Application of comprehensive geophysical prospecting method to water detection in the clastic rock area of Dalubian village, Xuanwei, Yunnan Province
-
摘要: 为探索地球物理方法在碎屑地区找水应用的有效性,文章以云南宣威大路边村为研究对象,选取高密度电阻率法、联合剖面法、音频大地电磁法对碎屑岩层进行找水研究。结果表明:三叠系上统飞仙关组(T1f)碎屑岩富水性中等,含水性较均匀;受地面场地狭窄限制,高密度电法及联合剖面法测线长度有限,探测深度较浅,受碎屑岩电阻率小的影响,其找水应用效果不佳,在可探测的深度范围内较难识别基岩裂隙等找水有效异常,需结合其他物探方法甄别异常;音频大地电磁法找水应用效果相对较好,具有较高的横向分辨率,可有效识别碎屑岩中的断裂破碎带及构造裂隙带,表现为相对低阻异常特征;视电阻率单支测深曲线能有效分辨不同深度的岩土层结构,具有较高的纵向分辨率,对裂隙破碎带有较好指示意义。在地面场地较为狭窄的碎屑岩地区开展找水工作,音频大地电磁法结合视电阻单支测深曲线能取得较好效果,以音频大地电磁法确定碎屑岩地区中的裂隙发育带位置,以视电阻单支测深曲线确定裂隙发育带的深度。Abstract:
The development of fractured and fissured zones characterized by strong water abundance is limited in the clastic rock aquifer with generally poor water-rich properties. Additionally, the small contrast in electrical properties between the water storage structures and the clastic rock makes water detection difficult. In order to explore the effectiveness of geophysical methods in water detection in clastic rock areas, the high-density resistivity method, combined with profile method and audio frequency magnetotelluric method (EH4) are used to study the water detection in clastic rock strata in Dalubian village, Xuanwei, Yunnan Province. The study findings may provide a theoretical basis for the selection of geophysical methods under the same site condition and the same geological background so as to avoid blind method selection and to save time and cost. The study area is located in Xuanwei county, Yunnan Province, belonging to the Beipan river basin. The terrain is low in the north and high in the south, with large undulations and a height difference of 150–250 m. The terrain falls into the type of the eroded middle-mountain trough valley. The exposed strata in the study area are purplish red or greyish-green sandy mudstone, mudstone, sandstone interbedded with limestone, mudstone, etc. of the lower Triassic Feixianguan Formation(T1f). The study area is located in the northwest wing of Tianba syncline, about 1 km away from the core. The core is composed of the Feixianguan Formation (T1f) of the lower Triassic, and the two wings are composed of the Carboniferous (C) to Permian (P) strata. The main aquifer in the study area is composed of purplish red or greyish green sandy mudstone, mudstone, and sandstone layers of the Feixianguan Formation (T1f) in the lower Triassic, with fractures as the main aquifer medium. The fractured aquifer is mainly composed of insoluble hard and brittle rock layers in clastic rocks, igneous rocks, and metamorphic rocks. Interbedded fractured aquifers, fractured aquifers, and weathered fractured aquifers are commonly present. Atmospheric precipitation infiltrates along cracks and joints to recharge groundwater, with runoff direction from south to north, and is ultimately enriched in valleys. The study area is located near the core of the Tianba syncline, with well-developed joints and fractures, and a large storage space for groundwater. The results show that the clastic rocks of Feixianguan Formation (T1f) in the upper Triassic system are at medium-level water abundance, with uniform water content. Constrained by the narrow ground, the lengths of survey lines in high-density electrical method and the combined profiling method are limited, and hence the small detecting depths. Affected by the small resistivity of clastic rocks, the effect of using high-density electrical method and combined profile method in water detection is not good, because it is difficult to identify effective anomalies such as bedrock fractures within the detectable depth range by these methods. Therefore, it is necessary for us to combine other geophysical methods to effectively distinguish the anomalies. The audio frequency magnetotelluric method with high lateral resolution can effectively identify the development sections of structural fault fracture zones and fracture zones in clastic rocks. The anomaly is characterized by relatively low resistance. The apparent resistivity sounding curve, with a high vertical resolution and good indication significance for fracture, can effectively distinguish the structure of rock and soil layers at different depths. To carry out water detection in the clastic rock area with relatively narrow ground site, the audio frequency magnetotelluric method combined with apparent resistivity sounding curve can achieve good results. The audio frequency magnetotelluric method can determine the location of fracture development zone in clastic rock areas, and apparent resistivity sounding curve can determine the depth of fracture development zone. -
图 1 研究区水文地质简图(a)及物探测线布置图(b)
1. 物探测区 2. 地层及地层界线 3. 查明断层/推测断层 4. 地下水流方向 5.下降泉/上升泉 6. 碎屑岩裂隙含水层 7. 岩浆岩裂隙含水层 8. 碳酸盐岩岩溶含水层 9. 碳酸盐岩夹碎屑岩岩溶裂隙含水层 10. 测线(点号/线号) 11. 测线方位 12. 水沟 13. 冲沟 14. 村路
Figure 1. Hydrogeological map of the study area (a) and line layout map of geophysical prospecting (b)
1. geophysical prospecting area 2. strata and stratigraphic boundaries 3. fault identification/fault prediction 4. direction of groundwater flow 5. descending spring/ascending spring 6. clastic fractured aquifer 7. magmatic fissure aquifer 8. karst aquifer of carbonate rock 9.carbonate rock with karst fissure aquifer of clastic rock 10. survey line (point/line number) 11. survey line orientation 12. ditch 13. gully 14. village road
表 1 岩土层电阻率物性参数表
Table 1. Resistivity parameter of rock and soil layer
介质类型 电阻率变化范围/Ω·m 电阻率平均值/Ω·m 黏土 10~100 55 泥岩 10~20 15 粉砂岩、细砂岩 10~100 50 中砂岩 100~250 120 粗砂岩 100~450 280 砾岩 100~410 250 充水充泥裂隙 80~200 60~120 注:据《广西碎屑岩地区电法找水实例》。
Note: Based on "A case study of water prospecting by electrical method in clastic rock areas of Guangxi".表 2 270 m测点钻孔岩土体特征表
Table 2. Table of rock and soil characteristics at the drilling hole of 270-meter position
钻孔深度/m 岩土体特征 0~4.1 第四系(Q)黄褐色黏土、耕植土 4.1~111.0 三叠系下统飞仙关组(T1f)灰绿、紫红色泥岩、粉砂质泥岩夹少量灰岩 111.0~195.0 二叠系上统宣威组(P3x)深灰、灰绿色泥岩、粉砂质泥岩夹炭质泥岩、页岩 其中:92.4~93.8 m裂隙发育,为该井的主要出水段;12.6~13.5 m裂隙较发育,为钻孔的次要出水段。 -
[1] 刘亚明. 延安市地下水监测浅析[J]. 陕西水利, 2012(6):132-133. [2] 刘道涵, 徐俊杰, 齐信, 邬健强. 基于高密度电法的城市岩溶地下水通道三维电性成像[J]. 中国岩溶, 2023, 42(6):1331-1338.LIU Daohan, XU Junjie, QI Xin, WU Jianqiang. Three-dimensional electrical imaging of urban karst groundwater channels based on electrical resistivity tomography[J]. Carsologica Sinica, 2023, 42(6): 1331-1338. [3] Sonkamble S, Satishkumar V, Amarender B, Sethurama S. Combined ground-penetrating radar (GPR) and electrical resistivity applications exploring groundwater potential zones in granitic terrain[J]. Arabian Journal of Geosciences, 2014, 7(8): 3109-3117. doi: 10.1007/s12517-013-0998-y [4] Tassy A, Maxwell M, Borgomano J, Arfib B, Guglielmi Y. Electrical resistivity tomography (ERT) of a coastal carbonate aquifer (Port-Mi-ou, SE France)[J]. Environmental Earth Sciences, 2014, 71(2): 601-608. doi: 10.1007/s12665-013-2802-4 [5] 高阳, 熊华山, 彭明涛, 江兆南, 樊奔. 渝东南岩溶储水构造高密度电阻率法异常特征[J]. 物探与化探, 2016, 40(6):1108-1115.GAO Yang, XIONG Huashan, PENG Mingtao, JIANG Zhaonan, FAN Ben. High density electrical prospecting anomaly analysis of water-bearing structure in karst area of southeast Chongqing[J]. Geophysical and Geochemical Exploration, 2016, 40(6): 1108-1115. [6] 陈贻祥, 黄奇波, 覃小群, 韩凯, 肖琼, 苗迎, 杜成亮, 贺德煌. 自然电场法与高密度电法联作在西江中下游岩溶区找水中的应用[J]. 中国岩溶, 2022, 41(5):684-697.CHEN Yixiang, HUANG Qibo, QIN Xiaoqun, HAN Kai, XIAO Qiong, MIAO Ying, DU Chengliang, HE Dehuang. Application of self-potential and high-density resistivity method to the water exploration in karst terrain of middle-lower reaches of Xijiang river[J]. Carsologica Sinica, 2022, 41(5): 684-697. [7] 张振杰, 胡潇, 谢慧. 直流电测深法优化组合在河西走廊山前戈壁区的找水效果[J]. 物探与化探, 2018, 42(6):1186-1193.ZHANG Zhenjie, HU Xiao, XIE Hui. The effect of the application of optimal combination of direct electric sounding method to water exploration in pediment Gobi area of the Hexi Corridor[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1186-1193. [8] 赵俊, 向龙洲, 李忠, 王家生. 综合物探在水文地质调查中的应用及适用性分析[J]. 云南大学学报(自然科学版), 2017, 39(Suppl.2):110-115, 123.ZHAO Jun, XIANG Longzhou, LI Zhong, WANG Jiasheng. Application of integrated geophysical prospecting in the hydrogeology investigation and it's applicability analysis[J]. Journal of Yunnan University (Natural Sciences Edition), 2017, 39(Suppl.2): 110-115, 123. [9] 刘天云, 罗锐恒, 胡顺强, 赵永宾, 潘晓东, 刘伟. 文山小河尾水库岩溶渗漏水文地质条件与管道位置识别[J]. 中国岩溶, 2022, 41(1):88-99.LIU Tianyun, LUO Ruiheng, HU Shunqiang, ZHAO Yongbin, PAN Xiaodong, LIU Wei. Hydrogeological conditions of karst leakage and identification of pipeline location in Xiaohewei reservoir, Wenshan[J]. Carsologica Sinica, 2022, 41(1): 88-99. [10] 曹光奇, 周仲华. 地面核磁共振找水方法在花岗岩地区的应用[J]. 水文地质工程地质, 2006, 33(2):108-113.CAO Guangqi, ZHOU Zhonghua. Application of the surface nuclear magnetic resonance method to detecting groundwater in granite regions[J]. Hydrogeology & Engineering Geology, 2006, 33(2): 108-113. [11] 柳建新, 龚露, 刘海飞, 麻昌英, 曹创华. 双频激电法在新疆戈壁滩找水中的应用[J]. 工程地球物理学报, 2013, 10(6):745-751.LIU Jianxin, GONG Lu, LIU Haifei, MA Changying, CAO Chuanghua. Application of dual-frequency induced polarization method for detecting groundwater in Gobi, Xinjiang[J]. Chinese Journal of Engineering Geophysics, 2013, 10(6): 745-751. [12] 王鹏飞, 李勇, 李富, 杨帆, 李雪梅, 张文鑫. 综合电法勘探在“红层地区”找水中的应用[J]. 物探化探计算技术, 2019, 41(5):659-664.WANG Pengfei, LI Yong, LI Fu, YANG Fan, LI Xuemei, ZHANG Wenxin. Application of comprehensive electrical exploration in finding water in "Red Layer"[J]. Computing Techniques for Geophysicial and Geochemical Exploration, 2019, 41(5): 659-664. [13] 时彦芳, 李波. 综合电法在花岗岩地区找水中的应用效果分析[J]. 地质与资源, 2020, 29(4):363-368.SHI Yanfang, LI Bo. Analysis on the application effect of integrated electrical method in water prospecting in granite regions[J]. Geology and Resources, 2020, 29(4): 363-368. [14] 刘加文, 王治军, 杜志伟. 自然电场法在场地地下水勘查中的应用[J]. 工程地球物理学报, 2009, 6(5):612-615.LIU Jiawen, WANG Zhijun, DU Zhiwei. Application of natural electric field in site groundwater exploration[J]. Chinese Journal of Engineering Geophysics, 2009, 6(5): 612-615. [15] 郑智杰, 曾洁, 赵伟, 甘伏平. 高密度电法在岩溶区找水中的应用研究[J]. 地球物理学进展, 2019, 34(3):1262-1267.ZHENG Zhijie, ZENG Jie, ZHAO Wei, GAN Fuping. Application research of high density resistivity method in water exploring in karst area[J]. Progress in Geophysics, 2019, 34(3): 1262-1267. [16] 薛胜利, 凌丹丹. 激电测深在延安地区浅层地下水调查评价中的应用[J]. 地质与勘探, 2019, 55(6):1463-1472.XUE Shengli, LING Dandan. Application of the induced polarization sounding method to the survey of shallow groundwater in the Yan'an area[J]. Geology and Exploration, 2019, 55(6): 1463-1472. [17] 张彪, 刘良志, 倪进鑫, 刘江山. 综合物探方法在花岗岩严重缺水地区找水勘查中的应用[J]. 工程地球物理学报, 2015, 12 (4):501-507.ZHANG Biao, LIU Liangzhi, NI Jinxin, LIU Jiangshan. The application of comprehensive geophysical prospecting method to water exploration in the granite severe water shortage region[J]. Chinese Journal of Engineering Geophysics, 2015, 12 (4): 501-507. [18] 王丽妍, 胥博文, 杨毅, 辛玉齐. 高密度法和音频大地电磁法在地下水勘查中的应用[J]. 地下水, 2016, 38(6):83-84. [19] 康方平, 蒋建良, 彭杰, 曹创华, 姚海鹏. 综合物探方法在湖南某贫水板岩地区找水的应用研究[J]. 工程地球物理学报, 2020, 17(2):258-264.KANG Fangping, JIANG Jianliang, PENG Jie, CAO Chuanghua, YAO Haipeng. Application of integrated geophysical method to water search in a poor slate region of Hunan Province [J]. Chinese Journal of Engineering Geophysics, 2020, 17(2): 258-264. [20] 刘声凯, 刘海飞, 黄超, 肖立权, 李望明, 隆兴民, 赵敬德. 水文地质调查与综合物探在赣南花岗岩地区找水中的应用[J]. 地质与勘探, 2021, 57(3):584-592.LIU Shengkai, LIU Haifei, HUANG Chao, XIAO Liquan, LI Wangming, LONG Xingmin, ZHAO Jingde. Groundwater prospecting by combined hydrogeological and integrated geophysical surveys in granite areas, southern Jiangxi Province[J]. Geology and Exploration, 2021, 57(3): 584-592. [21] 郑智杰, 甘伏平, 曾洁. 不同深度岩溶管道的高密度电阻率法反演特征[J]. 中国岩溶, 2015, 34(3):292-297.ZHENG Zhijie, GAN Fuping, ZENG Jie. Inversion characteristics of high-density resistivity method on karst conduits at varied depths[J]. Carsologica Sinica, 2015, 34(3): 292-297. [22] 郑智杰, 曾洁, 甘伏平. 不同深度谷地对高密度电法探测地下岩溶管道的影响试验研究[J]. 科学技术与工程, 2016, 16(34):12-17.ZHENG Zhijie, ZENG Jie, GAN Fuping. Experimental study on the influence of different valley depth on the high density resistivity method to detect underground karst pipeline[J]. Science Technology and Engineering, 2016, 16(34): 12-17. [23] 严学春, 何帅, 沈小庆, 张德实, 张德全. 高密度电阻率法在贵州东部山区找水中的应用[J]. 工程地球物理学报, 2017, 14(5):558-564.YAN Xuechun, HE Shuai, SHEN Xiaoqing, ZHANG Deshi, ZHANG Dequan. Application of high density resistivity method to exploration of water in eastern mountain area of Guizhou[J]. Chinese Journal of Engineering Geophysics, 2017, 14(5): 558-564. [24] 郑智杰. 地形起伏对高密度电法探测地下岩溶管道的影响试验研究[J]. 工程地质学报, 2017, 25(1):230-236.ZHENG Zhijie. Experimental study on influence of terrain fluctuation to high density resistivity method for detecting underground karst pipes[J]. Journal of Engineering Geology, 2017, 25(1): 230-236. [25] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用:以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1):93-98.WU Jianqiang, ZHAO Ruyue, GAN Fuping, ZHANG Wei, LIU Yongliang, ZHU Chaoqiang. The application of electrical prospecting method to groundwater exploration in karst mountainous areas: A case study of Changtang village, Huaihua area, Hunan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(1): 93-98. [26] 李富, 邓国仕, 袁建飞, 王德伟, 李华, 唐业旗, 周一敏. 确定探采结合井位的综合物探方法技术研究:以乌蒙山区为例[J]. 地球物理学进展, 2018, 33(3):1218-1225.LI Fu, DENG Guoshi, YUAN Jianfei, WANG Dewei, LI Hua, TANG Yeqi, ZHOU Yimin. Combination of exploration and mining technology research method of geophysical exploration wells: In Wumeng mountain area as an example[J]. Progress in Geophysics, 2018, 33(3): 1218-1225. [27] 郭嵩巍, 闫强. 瞬变电磁法在内蒙古乌拉特前旗明安镇西找水工程中的应用[J]. 科学技术与工程, 2020, 20(7):2564-2572.GUO Songwei, YAN Qiang. Application of transient electromagnetic methods in water exploration of the west of Ming'an town in Wulateqianqi, Inner Mongolia[J]. Science Technology and Engineering, 2020, 20(7): 2564-2572. [28] 邬健强, 甘伏平, 张伟, 刘永亮, 魏巍, 朱超强. 音频大地电磁法在怀化方石坪村红层找水中的应用研究[J]. 中国岩溶, 2018, 37(6):918-924.WU Jianqiang, GAN Fuping, ZHANG Wei, LIU Yongliang, WEI Wei, ZHU Chaoqiang. Application of audio magnetotelluric method to find water in the red beds of the Fangshiping village, Huaihua City[J]. Carsologica Sinica, 2018, 37(6): 918-924. [29] 黄国民, 李世平, 陶毅, 杨承丰, 曾庆仕. 广西碎屑岩地区电法找水实例[J]. 物探与化探, 2019, 43(1):77-83.HUANG Guoming, LI Shiping, TAO Yi, YANG Chengfeng, ZENG Qingshi. A case study of water prospecting by electrical method in clastic rock area of Guangxi[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 77-83.