Research and application of groundwater level as a water replenishment control signal in the restoration of Lijiang Heilongtan spring group
-
摘要: 文章以丽江黑龙潭为例,研究岩溶地区泉水修复补水控制过程。基于九子海洼地为黑龙潭泉群主要补给来源这一基本判断,从宏观的地形地貌、地层岩性、地质构造、岩溶现象和地下水位动态变化规律入手,首先明确拟采用作为补水控制信号的水文观测井与目标泉群属于同一地下水系统,而后分析观测井地下水位变化规律与目标泉群流量变化规律具有良好的相关性,可作为补水控制井。通过泉群目标状态的拟定—对应补水控制井水位—考虑补水过程提前量时间—修正补水控制井水位这一过程,确定考虑补水时间过程的补水控制井信号水位为2 409.41 m,最终实现对观测井水位数据为控制信号的补水过程的实时精准控制。Abstract:
The paper takes Heilongtan in Lijiang as an example to study the recharge control process of spring water restoration in the karst area. Despite much work on Heilongtan in the previous period, there still exist problems in terms of the spring water restoration of Heilongtan, such as difficulties of detecting recharge sources and of controlling the recharge time, and the high cost of constructing recharge channels. On the basis of the groundwater system theory, and the spatial geographic information and geologic information of Heilongtan spring system, this paper aims to study the restoration of Heilongtan spring group, which may provide a scientific basis for the restoration of karst springs and environmental protection. The Lijiang area, where the study area is located, belongs to the low-latitude plateau monsoon climate zone, with unique mountain monsoon climate characteristics, distinct dry and wet seasons, and significant vertical climate changes, but slight seasonal variations in temperature. Because the Lijiang area is surrounded by the Jinsha River in the west, north and east, deep-cut canyons and a peninsula-like mountainous area protruding northward have been developed. With an elevation of about 2,400 m, a width of 4-5 km from east to west and a length of 32 km from north to south, the Lijiang Basin—a long and narrow mountainous basin—is located in the southern part of the Lijiang Peninsula.The study area is located in the northeast side of the mountainous area of Lijiang Basin, and the Heilongtan spring group is located in the southwest corner of the study area at the foot of Xiangshan hill in the north of the Lijiang ancient city at the east of Lijiang Basin. The study area generally belongs to the alpine mountainous terrain in the dissolution fault block, and the karst in this area is developed. Based on three-dimensional data on basic geological conditions, karst hydrogeological conditions, and characteristics of water balance, seepage field, temperature field, chemical field, etc., connection tests have been conducted to verify that there are two karst groundwater flow systems in the north and south of the study area: Jiuzihai-Lijiangba karst groundwater flow system (Ⅰ) and Hongshuitang-Bailanghua karst groundwater flow system (II). There is no hydraulic connection between these two systems. The Jiuzhihai-Lijiangba karst water flow system (Ⅰ) can be laterally divided into the karst water flow subsystem of Heilongtan spring basin (Ⅰ-1), the karst water flow subsystem of Qingxi spring basin (Ⅰ-2) , and the decentralized groundwater flow system of eastern spring group (Ⅰ-3). These three karst water flow subsystems are self-contained in terms of recharge-runoff-discharge conditions, with weak hydraulic connection, and there is no hydraulic connection between the Jiuzihai recharge area and the Qingxi spring basin and the eastern spring group. Many discharge points in the Heilongtan spring group result to the difficulty in flow observation. At present, only monthly average flow values with low accuracy have been obtained but not in real time; consequently, it is difficult for us to realize the real-time and accurate control of the spring recharge process. Moreover, when the Heilongtan spring group dry up, it is even impossible for us to control the recharge process through the flow data. The observation values of water level per minute in a hydrological observation well near the Heilongtan spring group and the qualitative analysis of geological structure indicate that the hydrological observation well and the spring group are located in the same karst groundwater system. In addition, the high correlation coefficient of 0.8813 between the water level of the hydrological observation well and the flow of the Heilongtan spring group , indicating that it is possible to control the water level of the Heilongtan spring group through the regulation of water level of the hydrological observation well. The Heilongtan spring group consists of four main springs, namely, Lieshimu spring, Wufenglou spring, Zhenzhu spring and Wanshousi spring, and the elevation of each spring is slightly different. The landscape of Heilongtan Park can meet the requirement only if the flow of these four springs is maintained. According to the monitoring data of the Heilongtan spring group, when all of these four springs flow, the overall flow of the Heilongtan spring group is 1.00 m3·s−1, which is also the target flow rate for spring restoration. Based on the actual flow and its change trend of springs, two conditions can be determined: water maintenance and recharge when water is in shortage. Under the condition of water maintenance, the signal of replenishing water should be firstly determined, during which predictors needs to be set given the time of water replenishment. Then, an inversion can be conducted to obtain the water level of hydrological observation well and the flow of the Heilongtan spring group, based on the time when groundwater flows from Jiuzihai to the Heilongtan spring group. When the water level of hydrological observation well drops to 2,409.41 m or the spring flow reduces to 1.27 m3·s−1, the spring water in Jiuzhihai recharge area should be recharged, with water flow of 2.08-2.35 m3·s−1, and the recharge can be lasted to the next flood season in which the rainfall and water discharge achieve an equilibrium again and Jiuzihai is restored. Under the state condition of replenishment when water is in shortage, the spring water in Jiuzhihai recharge area needs to be recharged with the maximum flow rate (greater than the minimum flow rate of recharge), so that the spring flow rate can reach 1.00 m3·s−1 as soon as possible. Then, the spring water can be recharged with a flow rate of 2.08 m3·s−1, so that the groundwater recharge and discharge keep balanced and the spring flow rate maintains 1.00 m3·s−1. The replenishment can be lasted to the next flood season, in which the rainfall and discharge achieve an equilibrium again and the Jiuzhihai is restored for the next recharge. In summary, in order to determine the signal of control well given the time of water recharge and finally carry out the accurate and real-time water recharge based on the water level of observation well as the control signal, the following steps should be completed: formulating the target state of the spring group, corresponding to the water level of replenishment control well, considering the time predictor in the recharge process, and correcting the water level of control well. -
Key words:
- large karst spring /
- water replenishment /
- groundwater system /
- groundwater level /
- signal /
- control process
-
表 1 研究区地层岩性简表
Table 1. Stratigraphic lithology in the study area
地质年代及地层代号 厚度/m 地层岩性 分布范围 第四系 Q 0~342 (Qh)砾石、砂砾及黏土;(Qgl)砾石、砂砾、黏土层及河流相粉砂层;(Q1s)砂岩、粉土岩、砾岩 多分布在研究区外围的白沙盆地、丽江盆地边缘;溶蚀洼地及山坡坡脚地带或海拔3 000 m以上的山麓地带 下第三系丽江组第四段 E2l4 >400 黏土岩夹砂砾岩 丽江古城象山 下第三系丽江组第三段 E2l3 108~650 白云质、灰质角砾岩 黑龙潭北部三叠系地层之上 三叠系松桂组 T3sn 1 068 长石石英砂岩、页岩、泥岩、底部砾岩 九子海周边零星出露 三叠系中窝组 T3z 65~292 灰岩、泥灰岩,西部为页岩、钙质页岩 腊日光—黄土坡一带 三叠系北衙组三段 T2b3 0~888 致密状灰岩,粒屑灰岩 大面积分布于研究区 三叠系北衙组二段 T2b2 85~604 灰岩,白云质灰岩,灰质白云岩 三叠系北衙组一段 T2b1 293~921 灰岩、泥灰岩、钙质泥岩,下部砂页岩 二叠系黑泥哨组 P2h 116~587 玄武岩、灰岩局部夹砂岩、页岩、煤或炭质页岩 研究区东侧及北西侧 表 2 研究区主要断裂特征表
Table 2. Main fault characteristics of the study area
编号 断层产状 区内延伸长度/km 断层带特征及其活动性评价 F15 N25°~35°E,
SE∠70°~80°8 该断层为玉龙雪山隆起区东部边界,上盘为三叠系中统北衙组灰岩等,下盘为二叠系上统黑泥哨组和玄武岩组砂岩、灰岩等;正断层,为全新世活动断裂 F16 N19°W~N30°E,SW~NW∠70°~83° 20 该断层位于研究区西侧盆地东边界,倾角较陡,地貌上清楚,上升盘的三叠系灰岩形成峭壁,多倒石堆;下降盘的冰碛物为一平台;断裂带上见滑动面和擦痕,属张性断裂 F24 N25°~40°E,
SE∠85°20 位于泉域南东侧边界,上盘地层以三叠系下统腊美组、二叠系黑泥哨组为主,下盘地层为三叠系北衙组及第三系丽江组,逆断层,据地表调查无明显断层破碎带,沿断层带边缘地貌上显示断层崖和断裂谷,属陡倾角压扭性断裂 F43 N1°~31°W,
NE∠64°~75°9 位于九子海北西侧,上盘为三叠系中统北衙组二段的白云质灰岩及下段的泥质灰岩夹砂泥岩地层,下盘为北衙组三段的灰岩、白云质灰岩地层;在地貌上,下降盘形成岩溶槽谷地形,属压扭性断裂 F44 N20°~35°W,
SW∠75°~82°8 上盘为T2b2地层,下盘为T2b3地层,逆断层,地貌上,上升盘的T2b3地层形成峭壁,高5~15 m,多倒石堆,断裂带上见滑动面和擦痕,属压扭性断裂 F45 N17°W,
SW∠50°~70°10 位于九子海北侧,自巴忙山向北延伸至新火山一带,在次美角一带北西盘仰冲,北衙组一段的泥灰岩夹砂岩、页岩盖于北衙组三段上的灰岩上, 地表无明显断层破碎带,属压扭性断裂 F46 N5°~35°W,
NE∠50°~70°10 位于九子海北侧,自白包林向北延伸至老纸厂一带,上盘为北衙组一段的泥灰岩夹砂岩、页岩盖于下盘北衙组三段的灰岩上,属压扭性断裂 F47 N10°~20°W,
SW∠50°~60°°10 该断裂为研究区东北侧边界,东侧由二叠系玄武岩组、黑泥哨组组成,断面指向研究区内层(西部),从外向内岩层和断面倾角由陡变缓,属张性断裂 F51 N40°E,
NW∠60°~70°21 该断裂西起研究区西侧第四系盆地东侧边界,中间穿越九子海洼地,向北东一直延伸穿越整个研究区,总体呈直线型,截割层位较多,其中在白包林一带北衙组一段的泥质灰岩夹砂泥岩盖于北衙组三段的灰岩、白云质灰岩之上,属压扭性断裂 F53 N50°~89°E,
NW∠70°~80°15 该断裂西起九子海附近,中间穿越红水塘,向北东延伸至建新公社一带,截割层位较多,断层错距不大,属压扭性断裂 表 3 研究区主要褶皱特征表
Table 3. Main fold characteristics of the study area
褶皱编号 轴向 延伸长度/km 基本特征 A28 NNW 6 核部由三叠系中统北衙组二段(T2b2)白云质灰岩、灰岩、白云岩组成,翼部为北衙组三段(T2b3)灰岩、白云质灰岩组成,两翼倾角25°~40°,为一近对称的倾斜褶皱,东翼受F45断裂破坏 A29
(巴忙牛背斜)NNW
-
NNE20 平面形态呈弧形,轴长约20 km,核部为北衙组一段(T2b1)泥质灰岩夹砂泥岩地层,两翼为北衙组二段(T2b2)及三段(T2b3)的灰岩、白云质灰岩、白云岩组成,两翼倾角20°~40°,为一不对称褶皱;分布于大洋草—巴忙牛—海落沟一线 A41
(东巴谷背斜)NNE 13 核部为北衙组二段(T2b2)白云质灰岩、灰岩、白云岩组成,两翼为北衙组三段(T2b3)的灰岩、白云质灰岩、白云岩及中窝组(T3z)的灰岩、泥质灰岩组成,两翼倾角22°~32°,为一对称褶皱,两翼夹角50°~60°;分布于东巴谷—清溪水库一线。 A42
(腊日光背斜)NNE 10 分布于腊日光,核部为北衙组一段(T2b1)泥质灰岩夹砂泥岩地层,两翼为北衙组二段(T2b2)及三段(T2b3)的灰岩、白云质灰岩、白云岩组成,两翼倾角20°~30°,为一不对称褶皱,褶皱SE翼受断裂F24破坏 S26
(白浪花向斜)NNW
-
NNE7 分布于白草坪一带,平面形态呈弧形,轴长约7 km,为一短轴状褶曲,核部地层为北衙组三段(T2b3)灰岩、白云质灰岩,两翼为北衙组二段(T2b2)的白云质灰岩、灰岩、白云岩及一段(T2b1)泥质灰岩夹砂泥岩组成,两翼倾角20°~40°,为一不对称褶皱 S27 NNW 9 分布于九子海北部,轴长约9 km,轴部地层为北衙组三段(T2b3)灰岩、白云质灰岩,两翼为北衙组二段(T2b2)的白云质灰岩、灰岩、白云岩地层,两翼倾角20°~35°,为一短轴状不对称褶曲 S28
(九子海向斜)NNE 14 分布于九子海—黑龙潭一线,轴部地层在北部为中窝组(T3z)的灰岩、泥质灰岩,在南部为北衙组三段(T2b3)灰岩、白云质灰岩,两翼地层为北衙组二段(T2b2)的白云质灰岩、灰岩、白云岩及一段(T2b1)泥质灰岩夹砂泥岩组成,两翼倾角20°~35°,为一对称褶皱 表 4 补水过程控制表
Table 4. Table of controlling water replenishment process
泉水流量/m3·s−1 水文观测井水位/m 补水最小流量/m3·s−1 0 2 406.06 1.0800 0.0536 2 406.20 1.1336 0.1292 2 406.40 1.2092 0.2048 2 406.60 1.2848 0.2804 2 406.80 1.3604 0.3560 2 407.00 1.4360 0.4316 2 407.20 1.5116 0.5072 2 407.40 1.5872 0.5828 2 407.60 1.6628 0.6584 2 407.80 1.7384 0.7340 2 408.00 1.8140 0.8096 2 408.20 1.8896 0.8852 2 408.40 1.9652 0.9608 2 408.60 2.0408 1 2 408.70 2.0800 注:正文第3、第4章节内,相关水位及流量数据来源于云南省丽江市地震局数据库和云南省水文水资源局丽江分局数据库。
Note: In the third and fourth sections, the relevant water level and flow data are taken from the database of Seismological Bureau of Lijiang in Yunnan Province and from the database of Lijiang Branch of Hydrological and Water Resources Bureau in Yunnan Province. -
[1] 焦友军, 潘晓东, 曾洁, 任坤. 岩溶管道结构影响泉流量变化的数值模拟研究[J]. 中国岩溶, 2017, 36(5):736-742.JIAO Youjun, PAN Xiaodong, ZENG Jie, REN Kun. Numerical modeling of the influence of karst-conduit structure on variation of spring flow[J]. Carsologica Sinica, 2017, 36(5): 736-742. [2] 成建梅, 罗一鸣. 岩溶多重介质地下水模拟技术及应用进展[J]. 地质科技通报, 2022, 41(5):220-229.CHENG Jianmei, LUO Yiming. Overview of groundwater modeling technology and its application in karsrt areas with multiple-viod media[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 220-229. [3] 束龙仓, 张颖, 鲁程鹏. 管道—裂隙岩溶含水介质非均质性的水文效应[J]. 南水北调与水利科技, 2013, 11(1):115-121.SHU Longcang, ZHANG Ying, LU Chengpeng. Hydrologic effects caused by the heterogeneity of karst conduit–fissure medium[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(1): 115-121. [4] 郭高轩, 代垠东, 许亮, 朱琳, 戚琦, 欧志亮, 沈媛媛. 北京市岩溶地下水质量评价及其生态环境效应[J/OL]. 中国地质:1-19[2023-06-07]. http://kns.cnki.net/kcms/detail/11.1167.p.20230602.1348.004.html.GUO Gaoxuan, DAI Yindong, XU Liang, ZHU Lin, QI Qi, OU Zhiliang, SHEN Yuanyuan. Evaluation of karst groundwater quality in Beijing and its eco-environmental effects[J/OL]. Geology in China: 1-19[2023-06-07]. http://kns.cnki.net/kcms/detail/11.1167.p.20230602.1348.004.htm [5] 梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5):199-219.LIANG Yongping, SHEN Haoyong, GAO Xubo. Review of research progress of karst groundwater in Northern China[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 199-219. [6] 张恒, 周忠发, 黄静, 朱粲粲, 丁圣君, 石亮星, 董慧. 岩溶洞穴滴水δ13CDIC季节变化特征及其环境意义[J]. 环境科学与技术, 2022, 45(5):135-144.ZHANG Heng, ZHOU Zhongfa, HUANG Jing, ZHU Cancan, DING Shengjun, SHI Liangxing, DONG Hui. Seasonal variation characteristics of δ13CDIC of drip water in karst caveand environmental significance[J]. Environmental Science & Technology, 2022, 45(5): 135-144. [7] 尚海龙, 蒋焕洲, 徐宏, 史正涛. 岩溶山区城市饮用水源地生态环境脆弱性评价:以凯里市水源地为例[J]. 中国农村水利水电, 2019, 446(12):105-109, 114. [8] 林坜, 雷晓东, 杨峰. 地下水资源评价方法—水量均衡法的探讨[J]. 北京水务, 2011, 156(2):41-44. doi: 10.3969/j.issn.1673-4637.2011.02.012 [9] 杜玉娇, 何新林, 杨广, 王志伟, 黄丹, 王薇. 水均衡法评价玛纳斯河流域莫索湾灌区地下水资源[J]. 中国农村水利水电, 2012, 359(9):63-65.DU Yujiao, HE Xinlin, YANG Guang, WANG Zhiwei, HUANG Dan, WANG Wei. An evaluation of groundwater resources of Mosuowan irrigation district of the Manas river by using the water balance[J]. China Rural Water and Hydropower, 2012, 359(9): 63-65. [10] 赵一, 邹胜章, 申豪勇, 周长松, 樊连杰, 朱丹尼, 李军. 会仙湿地岩溶地下水系统水位动态特征与均衡分析[J]. 中国岩溶, 2021, 40(2):325-333. doi: 10.11932/karst2021y19ZHAO Yi, ZOU Shengzhang, SHEN Haoyong, ZHOU Changsong, FAN Lianjie, ZHU Danni, LI Jun. Dynamic characteristics and equilibrium of water level of the karst groundwater system beneath the Huixian wetland[J]. Carsologica Sinica, 2021, 40(2): 325-333. doi: 10.11932/karst2021y19 [11] 郑克勋, 刘建刚. 多元连通示踪试验研究地下水流场的一个工程实例[J]. 贵州水力发电, 2009, 23(4):63-68. doi: 10.3969/j.issn.1007-0133.2009.04.019ZHENG Kexun, LIU Jiangang. A project example of studying underground flow field with multivariate communicating tracing experiment[J]. Guizhou Hydropower, 2009, 23(4): 63-68. doi: 10.3969/j.issn.1007-0133.2009.04.019 [12] 康晓波, 王宇, 张华, 曹瑾. 丽江黑龙潭泉群水文地质特征及断流的影响因素分析[J]. 中国岩溶, 2013, 32(4):398-403.KANG Xiaobo, WANG Yu, ZHANG Hua, CAO Jin. Hydrogeologic features and influence factors of zero flow of the Heilongtan spring group in Lijiang[J]. Carsologica Sinica, 2013, 32(4): 398-403. [13] 李豫馨. 基于时间序列分析的丽江黑龙潭泉域动态研究[D]. 成都:成都理工大学, 2016.LI Yuxin. Dynamic research of the Lijiang Heilongtan spring system based on the time series analysis[D]. Chengdu: Chengdu University of Technology, 2016. [14] 李豫馨, 许模, 高伟, 漆继红. 基于时间序列方法预测丽江黑龙潭泉域流量[J]. 人民珠江, 2016, 37(3):6-9. doi: 10.3969/j.issn.1001-9235.2016.03.002LI Yuxin, XU Mo, GAO Wei, QI Jihong. Application of time series analysis to prediction of flow in Heilongtan spring group in Lijiang river[J]. Pearl River, 2016, 37(3): 6-9. doi: 10.3969/j.issn.1001-9235.2016.03.002 [15] 雷风平, 王锦国, 赵燕容, 陈长生, 黄华, 周云. 丽江市黑龙潭地区水文地质条件分析[J]. 中国煤炭地质, 2019, 31(4):51-56, 67. doi: 10.3969/j.issn.1674-1803.2019.04.11LEI Fengping, WANG Jingguo, ZHAO Yanrong, CHEN Changsheng, HUANG Hua, ZHOU Yun. Hydrogeological condition analysis in Heilongtan area, Lijiang City[J]. Coal Geology of China, 2019, 31(4): 51-56, 67. doi: 10.3969/j.issn.1674-1803.2019.04.11 [16] 韩啸, 陈鑫, 郑克勋, 刘胜. 示踪试验在岩溶大泉修复中的应用:以丽江黑龙潭为例[J]. 中国岩溶, 2019, 38(4):524-531. doi: 10.11932/karst20190408HAN Xiao, CHEN Xin, ZHENG Kexun, LIU Sheng. Application of the tracer test in karst hydrogeological prospecting: An example of Heilongtan, Lijiang, Yunnan[J]. Carsologica Sinica, 2019, 38(4): 524-531. doi: 10.11932/karst20190408 [17] 和菊芳, 方金鑫. 丽江黑龙潭泉水动态变化与降水关系初探[J]. 中国农村水利水电, 2019(8):26-27, 35. doi: 10.3969/j.issn.1007-2284.2019.08.006 [18] 李恒丽, 李保珠. 基于人工神经网络模型的丽江黑龙潭泉群断流预测[J]. 中国水运, 2020(7):149-152. [19] 覃绍媛, 李泽琴, 许模. 黑龙潭泉域地下水化学特征及补给源识别[J]. 人民黄河, 2020, 42(3):63-67. doi: 10.3969/j.issn.1000-1379.2020.03.012QIN Shaoyuan, LI Zeqin, XU Mo. Groundwater chemical charateristics and recharge source identification of Heilongtan spring area[J]. Yellow River, 2020, 42(3): 63-67. doi: 10.3969/j.issn.1000-1379.2020.03.012 [20] 金速, 张静, 王咏林. 辽宁省地下水动态成因类型分析[J]. 城市地质, 2016, 11(2):64-68.JIN Su, ZHANG Jing, WANG Yonglin. The genetic type of groundwater dynamic change in Liaoning Province[J]. Urban Geology, 2016, 11(2): 64-68. [21] Huyck A A O, Pauwels V R N, Verhoest N E C. A base flow separation algorithm based on the linearized Boussinesq equation for complex hillslopes[J]. Water Resources Research, 2005, 41: W08415. [22] Smakhtin V U, Batchelor A L. Evaluating wetland flow regulating functions using discharge time-series[J]. Hydrological Processes, 2005, 19(6): 1293-1305. doi: 10.1002/hyp.5555 [23] 齐欢, 董梦宇. 基于小波分析的趵突泉地下水补给范围探讨[J]. 中国岩溶, 2023, 42(5):1037-1046. doi: 10.11932/karst20230512QI Huan, DONG Mengyu. A study on the groundwater recharge range of Baotu Spring based on wavelet analysis[J]. Carsologica Sinica, 2023, 42(5): 1037-1046. doi: 10.11932/karst20230512 [24] 孙斌, 邢立亭, 彭玉明, 李常锁. 济南十大泉群特征、形成模式及水循环差异性浅析[J]. 中国岩溶, 2021, 40(3):409-419.SUN Bin, XING Liting, PENG Yuming, LI Changsuo. Characteristics, formation models and water cycle differences of ten major spring groups in Jinan City[J]. Carsologica Sinica, 2021, 40(3): 409-419. [25] 郭永丽, 章程, 吴庆, 全洗强. 基于文献计量学分析岩溶水文地质学研究热点[J]. 中国岩溶, 2020, 39(6):817-828. doi: 10.11932/karst2020y13GUO Yongli, ZHANG Cheng, WU Qing, QUAN Xiqiang. Analysis of focused topics in karst hydrogeology research based on bibliometrics[J]. Carsologica Sinica, 2020, 39(6): 817-828. doi: 10.11932/karst2020y13 [26] 杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究:以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123. doi: 10.11932/karst20220106YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J]. Carsologica Sinica, 2022, 41(1): 111-123. doi: 10.11932/karst20220106