• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喀斯特地下河涌出后CO2逸散通量的时空格局

冼金梅 宋贤威 张乐 林沛新 韦岳春 杨取宝 甘文静 杨露

冼金梅,宋贤威,张 乐,等. 喀斯特地下河涌出后CO2逸散通量的时空格局−基于广西巴马盘阳河[J]. 中国岩溶,2024,43(4):753-765 doi: 10.11932/karst2024y009
引用本文: 冼金梅,宋贤威,张 乐,等. 喀斯特地下河涌出后CO2逸散通量的时空格局−基于广西巴马盘阳河[J]. 中国岩溶,2024,43(4):753-765 doi: 10.11932/karst2024y009
XIAN Jinmei, SONG Xianwei, ZHANG Le, LIN Peixin, WEI Yuechun, YANG Qubao, GAN Wenjing, YANG Lu. Spatiotemporal patterns of CO2 efflux fluxes from the outflow of karst underground river: A case study of the Panyang river in Bama, Guangxi[J]. CARSOLOGICA SINICA, 2024, 43(4): 753-765. doi: 10.11932/karst2024y009
Citation: XIAN Jinmei, SONG Xianwei, ZHANG Le, LIN Peixin, WEI Yuechun, YANG Qubao, GAN Wenjing, YANG Lu. Spatiotemporal patterns of CO2 efflux fluxes from the outflow of karst underground river: A case study of the Panyang river in Bama, Guangxi[J]. CARSOLOGICA SINICA, 2024, 43(4): 753-765. doi: 10.11932/karst2024y009

喀斯特地下河涌出后CO2逸散通量的时空格局——基于广西巴马盘阳河

doi: 10.11932/karst2024y009
基金项目: 广西科技基地和人才专项(桂科AD22035032,桂科AD23026312);巴马县人才科技计划项目(巴人科20220032)
详细信息
    作者简介:

    冼金梅(1997-),女,硕士研究生,主要研究方向为生态水文。 E-mail: 3202722088@qq.com

    通讯作者:

    宋贤威 (1993 −),男,讲师,研究方向为生态水文学。E-mail:sxwkerry@163.com

  • 中图分类号: X143;P641.134

Spatiotemporal patterns of CO2 efflux fluxes from the outflow of karst underground river: A case study of the Panyang river in Bama, Guangxi

  • 摘要: 喀斯特流域是岩石风化碳汇的关键区域,同时也是CO2逸散研究的热点区域。为探究喀斯特地下河涌出后CO2分压(pCO2)及其逸散通量的时空变化格局,选择喀斯特流域巴马盘阳河为对象,分析水体的pH、碱度、总溶解性固体(TDS)、溶解无机碳(DIC)、溶解有机碳(DOC)、pCO2的时空变化特征,探讨pCO2的调控因素并估算了CO2逸散通量。结果表明,流域内地下水碱度、TDS、DIC和pCO2显著高于地表水,表明喀斯特碳酸盐风化释放大量DIC进入地下水,地下水涌出后产生CO2逸散降低了地表水DIC含量和pCO2。在时间尺度上,旱季常规地表、地下水的碱度、TDS、DIC、pCO2、CO2逸散通量均显著高于雨季,主要归结于雨季雨水的稀释效应。然而次降雨事件下地表、地下水的pH、碱度、TDS、DIC、DOC、pCO2无显著性差异,可能由于降雨量不足或降雨持续时间短。研究期间,巴马盘阳河流域地表水、地下水CO2逸散通量范围分别为−0.10~9.20 kg C m−2 year−1,−0.12~17.28 kg C m−2 year−1,平均CO2逸散通量分别为1.06±1.46 kg C m−2 year−1和2.40±3.14 kg C m−2 year−1,远高于全球主要大型流域的平均CO2逸散通量(0.64 kg C m−2 year−1)。阐明喀斯特流域的CO2逸散通量及其时空变化特征对准确评估河流碳收支状况与评估岩石风化碳汇具有重要意义。

     

  • 图  1  巴马盘阳河采样点分布

    Figure  1.  Distribution of sampling points in the Panyang river of Bama

    图  2  河流pH、碱度、总溶解性固体(TDS)的空间变化特征(**表示在0.01水平上显著相关,*表示在0.05水平上显著相关。S表示地表水,G表示地下水。)

    Figure  2.  Spatial variations of river pH, alkalinity and TDS (**: a significant correlation at the 0.01 level; *: a significant correlation at the 0.05 level; S: surface water; G: groundwater)

    图  3  河流pH、碱度、总溶解性固体(TDS)的时间变化特征(**表示在0.01水平上显著相关,*表示在0.05水平上显著相关)

    Figure  3.  Temporal variations of river pH, alkalinity and TDS (**: a significant correlation at the 0.01 level; *: a significant correlation at the 0.05 level)

    图  4  河流DIC、DOC、二氧化碳分压(pCO2)的空间变化特征(**表示在0.01水平上显著相关,*表示在0.05水平上显著相关。S表示地表水,G表示地下水)

    Figure  4.  Spatial variations of DIC, DOC and pCO2 (**: a significant correlation at the 0.01 level; *: a significant correlation at the 0.05 level; S: surface water; G: groundwater)

    图  5  河流溶解无机碳(DIC)、溶解有机碳(DOC)、二氧化碳分压(pCO2)的时间变化特征(**表示在0.01水平上显著相关,*表示在0.05水平上显著相关)

    Figure  5.  Temporal variations of DIC, DOC and pCO2 (**: a significant correlation at the 0.01 level; *: a significant correlation at the 0.05 level)

    图  6  河流pCO2与DIC、DOC及DIC与碱度、TDS之间的关系

    Figure  6.  Relationships between pCO2 and indicators of DIC and DOC, and relationships between DIC and indicators of alkalinity and TDS

    表  1  盘阳河流域各个采样点的CO2逸散通量

    Table  1.   Dissolved CO2 efflux flux at various sampling points in the Panyang river basin

    采样点 S1 S2 S3 S4 S5 G1 G2 G3 G4
    旱季常规 3.08±2.98 1.74±0.86 1.83±1.72 1.99±1.47 1.59±1.18 9.55±4.94 3.42±2.66 2.15±2.24 4.76±2.50
    雨季常规 0.41±0.36 0.23±0.0.25 0.58±0.44 0.37±0.27 0.51±0.44 0.41±0.25 0.89±0.48 1.29±0.84 1.39±0.80
    雨季雨中 0.58±0.38 0.47±0.22 0.43±0.26 0.46±0.34 0.18±0.13 0.47±0.33 1.34±0.66 1.85±1.06 0.93±0.50
    全年平均 1.52±2.34 0.82±0.93 1.03±1.24 0.99±1.23 0.90±0.95 4.07±5.46 1.76±2.00 1.60±1.56 2.74±2.37
    注: CO2逸散通量单位为kg C m−2 year−1
    Note: CO2 efflux flux unit: kg C m−2 year−1
    下载: 导出CSV
  • [1] Ding Shengjun, Zhou Zhongfa, Dong Hui, Yan Lihui, Shi Liangxing, Huang Jing, Zhang Heng. Spatiotemporal variations of riverine CO2 partial pressure and its effect on CO2 flux at the water−air interface in a small karst river[J]. Aquatic Geochemistry, 2022, 28(3-4): 135-154. doi: 10.1007/s10498-022-09406-9
    [2] Sun Huiguo, Han Jingtai, Zhang Shurong, Lu Xixi. Carbon isotopic evidence for transformation of DIC to POC in the lower Xijiang river, SE China[J]. Quaternary International, 2015, 380-381: 288-296. doi: 10.1016/j.quaint.2015.01.018
    [3] Hope Diane, Palmer Sheila M, Billett Michael F, Dawson Julian J C. Variations in dissolved CO2 and CH4 in a first-order stream and catchment: An investigation of soil-stream linkages[J]. Hydrological Processes, 2004, 18(17): 3255-3275. doi: 10.1002/hyp.5657
    [4] Peter Hannes, Singer Gabriel A, Preiler Christian, Chifflard Peter, Steniczka Gertraud, Battin Tom J. Scales and drivers of temporal pCO2 dynamics in an Alpine stream[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(6): 1078-1091. doi: 10.1002/2013JG002552
    [5] Lynch Janet K, Beatty Cory M, Seidel Matthew P, Jungst Laura J, DeGrandpre Michael D. Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution pCO2 measurements[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G3).
    [6] 章程, 肖琼, 孙平安, 高旭波, 郭永丽, 苗迎, 汪进良. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5):190-198.

    ZHANG Cheng, XIAO Qiong, SUN Ping'an, GAO Xubo, GUO Yongli, MIAO Ying, WANG Jinliang. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 190-198.
    [7] Zeng Sibo, Liu Zaihua, Chris Groves. Large-scale CO2 removal by enhanced carbonate weathering from changes in land-use practices[J]. Earth-Science Reviews, 2022, 225: 103915.
    [8] Lee Kern Y, van Geldernb Robert, Barth Johannes A C. Extreme gradients in CO2 losses downstream of karstic springs[J]. Science of the Total Environment, 2021, 778: 146099. doi: 10.1016/j.scitotenv.2021.146099
    [9] Lee Kern Y, van Geldern Robert, Barth Johannes A C. A high-resolution carbon balance in a small temperate catchment: Insights from the Schwabach River, Germany[J]. Applied Geochemistry, 2017, 85: 86-96.
    [10] Van Geldern Robert, Schulte Peter, Mader Michael, Baier Alfons, Barth Johannes A C. Spatial and temporal variations of pCO2, dissolved inorganic carbon and stable isotopes along a temperate karstic watercourse[J]. Hydrological Processes, 2015, 29(15): 3423-3440. doi: 10.1002/hyp.10457
    [11] Brunet F, Dubois K, Veizer J, Nkoue Ndondo G R, Ndam Ngoupayou J R, Boeglin J L, Probst J L. Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon[J]. Chemical Geology, 2009, 265(3-4): 563-572. doi: 10.1016/j.chemgeo.2009.05.020
    [12] Richey Jeffrey E, Melack John M, Aufdenkampe Anthony K, Ballester Victoria M, Hess Laura L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2[J]. Nature, 2002, 416(6881): 617-620. doi: 10.1038/416617a
    [13] Dubois Kristal D, Lee Dongho, Veizer Ján. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115: G02018.
    [14] Marx A, Dusek J, Jankovec J, Sanda M, Vogel T, van Geldern R, Hartmann J, Barth J A C. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[J]. Reviews of Geophysics, 2017, 55(2): 560-585. doi: 10.1002/2016RG000547
    [15] Schelker Jakob, Singer Gabriel A, Ulseth Amber J, Hengsberger Sabrina, Battin Tom J. CO2 evasion from a steep, high gradient stream network: Importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer[J]. Limnology and Oceanography, 2016, 61(5): 1826-1838. doi: 10.1002/lno.10339
    [16] Marx Anne, Conrad Marcus, Aizinger Vadym, Prechtel Alexander, van Geldern Robert, Barth Johannes A C. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach[J]. Biogeosciences, 2018, 15(10): 3093-3106. doi: 10.5194/bg-15-3093-2018
    [17] Xiong Ying, Hou Zhengmeng, Tan Xiucheng, Luo Jiashun, Yue Ye, Wu Kunyu. Constraining fluid-rock interactions during eogenetic karst and their impacts on carbonate reservoirs: Insights from reactive transport modeling[J]. Applied Geochemistry, 2021, 131: 105050.
    [18] Ni Maofei, Li Siyue. Dynamics and internal links of dissolved carbon in a karst river system: Implications for composition, origin and fate[J]. Water Research, 2022, 226: 119289.
    [19] 覃蔡清, 李思亮, 岳甫均, 丁虎, 徐胜, 刘丛强. 喀斯特关键带溶解性碳的迁移转化过程及其对降雨事件的响应[J]. 第四纪研究, 2021, 41(4):1128-1139.

    QIN Caiqing, LI Siliang, YUE Fujun, DING Hu, XU Sheng, LIU Congqiang. Biogeochemical processes of dissolved carbon in the karst critical zone and its response to rainstorms[J]. Quaternary Sciences, 2021, 41(4): 1128-1139.
    [20] 丁虎, 郎赟超, 刘文景, 刘丛强. 桂西北峰丛洼地泉水和溪流在降雨过程中的水化学动态变化特征[J]. 地球与环境, 2011, 39(1):48-55.

    DING Hu, LANG Yunchao, LIU Wenjing, LIU Congqiang. Variations in chemical composition of spring and stream water during rain events in a karst peak cluster-depression catchment, northwest Guangxi, China[J]. Earth and Environment, 2011, 39(1): 48-55.
    [21] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J]. 地球科学进展, 2014, 29(12):1333-1340.

    LUO Weijun, WANG Shijie, LIU Xiuming. Research progresses and prospect of chimney effect about carbon cycle in the karst cave system[J]. Advances in Earth Science, 2014, 29(12): 1333-1340.
    [22] 李丽, 蒲俊兵, 李建鸿, 于奭, 肖琼, 张陶. 亚热带典型岩溶溪流水气界面CO2交换通量变化过程及其环境影响[J]. 环境科学, 2016, 37(7):2487-2495.

    LI Li, PU Junbing, LI Jianhong, YU Shi, XIAO Qiong, ZHANG Tao. Variations of CO2 exchange fluxes across water-air interface and environmental meaning in a surface stream in subtropical karst area, SW China[J]. Environmental Science, 2016, 37(7): 2487-2495.
    [23] 邹晨曦. 巴马瑶族自治县盘阳河沿岸风景林改造规划[J]. 绿色科技, 2020, 9(9):111-112, 117.

    ZOU Chenxi. Transformation planning of Panyang river scenic forest in Bama Yao Autonomous County[J]. Journal of Green Science and Technology, 2020, 9(9): 111-112, 117.
    [24] 覃小群, 蒙荣国, 莫日生. 土地覆盖对岩溶地下河碳汇的影响:以广西打狗河流域为例[J]. 中国岩溶, 2011, 30(4):372-378.

    QIN Xiaoqun, MENG Rongguo, MO Risheng. Influence of land covers on carbon sink of underground river: A case in the Dagouhe basin in Guangxi[J]. Carsologica Sinica, 2011, 30(4): 372-378.
    [25] 李丹阳, 张连凯, 李灿锋, 王晓宇, 王兴荣, 杨镇飞, 钱龙藤. 泸江流域水体溶解无机碳来源定量解析[J]. 中国岩溶, 2024, 43(1):92-104.

    LI Danyang, ZHANG Liankai, LI Canfeng, WANG Xiaoyu, WANG Xingrong, YANG Zhenfei, QIAN Longteng. Quantitative analysis of dissolved inorganic carbon sources in water bodies in the Lujiang river basin[J]. Carsologica Sinica, 2024, 43(1): 92-104.
    [26] 王克林, 岳跃民, 陈洪松, 吴协保, 肖峻, 祁向坤, 张伟, 杜虎. 喀斯特石漠化综合治理及其区域恢复效应[J]. 生态学报, 2019, 39(20):7432-7440.

    WANG Kelin, YUE Yuemin, CHEN Hongsong, WU Xiebao, XIAO Jun, QI Xiangkun, ZHANG Wei, DU Hu. The comprehensive treatment of karst rocky desertification and its regional restoration effects[J]. Acta Ecologica Sinica, 2019, 39(20): 7432-7440.
    [27] Liu Zaihua, Li Qiang, Sun Hailong, Wang Jinliang. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1-2): 207-223.
    [28] 倪茂飞, 李思悦. 典型喀斯特河流二氧化碳分压及交换通量季节变化[J]. 第四纪研究, 2023, 43(2):412-424.

    NI Maofei, LI Siyue. Partial pressure of carbon dioxide and its water-air exchange in a typical karst river[J]. Quaternary Sciences, 2023, 43(2): 412-424.
    [29] Ni Maofei, Li Siyue, Isaac Santos, Zhang Jing, Luo Jiachen. Linking riverine partial pressure of carbon dioxide to dissolved organic matter optical properties in a dry-hot valley region[J]. Science of the Total Environment, 2020, 704: 135353. doi: 10.1016/j.scitotenv.2019.135353
    [30] 张勇, 吴福, 刘振宇, 于奭, 张婉军, 黄桂强, 岳志升, 翟国军. 西江流域化学风化过程及其CO2消耗通量[J]. 地球学报, 2022, 43(4):425-437.

    ZHANG Yong, WU Fu, LIU Zhenyu, YU Shi, ZHANG Wanjun, HUANG Guiqiang, YUE Zhisheng, ZHAI Guojun. Chemical weathering process and its CO2 consumption flux in the Xijiang river basin[J]. Acta Geoscientica Sinica, 2022, 43(4): 425-437.
    [31] 王文欣, 庄义琳, 庄家尧, 吕晓宁, 吴胡强. 不同降雨强度下坡地覆盖对土壤有机碳流失的影响[J]. 水土保持学报, 2013, 27(4):62-66.

    WANG Wenxin, ZHUANG Yilin, ZHUANG Jiayao, LV Xiaoning, WU Huqiang. Effects of downhill coverage on soil organic carbon loss under different rainfall intensities[J]. Journal of Soil and Water Conservation, 2013, 27(4): 62-66.
    [32] Ni Maofei, Li Siyue, Luo Jiachen, Lu Xixi. CO2 partial pressure and CO2 degassing in the Daning river of the upper Yangtze River, China[J]. Journal of Hydrology, 2019, 569: 483-494. doi: 10.1016/j.jhydrol.2018.12.017
    [33] Luo Jiachen, Li Siyue, Ni Maofei, Zhang Jing. Large spatiotemporal shifts of CO2 partial pressure and CO2 degassing in a monsoonal headwater stream[J]. Journal of Hydrology, 2019, 579: 124135.
    [34] 罗佳宸, 毛瑢, 李思悦. 三峡库区主要河流秋季pCO2及其影响因素[J]. 环境科学, 2018, 39(7):3134-3141.

    LUO Jiachen, MAO Rong, LI Siyue. pCO2 in the main rivers of the Three Gorges Reservoir and its influencing factors[J]. Environmental Science, 2018, 39(7): 3134-3141.
    [35] 周苗, 李思亮, 丁虎, 覃蔡清, 岳甫均. 地表流域有机碳地球化学研究进展[J]. 生态学杂质, 2018, 37(1):255-264.

    ZHOU Miao, LI Siliang, DING Hu, QIN Caiqing, YUE Fujun. Advances in study on organic carbon characteristics in the riverine systems[J]. Chinese Journal of Ecology, 2018, 37(1): 255-264.
    [36] Raymond Peter A, Hartmann Jens, Lauerwald Ronny, Sobek Sebastian, McDonald Cory, Hoover Mark, Butman David, Striegl Robert, Mayorga Emilio, Humborg Christoph, Kortelainen Pirkko, Dürr Hans, Meybeck Michel, Ciais Philippe, Guth Peter. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359. doi: 10.1038/nature12760
    [37] Liu Jinke, Han Guilin. Controlling factors of seasonal and spatial variation of riverine CO2 partial pressure and its implication for riverine carbon flux[J]. Science of the Total Environment, 2021, 786: 147332. doi: 10.1016/j.scitotenv.2021.147332
    [38] Liu Zaihua, Macpherson G L, Groves Chris, Martin Jonathan B, Yuan Daoxian, Zeng Sibo. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49. doi: 10.1016/j.earscirev.2018.05.007
    [39] 蒋忠诚, 章程, 罗为群, 肖琼, 吴泽燕. 我国岩溶地区碳汇研究进展与展望[J]. 中国岩溶, 2022, 41(3):345-355.

    JIANG Zhongcheng, ZHANG Cheng, LUO Weiqun, XIAO Qiong, WU Zeyan. Research progress and prospect of carbon sink in karst region of China[J]. Carsologica Sinica, 2022, 41(3): 345-355.
    [40] 梁顺田, 王雨春, 胡明明, 王启文. 夏季朱衣河二氧化碳分压分布特征及影响因素分析[J]. 中国水利水电科学研究院学报, 2017, 15(2):153-160.

    LIANG Shuntian, WANG Yuchun, HU Mingming, WANG Qiwen. Distributions of partial pressure of carbon dioxide and its affecting factors in the Zhuyi river in summer[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(2): 153-160.
    [41] Zeng Fanwei, Masiello Caroline A, Hockaday William C. Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos river, Texas[J]. Biogeochemistry, 2010, 104(1-3): 275-291.
    [42] Li Mingxu, Peng Changhui, Zhang Kerou, Xu Li, Wang Jianming, Yang Yan, Li Peng, Liu Zelin, He Nianpeng. Headwater stream ecosystem: An important source of greenhouse gases to the atmosphere[J]. Water Research, 2021, 190: 116738. doi: 10.1016/j.watres.2020.116738
    [43] Crawford John T, Dornblaser Mark M, Stanley Emily H, Clow David W, Striegl Robert G. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(5): 952-964. doi: 10.1002/2014JG002861
    [44] 史红岩, 冉立山, 岳荣, 于瑞宏, 赵艳霞, 吕喜玺. 窟野河水-气界面CO2交换通量变化特征及其影响因素分析[J]. 干旱区研究, 2021, 38(2):369-379.

    SHI Hongyan, RAN Lishan, YUE Rong, YU Ruihong, ZHAO Yanxia, LV Xixi. Variations of CO2 exchange in the Kuye river basin and its influencing factors[J]. Arid Zone Research, 2021, 38(2): 369-379.
    [45] 刘睿, 张静, 陈祖胜, 倪茂飞, 刘文胜. 典型喀斯特河流水-气界面二氧化碳交换特性及其营养调控因素[J]. 环境科学, 2021, 42(2):740-748.

    LIU Rui, ZHANG Jing, CHEN Zusheng, NI Maofei, LIU Wensheng. Water-air carbon dioxide exchange and nutritional controls in a typical karst river[J]. Environmental Science, 2021, 42(2): 740-748.
    [46] Gaillardet J, Dupre B, Louvat P, Allegre C J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large river[J]. Chemical Geology, 1999, 159(1-4): 3-30.
    [47] Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185. doi: 10.1007/s10021-006-9013-8
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  93
  • HTML浏览量:  15
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 录用日期:  2024-02-18
  • 修回日期:  2024-01-18
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回