大;(2)根据压强和盖层形变量随时间的演化特征,可将塌陷演化过程分为土洞发育阶段、土洞扩张阶段和盖层失稳塌陷3个阶段;(3)马龙区的水位降速达到0.1 cm·min−1(1.44 m·d−1)时,所产生的真空压强能提供足够大的真空吸蚀力,联合渗透压力可导致覆盖层塌陷。研究结果可为马龙区岩溶塌陷灾害的防治减灾及其塌陷预警预报提供参考。Abstract:
With continuous development of society and economy, acceleration of urbanization, increase of water consumption in industry and agriculture and improvement of people's life, the interference and destruction of environment caused by human activities and engineering construction are increasingly serious, and the number of karst collapses is rising day by day. As a major type of geological disaster in karst areas, karst collapses threaten local people's life and property because of their suddenness and covertness. Therefore, it is of great significance to study the induced factors and development mechanism of karst collapses. Since the construction of the diversion tunnel of Chemabi reservoir in 2017, a large number of ground collapses have occurred in Malong district of Qujing City. The field geological investigation found that there is a Quaternary overburden layer with sandy clay–clay–sand structure in the study area in which occur strong karst development and frequent groundwater activities. Karst collapses in the study area are mainly distributed near rivers. In this study, we took karst collapses in the east of Malong district, Qujing City as the research objects. On the basis of fully understanding the geological conditions, hydrodynamic conditions and geological prototypes of collapses in the study area, we took the collapses of multi-structure overburden as examples, among which we selected a typical karst collapse as the prototype. Then we scaled down the geological prototype in equal proportion under the principle of similarity. Meanwhile, we prepared the materials similar to the physical parameters of the soil samples from overburden layers of the geological prototype, and constructed a geophysical model consistent with the prototype in the laboratory. Subsequently, according to the water discharge of the construction near the subsidence area and the data of observation well, we estimated the rate of groundwater drawdown, and monitored the pore water pressure in the overburden layer, the vacuum pressure in the karst cave and the cumulative displacement of the overburden soil. Finally, we carried out the experiments of karst collapses triggered by the groundwater drawdown under two typical working conditions. According to the experiment data, we put forward the collapse mechanism of the overburden layer, and the evolution characteristics of karst collapses with permeable layer–aquiclude–permeable layer. The results show as follows: (1) Negative pressure zones in covered layers and karst caves may occur because of groundwater drawdown. Due to the air recharge caused by relatively closed aquitards and the water-holding effect of the soil in overburden layers, the pore water pressure in overburden layers and vacuum pressure in karst caves will increase to the maximum with the fluctuation of groundwater discharge. The faster the rate of groundwater drawdown becomes, the greater the growth rate and peak of pressure will be. (2) According to the evolution characteristics of pressure and the deformation quantity of overburden layer, the collapse evolution can be divided into 3 stages: the stage of development of soil caves with rapid pressure increase but small displacement of overburden surface, the stage of soil cave expansion with the reducing growth rate of pressure but a rapid increase of displacement of overburden surface and the stage of instability and collapse of overburden layers when both pressure and displacement of the overburden surface reach the maximum. At the first stage, upper aquitards and middle strong permeable layers, i.e. the soil above the water level, are subjected to the erosion of pore water and the vacuum suction effect of pore water pressure generated in the negative pressure zone within the overburden layer. At the second and third stages, the vacuum pressure in the karst cave plays a leading role in the vacuum suction erosion of the entire overburden soil. (3) The rapid decrease of groundwater level is the main factor leading to the collapses in the study area. When the rate of groundwater drawdown is relatively small, the overburden soil may undergo minor deformation but will not collapse. However, when the rate of groundwater drawdown in Malong district reaches 0.1 cm·min−1 (1.44 m·d−1), the vacuum pressure can provide the force of vacuum suction erosion. Together with osmotic pressure, this force is large enough to generate collapses. The research can provide reference for the prevention and early warning of collapse disaster in Malong district. -
Key words:
- karst collapse /
- physical model experiment /
- multi-structure /
- groundwater drawdown /
- collapse mechanism
-
图 1 研究区内多元结构覆盖型岩溶塌陷
a.杨官田村塌陷区TX12 b.缪家田龙潭水库库尾塌陷区TX22 c.让田社区塌陷区TX27 1.白色虚线代表土层分界线
Figure 1. Multi-structure covered karst collapse in the study area
a. the subsidence area TX12 of Yangguantian village; b. the subsidence area TX22 of tail of Longtan reservoir in Miaojiatian; c. the subsidence area TX27 of Rangtian residential compound 1. The white dotted line represents the boundary of the soil layer.
图 10 盖层表面变化情况
(a.工况1排水前;b.工况1排水后; c.工况2排水前;d.工况2排水130 min;e.工况2排水142 min)
Figure 10. Change of overburden surface
(a. working condition 1 before discharge; b. working condition 1 after discharge; c. working condition 2 before discharge; c. working condition 2 before discharge; d. working condition 2 after discharge for 130 minutes; e. working condition 2 after discharge for142 minutes)
表 1 地质原型土样物理力学性质参数
Table 1. Property parameters for physical mechanics of geological prototype soil samples
序号 土样 密度/g·cm−3 砂土比/% 含水率/% 粘聚力/kPa 内摩擦角/° 1 砂质黏土 1.48 33 8.8 29.8 27.8 2 黏土 1.63 20 7.5 34.4 25.2 3 砂土 1.41 50 11.2 26.9 26.0 表 2 岩溶塌陷物理模型试验工况设计
Table 2. Physical model experiment schemes of karst collapses
工况 潜水初始水位/cm
(溶洞顶板=0)潜水降速 岩溶水初始水位/cm
(溶洞底板=0)岩溶水降速
/cm·min−1地层结构 盖层土体物理参数 含水率/% 砂土比 厚度/cm 1 3.5 自由降落 48 0.007 上层砂质黏土层 8.8 1/3 2.5 中间黏土层 7.5 1/5 2.0 2 3.5 48 0.010 下层砂土层 11.2 1/2 3.5 注:物理模型试验岩溶水位降速由推测的现场岩溶水位降速依相似比等比例缩小得出。
Note: The rate of karst water drawdown of the physical model experiment is obtained by reducing the rate of inferred field karst water drawdown in equal proportion according to the similarity ratio. -
[1] 康彦仁, 项式均, 陈健, 等. 中国南方岩溶塌陷[M]. 南宁:广西科学技术出版社, 1990.KANG Yanren, XIANG Shijun, CHEN Jian, etc. Karst collapse of South China[M]. Nanning: Guangxi Science & Technology Publishing House Co., Ltd., 1990. [2] 张丽芬, 曾夏生, 姚运生, 廖武林. 我国岩溶塌陷研究综述[J]. 中国地质灾害与防治学报, 2007, 18(3):126-130.ZHANG Lifen, ZENG Xiasheng, YAO Yunsheng, LIAO Wulin. Review on karst collapse in China[J]. The Chinese Journal of Geological Hazard and Control, 2007, 18(3): 126-130. [3] Roberto Salvatia, Ira D Sasowsky. Development of collapse sinkholes in areas of groundwater discharge[J]. Journal of Hydrology, 2002, 264(1): 1-11. doi: 10.1016/S0022-1694(02)00062-8 [4] Xiao Xianxuan, Li Zhaofeng, Cai Guojun, Yang He. Effects of declining water levels on water-air interactions in cover collapse sinkhole.[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(3): 2545-2556. doi: 10.1007/s10064-020-02089-y [5] 雷明堂, 蒋小珍. 岩溶塌陷研究现状、发展趋势及其支撑技术方法[J]. 中国地质灾害与防治学报, 1998, 9(3):1-6.LEI Mingtang, JIANG Xiaozhen. Research on the present situation and developing tendency of karst collapse and techniques for its supporting[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(3): 1-6. [6] 袁道先. 新形势下我国岩溶研究面临的机遇和挑战[J]. 中国岩溶, 2009, 28(4):4-6.YUAN Daoxian. Challenges and opportunities for karst research of our country under the new situation[J]. Carsologica Sinica, 2009, 28(4): 4-6. [7] Augarde C E, Lyamin A V, Sloan S W. Prediciton of undrained sinkhole collapse[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 197-205. [8] 杨立中, 王建秀. 国外岩溶塌陷研究的发展及我国的研究现状[J]. 中国地质灾害与防治学报, 1997, 8(Suppl.):6-10.YANG Lizhong, WANG Jianxiu. Karst collapse study's development abroad and domestic present studying situation[J]. The Chinese Journal of Geological Hazard and Control, 1997, 8(Suppl.): 6-10. [9] 贾龙, 蒙彦, 戴建玲. 广佛肇地区岩溶塌陷易发性分析[J]. 中国岩溶, 2017, 36(6):819-829.JIA Long, MENG Yan, DAI Jianling. Analysis of karst collapse susceptibility in Guang-Fo-Zhao regions[J]. Carsologica Sinica, 2017, 36(6): 819-829. [10] I A De Bruyn, F G Bell. The occurrence of sinkholes and subsidence depressions in the far west Rand and Gauteng Province, South Africa, and their engineering implications[J]. Environmental and Engineering Geoscience, 2001, 7(3): 281-295. [11] F Gutiérrez, M Parise, J De Waele, H Jourde. A review on natural and human-induced geohazards and impacts in karst[J]. Earth-Science Reviews, 2014, 138: 61-88. doi: 10.1016/j.earscirev.2014.08.002 [12] 马骁, 蒋小珍, 曹细冲, 潘宗源. 岩溶空腔水气压力脉动效应的发现及意义[J]. 中国岩溶, 2019, 38(3):404-410.MA Xiao, JIANG Xiaozhen, CAO Xichong, PAN Zongyuan. Discovery and significance of water-gas pressure pulsation effect within karst cavity[J]. Carsologica Sinica, 2019, 38(3): 404-410. [13] 黄友金, 李恺. 采动作用下浅埋岩溶洞塌陷的数值模拟研究[J]. 江西煤炭科技, 2019(4):70-74.HUANG Youjin, LI Kai. Numerical simulation study on subsidence of shallow-buried karst caves under mining[J]. Jiangxi Coal Science & Technology, 2019(4): 70-74. [14] 陈学军, 陈李洁, 宋宇, 毕鹏雁. 熵权-正态云模型岩溶塌陷预测分析[J]. 工程地质学报, 2019, 27(6):1389-1394.CHEN Xuejun, CHEN Lijie, SONG Yu, BI Pengyan. Prediction and analysis of karst collapse with entropy-normal cloud model[J]. Journal of Engineering Geology, 2019, 27(6): 1389-1394. [15] 涂婧, 刘长宪, 姜超, 郑晓明, 熊志涛, 廖明政, 李海涛. 湖北武汉岩溶塌陷易发性评价[J]. 中国地质灾害与防治学报, 2020, 31(4):94-99.TU Jing, LIU Changxian, JIANG Chao, ZHENG Xiaoming, XIONG Zhitao, LIAO Mingzheng, LI Haitao. Susceptibility assessment of karst collapse in Wuhan City[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 94-99. [16] 万志清, 秦四清, 祁生文. 桂林市岩溶塌陷及防治[J]. 工程地质学报, 2001, 9(2):199-203.WAN Zhiqing, QIN Siqing, QI Shengwen. The karstic collapse and its protection in Gulin City[J]. Journal of Engineering Geology, 2001, 9(2): 199-203. [17] 李海涛, 陈邦松, 杨雪, 胡伏生, 房浩. 岩溶塌陷监测内容及方法概述[J]. 工程地质学报, 2015, 23(1):126-134.LI Haitao, CHEN Bangsong, YANG Xue, HU Fusheng, FANG Hao. Review on monitoring contents and methods for karst collapse[J]. Journal of Engineering Geology, 2015, 23(1): 126-134. [18] 罗小杰. 也论覆盖型岩溶按塌陷机理[J]. 工程地质学报, 2015, 23(5):886-895.LUO Xiaojie. Further discussion on mechanism of covered karst ground collapse[J]. Journal of Engineering Geology, 2015, 23(5): 886-895. [19] 吴亚楠, 周绍智, 王延岭, 焦玉国, 陈伟清, 程凤, 赵志伟. 国内外岩溶塌陷监测方法综述[J]. 山东国土资源, 2018, 34(12):1-6.WU Ya'nan, ZHOU Shaozhi, WANG Yanling, JIAO Yuguo, CHEN Weiqing, CHENG Feng, ZHAO Zhiwei. Summary of karst collapse monitoring methods in China and abroad[J]. Shandong Land and Resources, 2018, 34(12): 1-6. [20] 蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417.MENG Yan, LEI Mingtang. Analysis of situation and trend of sinkhole collapse[J]. Carsologica Sinica, 2019, 38(3): 411-417. [21] 冯亚伟. 山东省岩溶塌陷分布规律及成因机制[J]. 中国岩溶, 2021, 40(2):205-214.FENG Yawei. Distribution and genesis of karst collapse in Shandong Province[J]. Carsologica Sinica, 2021, 40(2): 205-214. [22] 康彦仁. 岩溶塌陷的形成机制[J]. 广西地质, 1989, 2(2):83-90.KANG Yanren. On the mechanism of karst collapse[J]. Geology of Guangxi, 1989, 2(2): 83-90. [23] 康彦仁. 论岩溶塌陷形成的致塌模式[J]. 水文地质工程地质, 1992, 19(4):32-34, 46.KANG Yanren. Collapse-causing models in karstic collapse process[J]. Hydrogeology & Engineering Geology, 1992, 19(4): 32-34, 46. [24] 程星, 黄润秋. 岩溶塌陷的地质概化模型[J]. 水文地质工程地质, 2002(6):30-34.CHENG Xing, HUANG Runqiu. Geological conceptive modles of karst collapse[J]. Hydrogeology & Engineering Geology, 2002(6): 30-34. [25] 唐万春, 许模, 于贺艳. 武广客运专线英德段岩溶塌陷发育规律研究[J]. 地质与勘探, 2011, 47(4):699-704.TANG Wanchun, XU Mo, YU Heyan. Study on karst collapse developing regularity of the Yingde section on the Wuhan-Guangzhou passenger special line[J]. Geology and Exploration, 2011, 47(4): 699-704. [26] 罗小杰, 沈建. 我国岩溶地面塌陷研究进展与展望[J]. 中国岩溶, 2018, 37(1):101-111.LUO Xiaojie, SHEN Jian. Research progress and prospect of karst ground collapse in China[J]. Carsologica Sinica, 2018, 37(1): 101-111. [27] 徐卫国, 赵桂荣. 试论岩溶矿区地面塌陷的真空吸蚀作用[J]. 地质评论, 1981, 27(2):174-183.XU Weiguo, ZHAO Guirong. The implication of suction action for ground subsidence in karst mining areas[J]. Geological Review, 1981, 27(2): 174-183. [28] 熊志涛, 刘鹏瑞, 杨涛, 邵勇. 江夏法泗岩溶塌陷区冲孔桩施工引发岩溶塌陷的成因机理[J]. 中国岩溶, 2018, 37(1):120-129.XIONG Zhitao, LIU Pengrui, YANG Tao, SHAO Yong. Mechanism of karst collapse caused by punching pile construction in Jiangxia Fasi karst collapse area[J]. Carsologica Sinica, 2018, 37(1): 120-129. [29] 郑晓明, 金小刚, 陈标典, 刘鹏瑞, 杨戈欣, 李海涛, 杨涛. 湖北武汉岩溶塌陷成因机理与致塌模式[J]. 中国地质灾害与防治学报, 2019, 30(5):75-82.ZHENG Xiaoming, JIN Xiaogang, CHEN Biaodian, LIU Pengrui, YANG Gexin, LI Haitao, YANG Tao. Mechanism and modes of karst collapse in Wuhan City, Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5): 75-82. [30] 赵博超, 朱蓓, 王弘元, 赖柄霖. 浅谈岩溶塌陷的影响因素与模型研究[J]. 中国岩溶, 2015, 34(5):515-521.ZHAO Bochao, ZHU Bei, WANG Hongyuan, LAI Binglin. Influence factors and mathematical models of karst collapses[J]. Carsologica Sinica, 2015, 34(5): 515-521. [31] Jiang F W, Dai J L, Lei M T, Qin Y Q, Jiang X Z, Meng Y. Experimental study on the critical triggering condition of soil failure in subsidence sinkholes[J]. Environmental Earth Sciences, 2015, 74(1): 693-701. [32] 雷明堂, 蒋小珍, 李瑜. 岩溶塌陷模型试验:以武昌为例[J]. 地质灾害与环境保护, 1993, 4(2):39-44.LEI Mingtang, JIANG Xiaozhen, LI Yu. Model experiment of karst collapse: Taking Wuchang as an example[J]. Geological Hazards and Environment Preservation, 1993, 4(2): 39-44. [33] 蒋小珍, 雷明堂, 管振德. 单层土体结构岩溶土洞的形成机理[J]. 中国岩溶, 2012, 31(4):426-432.JIANG Xiaozhen, LEI Mingtang, GUAN Zhende. Formation mechanism of karst soil-void in single-layer soil structure condition[J]. Carsologica Sinica, 2012, 31(4): 426-432. [34] Molek H. Engineering-geological and geomechanical analysis for the fracture origin of sinkholes tin the realm of a high velocity railway line[J]. Geptechnical Special Publication, 2003: 551-558. [35] 罗小杰, 罗程. 沙漏型岩溶地面塌陷物理模型[J]. 中国岩溶, 2017, 36(1):88-93.LUO Xiaojie, LUO Cheng. Physical model of ground collapse of hourglass type in karst region[J]. Carsologica Sinica, 2017, 36(1): 88-93. [36] 吴庆华, 张伟, 刘煜, 崔皓东. 基于物理模型试验的岩溶塌陷定量研究[J]. 长江科学学院院报, 2018, 35(3):52-58.WU Qinghua, ZHANG Wei, LIU Yu, CUI Haodong. Quantifying the process of karst collapse by a physical model[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(3): 52-58. [37] 肖先煊. 覆盖型岩溶区水气相互驱动盖层变形演化及塌陷机理研究[D]. 成都:成都理工大学, 2018.XIAO Xianxuan. Deformation behavior evolution and collapse mechanism of karst covers under water-air interaction in karst area[D]. Chengdu: Chengdu University of Technology, 2018. [38] 王飞, 柴波, 徐贵来, 陈龙, 熊志涛. 武汉市岩溶塌陷的演化机理研究[J]. 工程地质学报, 2017, 25(3):824-832.WANG Fei, CHAI Bo, XU Guilai, CHEN Long, XIONG Zhitao. Evolution mechanism of karst sinkholes in Wuhan City[J]. Journal of Engineering Geology, 2017, 25(3): 824-832. [39] 武鑫, 王艺霖, 黄敬军, 潘欢迎, 万军伟. 江苏徐州地区岩溶塌陷致塌力学模型及水位控制红线[J]. 中国地质灾害与防治学报, 2019, 30(2):67-77WU Xin, WANG Yilin, HUANG Jingjun, PAN Huanying, WAN Junwei. Mechanical model of karst collapse and red line of groundwater level of Xuzhou region in Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(2): 67-77. [40] 吴远斌, 殷仁朝, 雷明堂, 戴建玲, 贾龙, 潘宗源, 马骁, 周富彪. 重庆中梁山地区隧道工程影响下岩溶塌陷形成演化模式及防治对策[J]. 中国岩溶, 2021, 40(2):246-252.WU Yuanbin, YIN Renchao, LEI Mingtang, DAI Jianling, JIA Long, PAN Zongyuan, MA Xiao, ZHOU Fubiao. Triggering factors and prevention-control countermeasures of collapses caused by tunnel construction in the Zhongliangshan area, Chongqing[J]. Carsologica Sinica, 2021, 40(2): 246-252. [41] 金晓文, 陈植华, 曾斌, 张文慧, 史婷婷. 岩溶塌陷机理定量研究的初步思考[J]. 中国岩溶, 2013, 32(4):437-445JIN Xiaowen, CHEN Zhihua, ZENG Bin, ZHANG Wenhui, SHI Tingting. Preliminary thinking of quantitative research on the mechanism of karst collapse[J]. Carsologica Sinica, 2013, 32(4): 437-445. [42] 罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2):171-188LUO Xiaojie, LUO Cheng. Three-Mechanism Theory(TMT) of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2): 171-188 [43] 雷明堂, 蒋小珍, 李瑜. 唐山市岩溶塌陷模型试验研究[J]. 中国地质灾害与防治学报, 1997, 8(Suppl.1):179-186.LEI Mingtang, JIANG Xiaozhen, LI Yu. Model experiment of karst collapse in Tangshan[J]. The Chinese Journal of Geological Hazard and Control, 1997, 8(Suppl.1): 179-186. [44] 李炜, 徐孝平. 水力学[M]. 武汉:武汉水利电力大学出版社, 2000.LI Wei, XU Xiaoping. Hydraulics[M]. Wuhan: Wuhan University of Water Resources and Electric Power Press, 2000.