Spatiotemporal patterns of CO2 efflux fluxes from the outflow of karst underground river: A case study of the Panyang river in Bama, Guangxi
-
摘要: 喀斯特流域是岩石风化碳汇的关键区域,同时也是CO2逸散研究的热点区域。为探究喀斯特地下河涌出后CO2分压(pCO2)及其逸散通量的时空变化格局,选择喀斯特流域巴马盘阳河为对象,分析水体的pH、碱度、总溶解性固体(TDS)、溶解无机碳(DIC)、溶解有机碳(DOC)、pCO2的时空变化特征,探讨pCO2的调控因素并估算了CO2逸散通量。结果表明,流域内地下水碱度、TDS、DIC和pCO2显著高于地表水,表明喀斯特碳酸盐风化释放大量DIC进入地下水,地下水涌出后产生CO2逸散降低了地表水DIC含量和pCO2。在时间尺度上,旱季常规地表、地下水的碱度、TDS、DIC、pCO2、CO2逸散通量均显著高于雨季,主要归结于雨季雨水的稀释效应。然而次降雨事件下地表、地下水的pH、碱度、TDS、DIC、DOC、pCO2无显著性差异,可能由于降雨量不足或降雨持续时间短。研究期间,巴马盘阳河流域地表水、地下水CO2逸散通量范围分别为−0.10~9.20 kg C m−2 year−1,−0.12~17.28 kg C m−2 year−1,平均CO2逸散通量分别为1.06±1.46 kg C m−2 year−1和2.40±3.14 kg C m−2 year−1,远高于全球主要大型流域的平均CO2逸散通量(0.64 kg C m−2 year−1)。阐明喀斯特流域的CO2逸散通量及其时空变化特征对准确评估河流碳收支状况与评估岩石风化碳汇具有重要意义。Abstract:
Karst basins are key regions for rock weathering and carbon sinks. Because water bodies in karst basins contain high concentrations of dissolved inorganic carbon (DIC), and can affect carbon cycle through both lateral migration of DIC and vertical efflux of CO2, they become research hotspots for CO2 efflux. Although there have been many studies on CO2 efflux fluxes in karst rivers, our understanding is still limited in terms of the spatiotemporal variations in CO2 efflux fluxes of water bodies from the outflow of karst underground rivers. In order to explore the spatiotemporal patterns of partial pressure of carbon dioxide (pCO2) and CO2 efflux flux from the outflow of karst underground rivers, this study focused on the Panyang river in Bama in the karst area of Southwest China. Monthly routine sampling of surface water and groundwater as well as sampling based on rainfall events was conducted from July 2022 to April 2023. The spatiotemporal variations of pH, alkalinity, total dissolved solids (TDS), DIC, dissolved organic carbon (DOC) and pCO2 in both the surface water and underground water were explored. The relationships between DIC, DOC and pCO2, as well as the relationships between TDS, alkalinity, and DIC, were also analyzed. The controlling factors of pCO2 were discussed, and the CO2 efflux flux was estimated. The results showed that alkalinity, TDS, DIC and pCO2 of groundwater in the basin were significantly higher than those of surface water, indicating that karst carbonate weathering released a large amount of DIC into groundwater, and the outflow of groundwater resulted in the CO2 efflux, reducing the DIC content and pCO2 of surface water. There was no significant difference in DIC concentrations and pCO2 of surface water from upstream to downstream, indicating that groundwater could release CO2 into the atmosphere in a short time and quickly reached equilibrium. During the rainy season, DIC and pCO2 of groundwater showed an increasing trend from upstream to downstream, while during the dry season, they showed a decreasing trend, indicating that rock weathering during groundwater recharge is an important source of inorganic carbon in groundwater. Alkalinity, TDS, DIC, pCO2 and CO2 efflux flux of surface water and groundwater during the dry season were significantly higher than those during the rainy season, mainly due to the dilution effect of rainwater during the rainy season. In addition, there were high DOC concentrations during the dry season, and the mineralization of DOC contributed directly to CO2 production, which also led to higher pCO2 in the dry season compared to the rainy season. Overall, there were no significant differences in pH, alkalinity, TDS, DIC, DOC and pCO2 of surface water and groundwater under rainfall events, possibly due to insufficient rainfall or its short duration. However, several samples during rainfall events showed significantly higher pCO2 than in the regular rainy seasons, because the continuous heavy rainfall likely raised the water level of underground rivers and supplied high CO2 concentrations from groundwater to surface rivers. There was no significant correlation between DOC and pCO2, possibly because the carbon input from other sources disrupted the coupling relationship between DOC and pCO2. These sources include soil CO2, organic carbon synthesized by CO2 that was absorbed by photosynthesis of plants, and human activities. A large amount of carbonate and other salt-based ions released from carbonate rocks into groundwater through dissolution increased DIC content, TDS and alkalinity, which contributed to a significantly positive correlation between DIC and indicators such as alkalinity and TDS. The CO2 efflux flux of surface water in the Panyang river basin during the dry season (2.05 ± 1.89 kg C m−2 year−1) was significantly higher than that during the rainy season (0.40 ± 0.30 kg C m−2 year−1), and the CO2 efflux flux of groundwater during the dry season (4.72 ± 4.15 kg C m−2 year−1) was about 4.6 times higher than that during the rainy season (1.03 ± 0.74 kg C m−2 year−1). During the study period, the CO2 efflux fluxes of surface water and groundwater in the Panyang river basin ranged from -0.10 to 9.20 kg C m−2 year−1 and -0.12 to 17.28 kg C m−2 year−1, with average CO2 efflux fluxes of 1.06 ± 1.46 kg C m−2 year−1 and 2.40 ± 3.14 kg C m−2 year−1, respectively, which were much higher than the average CO2 efflux fluxes of major global river basins (0.64 kg C m−2 year−1). Understanding the CO2 efflux flux and its spatiotemporal variations in karst basins is of great significance for us to accurately assess the carbon budget of rivers and to evaluate the role of rock weathering as a carbon sink. -
Key words:
- karst spring /
- dissolved inorganic carbon /
- river CO2 partial pressure /
- CO2 efflux flux.
-
0. 前 言
河流是连接陆地碳库和海洋碳库的纽带,尤其喀斯特河流具有高浓度溶解无机碳(DIC),可通过DIC横向迁移和CO2垂向逸散两种方式参与碳循环[1−2]。由于水化学、水文、地质和气候变化等的影响,河流 CO2 排放量在长时间和短时间尺度上存在差异[1, 3−5]。同时,喀斯特地区岩石风化碳汇通过吸收大气中的CO2或土壤生物成因CO2形成地上碳汇和地下碳汇,可能是陆地生态系统“碳失汇”的重要组成部分[6]。因此,探究喀斯特河流CO2逸散过程、通量及其影响因素,有助于准确评估喀斯特河流碳收支状况。
河流高二氧化碳分压(pCO2)是CO2逸散的主要驱动因素,喀斯特河流因碳酸盐岩石风化溶解了大量DIC,喀斯特河流水体pCO2与CO2逸散通量远高于非喀斯特河流 [7−8]。如Lee等[9]估算了Schwabach 喀斯特河流CO2逸散速率为3.16 kg C m−2 year−1;Van等 [10]估算了位于德国南部喀斯特地区Wiesent 河流CO2逸散速率为1.97 kg C m−2 year−1。这些数值都大于亚马逊河流(0.83 kg C m−2 year−1)、密西西比河(1.18 kg C m−2 year−1)、尼永河流域(1.49 kg C m−2 year−1)等非喀斯特流域的CO2逸散速率[11−13]。
由于土壤水和地下水等具有高浓度DIC水源的补给,喀斯特流域内河源溪流、泉水、地下水等比河流下游断面具有更高的pCO2[14−15]。而且pCO2和CO2逸散通量通常从河流源区向下游迅速下降,但下降梯度不确定[15−16]。首先,岩石类型和风化环境影响水体DIC来源和浓度,进而影响pCO2。Lee等[8]研究了中欧喀斯特地区4个流域的源头泉和源头水的 DIC 和pCO2 特征,结果表明DIC浓度具有很强的空间变异性,这很可能与其各自来源的地下水化学成分有关。Van等[10]研究发现德国中部岩溶河中的pCO2在源泉处最高(21 400±2 400 μatm),但在下游河口附近pCO2降至为源泉处的6%。其次,雨水会加速陆地碳酸盐的溶解和碳酸盐碎屑的输出,同时增强地下水中的矿物风化,增加岩溶水体系统中的DIC含量[8, 17−18]。覃蔡清等[19]研究喀斯特关键带DIC对降雨事件的响应,结果发现流量相同时泉水中的DIC 浓度及其单位时间的输出量均高于地表水。丁虎等[20]在喀斯特地区监测降雨过程中水化学动态变化特征时也发现降雨时泉水的pCO2升高,溪水的pCO2降低。此外,在喀斯特地区由于水的侵蚀作用会形成洞穴,存在着烟囱效应,导致洞穴里的空气与大气相通,影响着洞穴内的CO2浓度和地下河的CO2逸散通量[21]。当水中CO2逸散到大气时,促进化学反应H++HCO−3⇋H2CO3+CO2+H2O、Ca2++2HCO−3⇋CaCO3+CO2+H2O向正反应方向进行,CO2逸散通量增加导致岩石风化固定的部分碳汇重新返回大气,未考虑喀斯特河流CO2逸散通量可能高估岩石风化碳汇[22]。因此,分析喀斯特地区地下河涌出后CO2逸散的时空格局,并解析CO2逸散对降雨的响应特征是量化CO2逸散通量及其对岩石风化碳汇影响的关键问题。
本研究以地下河涌出形成的广西巴马盘阳河流域地表水和地下水为研究对象,在2022年7月至2023年4月分别基于降雨事件对巴马盘阳河流域的地表水和地下水进行雨前、雨中、雨后的连续观测采样,同时进行每月两次的雨前常规采样,旨在(1)分析喀斯特流域地表水和地下水水体碳组分的时空变化及其对降雨的响应特征,(2)探讨地表水和地下水pCO2变化特征的影响因素,并估算喀斯特河流CO2逸散通量。本研究可为准确估算喀斯特地区岩石风化碳汇提供理论和数据支撑。
1. 材料与方法
1.1 研究区域概况
盘阳河位于广西的西北部(106°51′E~107°23′E,23°51′N~24°23′N),是珠江流域西江水系红水河的一级支流。盘阳河发源于凤山县乔音乡,全长142.8 km,流域面积2 589 km2,流域海拔为172~1 317.8 m,平均坡降2.98‰。盘阳河在巴马境内长31.8 km,经过长距离的地下暗河后在百魔洞涌出地表,经岩滩水库汇入红水河,百魔洞到岩滩水库直线距离为22.9 km。流域大部分地区是石炭系至三叠系地层,岩石类型主要是砂岩、页岩和石灰岩,土壤类型主要为石灰土、砂页岩红壤、黄红壤、黄壤[23]。盘阳河流域属于南亚热带季风气候带,夏季高温多雨,冬季温和干燥,根据流域内巴马县气象站实测资料统计,区域多年平均降雨量 1 518.4 mm;多年平均蒸发量1 459.2 mm;多年平均气温 20.4 ℃。每年 5-10月为丰水期,11月-翌年4月为枯水期,丰水期径流量约占全年的87.8%,枯水期径流量平均仅占12.2%。植被类型主要是南亚热带季风常绿阔叶林、常绿、落叶阔叶混交林。
1.2 采样方法
从2022年7月到2023年4月对巴马盘阳河地表水和地下水进行采样,分别开展每月两次常规采样,以及降雨事件(雨前、雨中、雨后)采样。共布设9个采样点(图1),其中S1为百魔洞,即盘阳河地下暗河涌出成为地表河的出口点。S1到S5分别是盘阳河从上游到下游的地表水采样点,G1到G4是盘阳河流域的地下水采样点。在每个采样点采集200 mL保存在高密度聚乙烯瓶,随后放在保温箱运送到实验室冷藏(4 ℃)保存。
1.3 分析方法
使用便携式多参数水质测定仪(Myron LⅡ)测定水样的pH、总溶解性固体(TDS)。水样经0.45 μm纤维微孔滤膜过滤后,取20 mL过滤水样,用甲基橙作为指示剂,用0.025 mol·L−1盐酸滴定碱度(以CaCO3计)。通过测定水样中的DIC、pH和水温(T)计算表层水体pCO2。取15 mL过滤水样使用总有机碳分析仪(Multi N/C
3100 )测定溶解性总碳(DTC)、溶解性无机碳(DIC)、溶解性有机碳(DOC)。本研究所使用到的气象数据(风速、气温、降雨量)源于广西巴马瑶族自治县气象局。1.4 数据处理与统计
1.4.1 pCO2计算方法
KCO2=[H2CO*3]PCO2=10(7×10−5× T2−0.016T − 1.11) (1) K1 = [H + ]×[HCO−3][H2CO*3]=10(−1.1×10−4×T2+0.012T−6.58) (2) PCO2=[H2CO*3]KCO2=10− pH×[HCO−3]KCO2×K1 (3) 其中,KCO2是水相CO2的解离平衡常数,K1是HCO−3的解离平衡常数,T为原位测定温度(℃),[H2CO3*]水相CO2和碳酸(H2CO3 )的总和,由于水体的pH范围为7~8,水中的DIC大部分以HCO−3的形态存在,所以 [HCO−3]为实验测定的水体中的DIC的浓度,单位为mmol·L−1。
1.4.2 CO2通量的计算
F=kx×Kh×(pCO2aq−pCO2air) (4) lnKh=−58.0931+90.5069(100Tk)+22.294ln(Tk100) (5) kx=k600×(Sc600)−0.66 (6) k600=2.07+0.215×U1.710 (7) Sc=1911.1−118.11t+3.4527t2−0.04132t3 (8) 其中,F为河流与大气的CO2通量[mmol·(m2·d)−1];kx为气体转移速度(cm·h−1),Kh为亨利系数,即气体溶解度,单位为mol·(L·atm)−1。k600为SF6气体的交换系数(cm·h−1),Sc为t摄氏度条件下的CO2的Schmidt常数,U10为水面上方10 m风速(m·s−1),t为水温( ℃),Tk为水体绝对温度(K)。pCO2aq为水体二氧化碳分压( μatm),pCO2air为大气二氧化碳分压( μatm)。根据NOAA官网公布的数据,本研究中大气二氧化碳分压采用418 μatm。
使用SPSS 21.0进行数据处理和统计分析,包括单因素方差分析,在0.05的显著性水平上检验pCO2、DIC、pH、TDS、碱度、DOC不同采样时间之间的差异以及同一采样时间不同采样点之间的差异。同时进行了pCO2与DIC、DOC、和DIC与碱度、TDS的相关性分析。利用Origin2021 Pro软件作图分析pCO2、DIC、pH、TDS、碱度、DOC的时间以及空间分布。
2. 结 果
2.1 地表水和地下水pH、碱度、TDS的时空变化特征
河流水化学指标的空间变化特征如图2,雨季常规和旱季常规的地表水pH从上游到下游均无显著性差异(图2a)。雨季雨中地表水的pH从上游到下游呈增大的趋势,但增加的趋势不显著(图2a)。在雨季,雨中地表水的碱度与pH的变化趋势刚好相反(图2b)。雨季常规、雨季雨中地下水的pH从上游到下游呈现先降低后升高的趋势,而旱季常规地下水的pH从上游到下游呈增大的趋势(图2a)。雨季常规和旱季常规的地下水碱度从上游到下游均无显著性差异(图2b)。雨季雨中、旱季常规地表水的碱度从上游到下游呈降低的趋势,旱季常规地表水下降趋势较为明显(图2b)。雨季雨中地下水的碱度总体上呈增加的趋势(图2b)。雨季常规地表水的TDS从上游到下游呈降低的趋势,而旱季常规地表水的TDS变化趋势与雨季常规的刚好相反(图2c)。雨季常规和雨季雨中的地下水的TDS从上游到下游均呈增大的趋势(图2c)。地下水的pH显著低于地表水的(p<0.01)(图3a),而地下水的碱度、TDS显著高于地表水的(p<0.01)(图3b,c)。
在时间尺度上,地表、地下水雨季常规和雨季雨中的pH、碱度、TDS均无显著性差异(p>0.05)(图3)。流域的水化学参数存在明显的季节性变化,对于地表水而言,雨季常规的pH显著高于旱季常规(p<0.01)(图3a),旱季常规的碱度显著高于雨季常规(p<0.01)(图3b),雨季常规和旱季常规TDS无显著性差异(p=0.2)(图3c)。对于地下水而言,雨季常规的pH显著高于旱季常规(p<0.01)(图3a),旱季常规的碱度显著高于雨季常规的(p<0.01)(图3b),旱季常规的TDS显著低于雨季常规(p<0.01)(图3c)。
2.2 地表水和地下水DIC、DOC、pCO2的时空变化
河流DIC、DOC、pCO2空间变化特征如图4所示,雨季常规、雨季雨中和旱季常规的地表水DIC、DOC从上游到下游均无显著性差异(p>0.05)(图4a,b)。雨季常规和旱季常规地表水pCO2从上游到下游均无显著性差异(p>0.05)(图4c)。雨季常规和雨季雨中的地下水DIC从上游到下游呈增大的趋势,雨季常规、雨季雨中地下水下游G4的DIC显著高于G1、G2和G3的(p<0.05)(图4a)。旱季常规地下水的DIC从上游到下游呈先降低后升高的趋势(图4a)。雨季常规、雨季雨中和旱季常规的地下水DOC从上游到下游均呈先升高后降低的趋势(图4b)。雨季常规的地下水的pCO2从上游到下游呈增大的趋势且变化具有显著性(图4c)。雨季雨中地表水pCO2从上游到下游呈下降的趋势,在地下河刚涌出处(S1)及S2的pCO2显著高于下游S5的(p<0.01),S3的pCO2显著高于S5(p<0.05);雨季雨中的地下水pCO2从上游到下游呈先升高后降低的趋势且变化具有显著性(图4c)。旱季常规地下水pCO2,G1处的显著高于G2、G3和G4的(p<0.01)(图4c)。地下水的DIC、pCO2显著高于地表水的(p<0.01)(图5a,c),而地下水的DOC显著低于地表水的(p<0.01)(图5b)。
在时间尺度上,地表、地下水雨季常规和雨季雨中的DIC、DOC、pCO2无显著性差异(p>0.05)(图5)。流域水体DIC、DOC、pCO2存在明显的季节性变化,对于地表水而言,雨季常规的DIC、DOC和pCO2显著低于旱季常规(p<0.01),对于地下水而言,旱季的DIC、DOC、pCO2显著高于雨季(p<0.01)(图5)。
2.3 河流CO2逸散通量
盘阳河流域雨季常规、雨季雨中和旱季常规的水体pCO2均值分别为
1 567.17 ±1 100.68 μatm,1 838.84 ±1481.73 μatm,3 825.00 ±2 764.76 μatm。河流CO2逸散通量在不同的季节呈现出显著差异。旱季地表水的CO2逸散通量(2.05±1.89 kg C m−2 year−1)显著高于雨季(0.40±0.30 kg C m−2 year−1),而且旱季地下水CO2逸散通量(4.72±4.15 kg C m−2 year−1)约是雨季(1.03±0.74 kg C m−2 year−1)的4.6倍。研究期间,常规地表水和地下水CO2逸散通量分别为1.06±1.46 kg C m−2 year−1和2.40±3.14 kg C m−2 year−1。此外,降雨事件也会影响河流CO2逸散通量,雨季雨中地表水和地下水的CO2逸散通量(0.44±0.31 kg C m−2 year−1、1.15±0.80 kg C m−2 year−1)均高于雨季常规地表水和地下水。整体上看,地下水的CO2逸散通量显著高于地表水(p<0.01)(表1),表明地下水或岩溶泉涌出地表时会向大气释放CO2,河流CO2逸散通量从源头往下游呈下降趋势(表1)。表 1 盘阳河流域各个采样点的CO2逸散通量Table 1. Dissolved CO2 efflux flux at various sampling points in the Panyang river basin采样点 S1 S2 S3 S4 S5 G1 G2 G3 G4 旱季常规 3.08±2.98 1.74±0.86 1.83±1.72 1.99±1.47 1.59±1.18 9.55±4.94 3.42±2.66 2.15±2.24 4.76±2.50 雨季常规 0.41±0.36 0.23±0.0.25 0.58±0.44 0.37±0.27 0.51±0.44 0.41±0.25 0.89±0.48 1.29±0.84 1.39±0.80 雨季雨中 0.58±0.38 0.47±0.22 0.43±0.26 0.46±0.34 0.18±0.13 0.47±0.33 1.34±0.66 1.85±1.06 0.93±0.50 全年平均 1.52±2.34 0.82±0.93 1.03±1.24 0.99±1.23 0.90±0.95 4.07±5.46 1.76±2.00 1.60±1.56 2.74±2.37 注: CO2逸散通量单位为kg C m−2 year−1
Note: CO2 efflux flux unit: kg C m−2 year−13. 讨 论
3.1 岩溶泉水体pCO2时空变化及调控因素分析
在喀斯特地区,地下水受到植被覆盖、土壤类型以及碳酸盐岩溶蚀作用的影响,通常HCO−3的含量较高[24−25]。喀斯特流域具有二元三维空间结构, 存在地表-地下水文路径联通的多界面网络通道,从而使包气带土壤和岩石风化产生的大量无机碳进入地下水[26]。盘阳河流域土地覆盖类型主要为林地,植被覆盖度高,植物根系促进土壤有机质和微生物活动,产生CO2通过土壤孔隙进入地下水中,导致地下水中的HCO−3和pCO2高于地表水的[24]。碳酸盐岩在溶蚀作用下,释放大量碳酸盐和其他盐基离子进入地下水中,增加了地下水中的DIC含量,以及TDS和碱度等指标,进而导致DIC与碱度、TDS呈显著正相关关系(图6)[27]。
当地下水从裂隙含水层中涌出后,与大气形成较高的CO2正向浓度梯度,并向大气释放CO2[27]。盘阳河从百魔洞刚涌出时,水体HCO−3的含量较高,pCO2高于大气CO2分压,向大气排放较多的CO2但在这个过程中会导致水中的HCO−3含量降低,当盘阳河从百魔洞涌出成为地表河之后,水中的HCO−3含量降低,所以在源头下游的第二个采样点处DIC、pCO2都低于源头S1,但减少的幅度不大。此外,百魔洞是典型的喀斯特洞穴,具有烟囱效应,地下水未涌出地表就与大气接触,并向大气释放CO2[21]。研究区地下水的DIC、pCO2、碱度和TDS均显著高于地表水,表明地下水涌出后可在短时间内向大气释放CO2并迅速达到平衡,导致地表水pCO2差异不显著。
在雨季,降雨冲刷会使土壤中的CO2进入河流水体中,但外源CO2的输入未导致河流水体pCO2明显增加,反而集中降雨导致稀释效应,使得雨季pCO2显著低于旱季(图5d,p<0.01)。此外,雨季pCO2显著低于旱季可能与微生物呼吸矿化作用有关[28],旱季河流具有高DOC浓度,DOC矿化产生CO2直接贡献了水体pCO2[29]。旱季温度低,促进碳酸盐岩的风化溶解,向河流贡献大量的溶解无机碳也会使旱季pCO2高于雨季[30]。整体上看,雨季雨中的地表、地下水pCO2与雨季常规的地表、地下水pCO2均无显著差异(图5b),表明降雨冲刷携带的溶解性物质进入河流后未能引起河流pCO2发生显著变化。但部分雨中样品的pCO2显著高于雨季常规的(图6),这可能与连续长时间的强降雨导致地下河水位升高,向地表河流中补给高CO2浓度的地下水有关。此外,大雨还可能将堆积在土地表面的有机物和无机溶质冲刷到河流中,增加了河流有机质分解和无机物质的氧化作用[31]。说明在研究降雨事件对河流CO2逸散通量的影响时需要考虑降雨强度、降雨量、地下水水位以及土壤前期含水量。
盘阳河地表、地下水旱季DOC浓度(7.48±3.35 mg·L−1、6.16±2.68 mg·L−1)高于雨季(5.78±3.88 mg·L−1、4.04±3.49 mg·L−1),低于綦江旱季DOC(7.42±11.82 mg·L−1)和三峡库区主要河流DOC(12.84±7.61 mg·L−1)。河流DOC的呼吸矿化作用是水体pCO2的来源之一[28],然而本研究中DOC与pCO2之间无显著相关关系(p>0.05)。这可能与其他来源(如土壤CO2、周围的植物光合作用吸收CO2合成有机碳、人为活动导致的)碳输入破坏了环境因子之间的耦合关系有关[32−34]。该研究结果与倪茂飞等在喀斯特流域綦江研究CO2逸散通量的季节性变化观测到在旱季DOC较高,DOC与pCO2不相关以及罗佳宸在三峡库区主要河流的DOC与pCO2不相关的结果一致[28,34]。此外,DOC受到复杂的水文过程和环境因素的影响,如径流、海拔、植被类型、土地利用类型等。由于本研究的DOC浓度较低,这些影响因素可能掩盖了pCO2与DOC之间的关系[32, 35]。
3.2 河流CO2逸散通量
盘阳河流域旱季水体pCO2均值为
3 825.00 ±2 764.76 μatm,高于世界河流平均值3 100 μatm[36],但雨季水体pCO2均值(1 567.17 ±1 100.68 μatm)低于世界河流平均值,这说明雨水的稀释作用影响着河流pCO2的大小。盘阳河流域pCO2变化范围较大,雨季常规水体pCO2的变化范围11.18~4 571.20 μatm,雨季雨中水体pCO2的变化范围为286.92~10 784.40 μatm,旱季常规水体pCO2的变化范围为103.23~12 413.60 μatm,这与其他喀斯特流域如綦江(1.30~7 205.20 μatm),威森特河(Wiesent River)(1 240.00 ~21 400.00 μatm),九龙江雨季(141.00~4 432.00 μatm)、旱季(29.00~6 744.00 μatm)相似[10, 28, 37]。有研究认为,由碳酸盐矿物风化消耗的二氧化碳会被海洋碳酸盐矿物沉淀释放出来,在地质时间尺度上不属于净碳汇[38]。然而,越来越多的新证据表明,碳酸盐风化与水生光合作用耦合也可能通过水生生物吸收HCO−3形成的自生有机碳在天然地表水中沉降和埋藏而产生长期固碳[7,38−39]。喀斯特河流快速的碳酸盐风化与水生光合作用耦合会消耗大量的CO2,导致喀斯特流域pCO2具有显著的时空差异,相对于非喀斯特地区如朱衣河(50.73~529.68 μatm)[40],布拉索斯河(Brazos River)(435.00~1 770.00 μatm)[41]具有更大的变化范围。世界大部分河流pCO2高于大气,表现为大气CO2源[42]。盘阳河流域常规地表、地下水CO2逸散通量的变化范围分别为−0.10~9.20 kg C m−2 year−1,−0.12~17.28 kg C m−2 year−1,全年常规地表水和地下水CO2逸散通量分别为1.06±1.46 kg C m−2 year−1和2.40±3.14 kg C m−2 year−1。盘阳河流域的CO2逸散通量高于一些非喀斯特河流,如布拉索斯河(0.19~0.39 kg C m−2 year−1)[41],科罗拉多河(0.58 kg C m−2 year−1)[43],窟野河(0.69~2.66 kg C m−2 year−1)[44],密西西比河(1.18±0.39 kg C m−2 year−1)[13]。但低于其他喀斯特流域,如綦江(3.25±14.58 kg C m−2 year−1)[28]、芙蓉江(8.58±12.87 kg C m−2 year−1)[45]、九龙江(雨季3.92 kg C m−2 year−1,旱季6.04 kg C m−2 year−1)[37]。盘阳河流域旱季地表水的CO2逸散通量(2.05±1.89 kg C m−2 year−1)显著高于雨季(0.40±0.30 kg C m−2 year−1),而且旱季地下水CO2逸散通量(4.72±4.15 kg C m−2 year−1)约是雨季(1.03±0.74 kg C m−2 year−1)的4.6倍,这可能与河流流速相关,在雨季,降雨增多导致河流流速加快带走水体中更多的CO2,减少CO2与大气之间的交换,而在旱季,河流流速相对较慢,河水停留时间增加,水体表面较平静,水中CO2更易逸散到大气中[37]。全球河流水体CO2逸散通量(23 040×104 T·year−1)占DIC输出通量(45 000×104 T·year−1)的51.2%,根据碳酸盐溶解形成的HCO−3只有一半来自大气CO2,全球河流水体CO2逸散通量超过碳酸盐岩石风化碳汇通量[46−47],前人估算了密西西比河CO2逸散通量(999×104 T·year−1)略高于DIC输出通量(967×104 T·year−1),是岩石风化碳汇的2倍[13]。此外有研究发现在喀斯特流域(九龙江)雨季的CO2逸散通量(21.3×104 T·year−1)是DIC通量(17.3×104 T·year−1)的1.2倍,同时是岩石风化碳汇的2.5倍,旱季的CO2逸散通量(28.2×104 T·year−1)是DIC输出通量(8.1×104 T·year−1)的3.4倍,是岩石风化碳汇的7.0倍[37]。倪茂飞等人对长江支流(大宁河)的研究发现通过大气交换导致的碳损失占河道溶解碳通量的38.8%[32]。喀斯特流域CO2逸散通量占DIC输出通量的比重高于非喀斯特流域的。因此在估算岩石风化碳汇时不能忽略CO2逸散通量[10, 37]。
4. 结 论
巴马盘阳河流域地表水的DIC浓度、pCO2从上游到下游无显著性差异,然而地下水的pCO2、CO2逸散通量显著高于地表水,表明地下水涌出时会在短期内向大气释放CO2,对整段河流水体CO2逸散通量的空间格局影响不显著。雨季地下水的DIC、pCO2从上游到下游呈增加的趋势,而旱季呈降低的趋势,表明地下水补给过程中产生的岩石风化是地下水无机碳的重要来源。而旱季的pCO2显著高于雨季主要归结于雨水的稀释作用。雨季雨中的pCO2与雨季常规的pCO2无显著性差异,表明降雨过程中冲刷携带的溶解性物质进入河流后短期内对地表水pCO2无显著影响。巴马盘阳河流域常规地表、地下水CO2逸散通量的变化范围分别为−0.10~9.20 kg C m−2 year−1,−0.12~17.28 kg C m−2 year−1,全年常规地表水和地下水CO2逸散通量分别为1.06±1.46 kg C m−2 year−1和2.40±3.14 kg C m−2 year−1,高于全球主要大型流域的平均CO2逸散通量(0.64 kg C m−2 year−1)。因此,忽略CO2逸散通量可能导致流域碳收支不平衡或影响岩石风化碳汇评估。
-
表 1 盘阳河流域各个采样点的CO2逸散通量
Table 1. Dissolved CO2 efflux flux at various sampling points in the Panyang river basin
采样点 S1 S2 S3 S4 S5 G1 G2 G3 G4 旱季常规 3.08±2.98 1.74±0.86 1.83±1.72 1.99±1.47 1.59±1.18 9.55±4.94 3.42±2.66 2.15±2.24 4.76±2.50 雨季常规 0.41±0.36 0.23±0.0.25 0.58±0.44 0.37±0.27 0.51±0.44 0.41±0.25 0.89±0.48 1.29±0.84 1.39±0.80 雨季雨中 0.58±0.38 0.47±0.22 0.43±0.26 0.46±0.34 0.18±0.13 0.47±0.33 1.34±0.66 1.85±1.06 0.93±0.50 全年平均 1.52±2.34 0.82±0.93 1.03±1.24 0.99±1.23 0.90±0.95 4.07±5.46 1.76±2.00 1.60±1.56 2.74±2.37 注: CO2逸散通量单位为kg C m−2 year−1
Note: CO2 efflux flux unit: kg C m−2 year−1 -
[1] Ding Shengjun, Zhou Zhongfa, Dong Hui, Yan Lihui, Shi Liangxing, Huang Jing, Zhang Heng. Spatiotemporal variations of riverine CO2 partial pressure and its effect on CO2 flux at the water−air interface in a small karst river[J]. Aquatic Geochemistry, 2022, 28(3-4): 135-154. doi: 10.1007/s10498-022-09406-9 [2] Sun Huiguo, Han Jingtai, Zhang Shurong, Lu Xixi. Carbon isotopic evidence for transformation of DIC to POC in the lower Xijiang river, SE China[J]. Quaternary International, 2015, 380-381: 288-296. doi: 10.1016/j.quaint.2015.01.018 [3] Hope Diane, Palmer Sheila M, Billett Michael F, Dawson Julian J C. Variations in dissolved CO2 and CH4 in a first-order stream and catchment: An investigation of soil-stream linkages[J]. Hydrological Processes, 2004, 18(17): 3255-3275. doi: 10.1002/hyp.5657 [4] Peter Hannes, Singer Gabriel A, Preiler Christian, Chifflard Peter, Steniczka Gertraud, Battin Tom J. Scales and drivers of temporal pCO2 dynamics in an Alpine stream[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(6): 1078-1091. doi: 10.1002/2013JG002552 [5] Lynch Janet K, Beatty Cory M, Seidel Matthew P, Jungst Laura J, DeGrandpre Michael D. Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution pCO2 measurements[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G3). [6] 章程, 肖琼, 孙平安, 高旭波, 郭永丽, 苗迎, 汪进良. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5):190-198.ZHANG Cheng, XIAO Qiong, SUN Ping'an, GAO Xubo, GUO Yongli, MIAO Ying, WANG Jinliang. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 190-198. [7] Zeng Sibo, Liu Zaihua, Chris Groves. Large-scale CO2 removal by enhanced carbonate weathering from changes in land-use practices[J]. Earth-Science Reviews, 2022, 225: 103915. [8] Lee Kern Y, van Geldernb Robert, Barth Johannes A C. Extreme gradients in CO2 losses downstream of karstic springs[J]. Science of the Total Environment, 2021, 778: 146099. doi: 10.1016/j.scitotenv.2021.146099 [9] Lee Kern Y, van Geldern Robert, Barth Johannes A C. A high-resolution carbon balance in a small temperate catchment: Insights from the Schwabach River, Germany[J]. Applied Geochemistry, 2017, 85: 86-96. [10] Van Geldern Robert, Schulte Peter, Mader Michael, Baier Alfons, Barth Johannes A C. Spatial and temporal variations of pCO2, dissolved inorganic carbon and stable isotopes along a temperate karstic watercourse[J]. Hydrological Processes, 2015, 29(15): 3423-3440. doi: 10.1002/hyp.10457 [11] Brunet F, Dubois K, Veizer J, Nkoue Ndondo G R, Ndam Ngoupayou J R, Boeglin J L, Probst J L. Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon[J]. Chemical Geology, 2009, 265(3-4): 563-572. doi: 10.1016/j.chemgeo.2009.05.020 [12] Richey Jeffrey E, Melack John M, Aufdenkampe Anthony K, Ballester Victoria M, Hess Laura L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2[J]. Nature, 2002, 416(6881): 617-620. doi: 10.1038/416617a [13] Dubois Kristal D, Lee Dongho, Veizer Ján. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115: G02018. [14] Marx A, Dusek J, Jankovec J, Sanda M, Vogel T, van Geldern R, Hartmann J, Barth J A C. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[J]. Reviews of Geophysics, 2017, 55(2): 560-585. doi: 10.1002/2016RG000547 [15] Schelker Jakob, Singer Gabriel A, Ulseth Amber J, Hengsberger Sabrina, Battin Tom J. CO2 evasion from a steep, high gradient stream network: Importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer[J]. Limnology and Oceanography, 2016, 61(5): 1826-1838. doi: 10.1002/lno.10339 [16] Marx Anne, Conrad Marcus, Aizinger Vadym, Prechtel Alexander, van Geldern Robert, Barth Johannes A C. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach[J]. Biogeosciences, 2018, 15(10): 3093-3106. doi: 10.5194/bg-15-3093-2018 [17] Xiong Ying, Hou Zhengmeng, Tan Xiucheng, Luo Jiashun, Yue Ye, Wu Kunyu. Constraining fluid-rock interactions during eogenetic karst and their impacts on carbonate reservoirs: Insights from reactive transport modeling[J]. Applied Geochemistry, 2021, 131: 105050. [18] Ni Maofei, Li Siyue. Dynamics and internal links of dissolved carbon in a karst river system: Implications for composition, origin and fate[J]. Water Research, 2022, 226: 119289. [19] 覃蔡清, 李思亮, 岳甫均, 丁虎, 徐胜, 刘丛强. 喀斯特关键带溶解性碳的迁移转化过程及其对降雨事件的响应[J]. 第四纪研究, 2021, 41(4):1128-1139.QIN Caiqing, LI Siliang, YUE Fujun, DING Hu, XU Sheng, LIU Congqiang. Biogeochemical processes of dissolved carbon in the karst critical zone and its response to rainstorms[J]. Quaternary Sciences, 2021, 41(4): 1128-1139. [20] 丁虎, 郎赟超, 刘文景, 刘丛强. 桂西北峰丛洼地泉水和溪流在降雨过程中的水化学动态变化特征[J]. 地球与环境, 2011, 39(1):48-55.DING Hu, LANG Yunchao, LIU Wenjing, LIU Congqiang. Variations in chemical composition of spring and stream water during rain events in a karst peak cluster-depression catchment, northwest Guangxi, China[J]. Earth and Environment, 2011, 39(1): 48-55. [21] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J]. 地球科学进展, 2014, 29(12):1333-1340.LUO Weijun, WANG Shijie, LIU Xiuming. Research progresses and prospect of chimney effect about carbon cycle in the karst cave system[J]. Advances in Earth Science, 2014, 29(12): 1333-1340. [22] 李丽, 蒲俊兵, 李建鸿, 于奭, 肖琼, 张陶. 亚热带典型岩溶溪流水气界面CO2交换通量变化过程及其环境影响[J]. 环境科学, 2016, 37(7):2487-2495.LI Li, PU Junbing, LI Jianhong, YU Shi, XIAO Qiong, ZHANG Tao. Variations of CO2 exchange fluxes across water-air interface and environmental meaning in a surface stream in subtropical karst area, SW China[J]. Environmental Science, 2016, 37(7): 2487-2495. [23] 邹晨曦. 巴马瑶族自治县盘阳河沿岸风景林改造规划[J]. 绿色科技, 2020, 9(9):111-112, 117.ZOU Chenxi. Transformation planning of Panyang river scenic forest in Bama Yao Autonomous County[J]. Journal of Green Science and Technology, 2020, 9(9): 111-112, 117. [24] 覃小群, 蒙荣国, 莫日生. 土地覆盖对岩溶地下河碳汇的影响:以广西打狗河流域为例[J]. 中国岩溶, 2011, 30(4):372-378.QIN Xiaoqun, MENG Rongguo, MO Risheng. Influence of land covers on carbon sink of underground river: A case in the Dagouhe basin in Guangxi[J]. Carsologica Sinica, 2011, 30(4): 372-378. [25] 李丹阳, 张连凯, 李灿锋, 王晓宇, 王兴荣, 杨镇飞, 钱龙藤. 泸江流域水体溶解无机碳来源定量解析[J]. 中国岩溶, 2024, 43(1):92-104.LI Danyang, ZHANG Liankai, LI Canfeng, WANG Xiaoyu, WANG Xingrong, YANG Zhenfei, QIAN Longteng. Quantitative analysis of dissolved inorganic carbon sources in water bodies in the Lujiang river basin[J]. Carsologica Sinica, 2024, 43(1): 92-104. [26] 王克林, 岳跃民, 陈洪松, 吴协保, 肖峻, 祁向坤, 张伟, 杜虎. 喀斯特石漠化综合治理及其区域恢复效应[J]. 生态学报, 2019, 39(20):7432-7440.WANG Kelin, YUE Yuemin, CHEN Hongsong, WU Xiebao, XIAO Jun, QI Xiangkun, ZHANG Wei, DU Hu. The comprehensive treatment of karst rocky desertification and its regional restoration effects[J]. Acta Ecologica Sinica, 2019, 39(20): 7432-7440. [27] Liu Zaihua, Li Qiang, Sun Hailong, Wang Jinliang. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1-2): 207-223. [28] 倪茂飞, 李思悦. 典型喀斯特河流二氧化碳分压及交换通量季节变化[J]. 第四纪研究, 2023, 43(2):412-424.NI Maofei, LI Siyue. Partial pressure of carbon dioxide and its water-air exchange in a typical karst river[J]. Quaternary Sciences, 2023, 43(2): 412-424. [29] Ni Maofei, Li Siyue, Isaac Santos, Zhang Jing, Luo Jiachen. Linking riverine partial pressure of carbon dioxide to dissolved organic matter optical properties in a dry-hot valley region[J]. Science of the Total Environment, 2020, 704: 135353. doi: 10.1016/j.scitotenv.2019.135353 [30] 张勇, 吴福, 刘振宇, 于奭, 张婉军, 黄桂强, 岳志升, 翟国军. 西江流域化学风化过程及其CO2消耗通量[J]. 地球学报, 2022, 43(4):425-437.ZHANG Yong, WU Fu, LIU Zhenyu, YU Shi, ZHANG Wanjun, HUANG Guiqiang, YUE Zhisheng, ZHAI Guojun. Chemical weathering process and its CO2 consumption flux in the Xijiang river basin[J]. Acta Geoscientica Sinica, 2022, 43(4): 425-437. [31] 王文欣, 庄义琳, 庄家尧, 吕晓宁, 吴胡强. 不同降雨强度下坡地覆盖对土壤有机碳流失的影响[J]. 水土保持学报, 2013, 27(4):62-66.WANG Wenxin, ZHUANG Yilin, ZHUANG Jiayao, LV Xiaoning, WU Huqiang. Effects of downhill coverage on soil organic carbon loss under different rainfall intensities[J]. Journal of Soil and Water Conservation, 2013, 27(4): 62-66. [32] Ni Maofei, Li Siyue, Luo Jiachen, Lu Xixi. CO2 partial pressure and CO2 degassing in the Daning river of the upper Yangtze River, China[J]. Journal of Hydrology, 2019, 569: 483-494. doi: 10.1016/j.jhydrol.2018.12.017 [33] Luo Jiachen, Li Siyue, Ni Maofei, Zhang Jing. Large spatiotemporal shifts of CO2 partial pressure and CO2 degassing in a monsoonal headwater stream[J]. Journal of Hydrology, 2019, 579: 124135. [34] 罗佳宸, 毛瑢, 李思悦. 三峡库区主要河流秋季pCO2及其影响因素[J]. 环境科学, 2018, 39(7):3134-3141.LUO Jiachen, MAO Rong, LI Siyue. pCO2 in the main rivers of the Three Gorges Reservoir and its influencing factors[J]. Environmental Science, 2018, 39(7): 3134-3141. [35] 周苗, 李思亮, 丁虎, 覃蔡清, 岳甫均. 地表流域有机碳地球化学研究进展[J]. 生态学杂质, 2018, 37(1):255-264.ZHOU Miao, LI Siliang, DING Hu, QIN Caiqing, YUE Fujun. Advances in study on organic carbon characteristics in the riverine systems[J]. Chinese Journal of Ecology, 2018, 37(1): 255-264. [36] Raymond Peter A, Hartmann Jens, Lauerwald Ronny, Sobek Sebastian, McDonald Cory, Hoover Mark, Butman David, Striegl Robert, Mayorga Emilio, Humborg Christoph, Kortelainen Pirkko, Dürr Hans, Meybeck Michel, Ciais Philippe, Guth Peter. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359. doi: 10.1038/nature12760 [37] Liu Jinke, Han Guilin. Controlling factors of seasonal and spatial variation of riverine CO2 partial pressure and its implication for riverine carbon flux[J]. Science of the Total Environment, 2021, 786: 147332. doi: 10.1016/j.scitotenv.2021.147332 [38] Liu Zaihua, Macpherson G L, Groves Chris, Martin Jonathan B, Yuan Daoxian, Zeng Sibo. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49. doi: 10.1016/j.earscirev.2018.05.007 [39] 蒋忠诚, 章程, 罗为群, 肖琼, 吴泽燕. 我国岩溶地区碳汇研究进展与展望[J]. 中国岩溶, 2022, 41(3):345-355.JIANG Zhongcheng, ZHANG Cheng, LUO Weiqun, XIAO Qiong, WU Zeyan. Research progress and prospect of carbon sink in karst region of China[J]. Carsologica Sinica, 2022, 41(3): 345-355. [40] 梁顺田, 王雨春, 胡明明, 王启文. 夏季朱衣河二氧化碳分压分布特征及影响因素分析[J]. 中国水利水电科学研究院学报, 2017, 15(2):153-160.LIANG Shuntian, WANG Yuchun, HU Mingming, WANG Qiwen. Distributions of partial pressure of carbon dioxide and its affecting factors in the Zhuyi river in summer[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(2): 153-160. [41] Zeng Fanwei, Masiello Caroline A, Hockaday William C. Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos river, Texas[J]. Biogeochemistry, 2010, 104(1-3): 275-291. [42] Li Mingxu, Peng Changhui, Zhang Kerou, Xu Li, Wang Jianming, Yang Yan, Li Peng, Liu Zelin, He Nianpeng. Headwater stream ecosystem: An important source of greenhouse gases to the atmosphere[J]. Water Research, 2021, 190: 116738. doi: 10.1016/j.watres.2020.116738 [43] Crawford John T, Dornblaser Mark M, Stanley Emily H, Clow David W, Striegl Robert G. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(5): 952-964. doi: 10.1002/2014JG002861 [44] 史红岩, 冉立山, 岳荣, 于瑞宏, 赵艳霞, 吕喜玺. 窟野河水-气界面CO2交换通量变化特征及其影响因素分析[J]. 干旱区研究, 2021, 38(2):369-379.SHI Hongyan, RAN Lishan, YUE Rong, YU Ruihong, ZHAO Yanxia, LV Xixi. Variations of CO2 exchange in the Kuye river basin and its influencing factors[J]. Arid Zone Research, 2021, 38(2): 369-379. [45] 刘睿, 张静, 陈祖胜, 倪茂飞, 刘文胜. 典型喀斯特河流水-气界面二氧化碳交换特性及其营养调控因素[J]. 环境科学, 2021, 42(2):740-748.LIU Rui, ZHANG Jing, CHEN Zusheng, NI Maofei, LIU Wensheng. Water-air carbon dioxide exchange and nutritional controls in a typical karst river[J]. Environmental Science, 2021, 42(2): 740-748. [46] Gaillardet J, Dupre B, Louvat P, Allegre C J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large river[J]. Chemical Geology, 1999, 159(1-4): 3-30. [47] Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185. doi: 10.1007/s10021-006-9013-8 期刊类型引用(0)
其他类型引用(1)
-