• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多模型的滑坡易发性评估研究

黄成 邓云龙 晏祥省 周鑫城

黄 成,邓云龙,晏祥省,等. 基于多模型的滑坡易发性评估研究[J]. 中国岩溶,2024,43(6):1386-1397 doi: 10.11932/karst20240615
引用本文: 黄 成,邓云龙,晏祥省,等. 基于多模型的滑坡易发性评估研究[J]. 中国岩溶,2024,43(6):1386-1397 doi: 10.11932/karst20240615
HUANG Cheng, DENG Yunlong, YAN Xiangsheng, ZHOU Xincheng. A study on multiple-model evaluation of landslide susceptibility[J]. CARSOLOGICA SINICA, 2024, 43(6): 1386-1397. doi: 10.11932/karst20240615
Citation: HUANG Cheng, DENG Yunlong, YAN Xiangsheng, ZHOU Xincheng. A study on multiple-model evaluation of landslide susceptibility[J]. CARSOLOGICA SINICA, 2024, 43(6): 1386-1397. doi: 10.11932/karst20240615

基于多模型的滑坡易发性评估研究

doi: 10.11932/karst20240615
基金项目: 云南省地质灾害综合防治体系建设专项计划(2013-2020)(云政发〔2013〕108号);云南省地质灾害隐患识别中心建设(云财资环〔2021〕22号);部省合作试点项目—云南高原山地地质灾害隐患综合垫遥感识别监测技术系统研究及应用(2023ZRBSHZ048)
详细信息
    作者简介:

    黄成(1981-),男,硕士,高级工程师,主要从事地质环境信息化与时空大数据应用、地质灾害隐患识别与综合遥感研究等工作。E-mail:hch2377@163.com

    通讯作者:

    邓云龙(1997-),男,硕士,主要从事遥感GIS和地质灾害研究。E-mail:1545079868@qq.com

  • 中图分类号: P642.22

A study on multiple-model evaluation of landslide susceptibility

  • 摘要: 滑坡是我国最常见的地质灾害之一,其突发性和不确定性给防灾减灾工作带来巨大的挑战。滑坡易发性评估是一个复杂的过程,常规手段是依赖于静态因子分析,难以实现滑坡易发性的动态评估。随着合成孔径雷达干涉测量(InSAR)技术的发展,可实现地表形变的动态监测,文章以双江县作为研究区,在常规地质灾害易发性评价中,引入地表形变表征性因子,并使用三种模型分别进行滑坡易发性评估,改善了滑坡地质灾害易发性评估的不确定性,提高了评估精度。综合考量研究区地形地貌、地质构造、水文环境、人类工程活动等静态地质环境条件因子,同时引入InSAR地表形变速率动态因子,共同构建多维度的评估指标体系,并使用信息量模型、确定性系数模型和频率比模型进行滑坡区域易发性评估比较。试验结果表明,CF模型在高易发区和较高易发区滑坡密度比值较高,为7.77、1.10,其准确值和AUC值最大,分别为0.822、0.879,均优于其他模型。基于InSAR技术获取地表形变因子,结合CF模型的滑坡易发性具有最好的评估精度。使用滑坡密度比值、ROC曲线和AUC评估绘制出的滑坡易发性图的精度更具有竞争优势。

     

  • 图  1  InSAR形变速率分布图

    Figure  1.  Distribution of InSAR deformation rate

    图  2  评价因子分级图

    Figure  2.  Grading chart of evaluation factors

    图  3  模型易发性图

    Figure  3.  Model susceptibility

    图  4  滑坡点密度比值图

    Figure  4.  Ratio of landslide site density

    图  5  ROC曲线和AUC值

    Figure  5.  ROC curve and AUC values

    表  1  评价因子相关系数矩阵

    Table  1.   Correlation coefficient matrix of evaluation factors

    评价因子 a b c d e f g h i j k l
    a 1.000
    b 0.048 1.000
    c −0.044 −0.018 1.000
    d −0.184 −0.025 0.028 1.000
    e 0.148 0.082 −0.146 −0.103 1.000
    f 0.152 0.182 0.109 −0.140 −0.224 1.000
    g 0.201 0.014 −0.078 −0.143 0.116 0.034 1.000
    h −0.043 −0.011 0.016 0.016 −0.018 −0.004 −0.038 1.000
    i 0.002 0.012 0.002 0.004 −0.001 0.052 0.025 0.001 1.000
    j −0.007 0.005 0.016 0.001 0.003 −0.096 0.044 0.067 −0.016 1.000
    k −0.020 0.017 −0.017 −0.008 −0.004 0.014 0.036 −0.052 0.038 0.042 1.000
    l 0.033 0.039 0.061 −0.030 0.111 −0.065 −0.039 0.003 −0.001 0.017 −0.021 1.000
    注:a.道路 b.河流 c.断层 d.土地利用 e.降雨量 f.DEM g.坡度 h.坡向 i.曲率 j.降轨形变速率 k.升轨形变速率 l.地层岩性。
    Note: a. road b. river c. fault d. land use e. rainfall f. DEM g. slope gradient h. aspect i.curvature j. orbital deformation rate k. rail lifting deformation rate l. stratigraphic lithology.
    下载: 导出CSV

    表  2  评价因子分级计算

    Table  2.   Grading calculation of evaluation factors

    评价因子 分类 I CF FR 断层缓冲区/m 900~1 200 0.723 7 0.515 3 2.053 6
    降轨形变速率/mm·y−1 <−15 −1.419 0 −0.758 1 0.242 0 >1 200 −0.436 3 −0.353 7 0.664 9
    −15~−5 −0.514 3 −0.402 2 0.597 9 河流缓冲区/m 0~200 −0.598 4 −0.450 4 0.528 5
    −5~5 0.272 1 0.238 3 1.312 7 200~400 0.2139 0.1926 1.3107
    5~15 0.474 8 0.378 1 1.607 6 400~600 0.2823 0.2460 1.3414
    >15 −1.004 6 −0.633 9 0.366 2 600~800 1.2248 0.7063 0.3191
    升轨形变速率/mm·y−1 <−15 −1.134 4 −0.678 5 0.321 6 800~1000 0.2825 0.2462 0.7612
    −15~−5 −0.181 2 −0.165 8 0.834 3 1000 0.1779 0.1631 1.1695
    −5~5 0.079 6 0.076 6 1.082 9 降雨量/mm 1150 1.0940 0.6654 2.9087
    5~15 0.290 7 0.252 3 1.337 3 1150~1200 0.1038 0.0986 1.1266
    >15 −1.233 9 −0.708 9 0.291 1 1200~1250 0.6966 0.5018 0.5182
    DEM/m 1000 2.0000 1.0000 0.0000 1250~1300 1.1307 0.6773 0.3424
    1000~1500 0.0387 0.0379 1.0414 1300~1350 1.5561 0.7891 0.2215
    1500~2000 0.4885 0.3866 1.6270 1350 1.9933 0.8638 0.1430
    2000~2500 1.7878 0.8327 0.1688 道路缓冲区/m 0~200 1.0529 0.6514 2.9438
    2500 2.0000 1.0000 0.0000 200~400 0.2886 0.2508 1.3625
    坡度/° 0~5 1.9420 0.8566 0.1405 400~600 0.3021 0.2608 1.3413
    5~15 0.0195 0.0193 0.9383 600~800 0.9409 0.6100 2.5809
    15~25 0.1405 0.1311 0.9131 800~1000 0.6058 0.4546 1.6748
    25~35 0.2523 0.2231 1.2455 1000 0.9685 0.6204 0.3770
    35~45 0.2097 0.1892 1.2594 土地利用 建设用地 1.3142 0.7314 0.1881
    >45 0.2392 0.2128 1.3336 林地 0.5301 0.4115 0.5889
    坡向/° 平面 2.0000 1.0000 0.0000 水域 0.4605 0.3691 0.5888
    北坡 0.8777 0.5843 0.3920 耕地 0.6864 0.4968 1.9965
    东北坡 1.3344 0.7368 0.2735 草地 0.1144 0.1081 1.1126
    东坡 0.0745 0.0718 0.9857 地层岩性 Pz1lnb 1.0508 0.6506 2.7529
    东南坡 0.5670 0.4330 1.7808 Pz1lna 1.0322 0.6441 2.8523
    南坡 0.8518 0.5736 2.2895 J2s 1.3024 0.7282 0.2976
    西南坡 0.5084 0.3987 0.6242 N1 1.9544 0.8587 7.2381
    西坡 0.7342 0.5202 0.4891 D2-3 2.1400 0.8824 0.1441
    西北坡 0.4770 0.3795 0.5792 Pz1lnc 1.6072 0.7996 0.2044
    曲率 <0 0.0997 0.0949 1.0999 Q 0.2877 0.2501 1.3066
    l 0.1511 0.1403 1.1598 Pt 0.0295 0.0290 0.9839
    >0 0.1347 0.1261 0.8793 T3sc 2.6868 0.9319 0.0953
    断层缓冲区/m 0~300 0.2659 0.2336 1.3440 C1b 0.6366 0.4710 0.3703
    300~600 0.3696 0.3091 1.3927 γ$_5^{1}$ 0.4582 0.3677 0.6640
    600~900 0.4485 0.3616 1.4663 γ m$_5^{1}$ 0.0514 0.0502 1.0718
    下载: 导出CSV

    表  3  检验样本占比表

    Table  3.   Proportions of test samples

    模型易发性等级I/%CF/%FR/%
    检验样本占比0.000.000.68
    较低1.812.497.47
    9.508.6016.97
    较高22.1720.3622.85
    66.5268.5552.04
    下载: 导出CSV

    表  4  混淆矩阵

    Table  4.   Confusion matrix

    是否滑坡(实际)预测结果准确值
    I11232770.795
    3141160
    FR11662890.806
    2711148
    CF12032800.822
    2341157
    下载: 导出CSV
  • [1] 唐亚明, 薛强, 李政国, 冯卫. 基于单体和区域尺度的黄土滑坡监测预警方法与实例[J]. 灾害学, 2015, 30(4):91-95, 106.

    TANG Yaming, XUE Qiang, LI Zhengguo, FENG Wei. Loess landslide monitoring and early-warning methods and practices on scale of single slope and regional scope[J]. Journal of Catastrophology, 2015, 30(4): 91-95, 106.
    [2] 王宇. 云南省地质灾害应急监测预警及处置措施研究[R]. 云南省地质调查局, 2019-03-12.

    Wang Yu. Research on Emergency Monitoring, Early Warning and Disposal Measures of Geological Disasters in Yunnan Province [R]. Yunnan Geological Survey Bureau, March 12, 2019.
    [3] 周超, 殷坤龙, 曹颖, 李远耀. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学, 2020, 45(6):1865-1876.

    ZHOU Chao, YIN Kunlong, CAO Ying, LI Yuanyao. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost: A case study from the Three Gorges Reservoir Area[J]. Earth Science, 2020, 45(6): 1865-1876.
    [4] 王宇. 云南省崩塌滑坡泥石流灾害及防治[J]. 地质灾害与环境保护, 1998, 9(4):38-41, 47.

    WANG Yu. Hazards collapse landslide and debris flow in Yunnan and their control[J]. Journal of Geological Hazards and Environment Preservation, 1998, 9(4): 38-41, 47.
    [5] 李文彬, 范宣梅, 黄发明, 武雪玲, 殷坤龙, 常志璐. 不同环境因子联接和预测模型的滑坡易发性建模不确定性[J]. 地球科学, 2021, 46(10):3777-3795.

    LI Wenbin, FAN Xuanmei, HUANG Faming, WU Xueling, YIN Kunlong, CHANG Zhilu. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science, 2021, 46(10): 3777-3795.
    [6] 殷坤龙, 朱良峰. 滑坡灾害空间区划及GIS应用研究[J]. 地学前缘, 2001, 8(2):279-284.

    YIN Kunlong, ZHU Liangfeng. Landslide hazard zonation and application of GIS[J]. Earth Science Frontiers, 2001, 8(2): 279-284.
    [7] 张玘恺, 凌斯祥, 李晓宁, 孙春卫, 徐建祥, 黄涛. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(8):1595-1610.

    ZHANG Qikai, LING Sixiang, LI Xiaoning, SUN Chunwei, XU Jianxiang, HUANG Tao. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou county, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595-1610.
    [8] 刘睿, 施婌娴, 孙德亮, 许嘉慧. 基于GIS与随机森林的巫山县滑坡易发性区划[J]. 重庆师范大学学报(自然科学版), 2020, 37(3):86-96.

    LIU Rui, SHI Shuxian, SUN Deliang, XU Jiahui. Based on GIS and random forest model for landslide susceptibility mapping in Wushan county[J]. Journal of Chongqing Normal University (Natural Science), 2020, 37(3): 86-96.
    [9] 黄武彪, 丁明涛, 王栋, 蒋良文, 李振洪. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价[J]. 地球科学, 2022, 47(6):2015-2030.

    HUANG Wubiao, DING Mingtao, WANG Dong, JIANG Liangwen, LI Zhenhong. Landslide susceptibility assessment along the Sichuan-Tibet transportation corridor based on layer adaptive weighted convolutional neural network[J]. Earth Science, 2022, 47(6): 2015-2030.
    [10] 吴雨辰, 周晗旭, 车爱兰. 基于粗糙集−神经网络的IBURI地震滑坡易发性研究[J]. 岩石力学与工程学报, 2021, 40(6):1226-1235.

    WU Yuchen, ZHOU Hanxu, CHE Ailan. Susceptibility of landslides caused by IBURI earthquake based on rough set-neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1226-1235.
    [11] 唐亚明, 程秀娟, 薛强, 毕俊擘. 基于层次分析法的黄土滑塌风险评价指标权重分析[J]. 中国地质灾害与防治学报, 2012, 23(4):40-46.

    TANG Yaming, CHENG Xiujuan, XUE Qiang, BI Junbo. Weights analysis of Loess collapse risk assessing factors based on analytical hierarchy process[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(4): 40-46.
    [12] 黄立鑫, 郝君明, 李旺平, 周兆叶, 贾佩钱. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价:以甘肃岷县为例[J]. 中国地质灾害与防治学报, 2021, 32(6):116-126.

    HUANG Lixin, HAO Junming, LI Wangping, ZHOU Zhaoye, JIA Peiqian. Landslide susceptibility assessment by the coupling method of RBF neural network and information value: A case study in Minxian, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 116-126.
    [13] 周萍, 邓辉, 张文江, 薛东剑, 吴先谭, 卓文浩. 基于信息量模型和机器学习方法的滑坡易发性评价研究: 以四川理县为例[J]. 地理科学, 2022, 42(9):1665-1675.

    ZHOU Ping, DENG Hui, ZHANG Wenjiang, XUE Dongjian, WU Xiantan, ZHUO Wenhao. Landslide susceptibility evaluation based on information value model and machine learning method: A case study of Lixian county, Sichuan Province[J]. Scientia Geographica Sinica, 2022, 42(9): 1665-1675.
    [14] Bhagya S B, Sumi A S, Balaji S, Danumah J H, Costache R, Rajaneesh A, Gokul A, Chandrasenan C P, Quevedo R P, Johny A, Sajinkumar K S, Saha S, Ajin R S, Mammen P C, Abdelrahman K, Fnais M S, Abioui M. Landslide Susceptibility assessment of a part of the Western Ghats (India) employing the AHP and F-AHP models and comparison with existing susceptibility maps[J]. Land, 2023, 12(468).
    [15] Ikram R M A, Dehrashid A A, Zhang B Q, Chen, Z H, Le B N, Moayedi H. A novel swarm intelligence: Cuckoo optimization algorithm (COA) and SailFish optimizer (SFO) in landslide susceptibility assessment[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37(5): 1-27.
    [16] Huang C, Li F, Wei L, Hu X D. Landslide susceptibility modeling using a deep random neural network[J]. Applied Sciences, 2022, 12(24): 12887.
    [17] 王宇. 云南省地质灾害防治与研究历史评述[J]. 灾害学, 2019, 34(3):134-139.

    WANG Yu. Historical review of geological disaster prevention and research in Yunnan Province, China[J]. Jouranl of Catastrophology, 2019, 34(3): 134-139.
    [18] 陈立权, 赵超英, 任超锋, 王佩杰, 陈雪蓉, 陈恒祎. 光学遥感用于贵州发耳镇尖山营滑坡监测研究[J]. 中国岩溶, 2020, 39(4):518-523.

    CHEN Liquan, ZHAO Chaoying, REN Chaofeng, WANG Peijie, CHEN Xuerong, CHEN Hengwei. Monitoring the Jianshanying landslide in a karst mountainous area of Guizhou by optical remote sensing[J]. Carsologica Sinica, 2020, 39(4): 518-523.
    [19] 杨辰, 邓飞, 史绪国. 利用2015-2019年Sentinel-1数据监测武汉白沙洲岩溶区地表沉降特征[J]. 中国岩溶, 2023, 42(3):558-564.

    YANG Chen, DENG Fei, SHI Xuguo. Monitoring subsidence characteristics of Baishazhou karst area in Wuhan with Sentinel-1 images from 2015 to 2019[J]. Carsologica Sinica, 2023, 42(3): 558-564.
    [20] 殷跃平, 王文沛. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报, 2020, 39(8):1513-1521.

    YIN Yueping, WANG Wenpei. A dynamic erosion plowing model of long run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1513-1521.
    [21] 魏云杰, 王俊豪 , 胡爱国, 苟安田. 澜沧江拉金神谷滑坡成灾机理分析[J]. 中国地质调查, 2022, 9(4):19-26.

    WEI Yunjie, WANG Junhao, HU Aiguo, GOU Antian. Analysis of formation mechanism of Lajinshengu landslide in Lancang river[J]. Geological Survey of China, 2022, 9(4): 19-26.
    [22] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.

    XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966.
    [23] 李梦华, 张路, 董杰, 蔡杰华, 廖明生. 四川茂县岷江河谷区段滑坡隐患雷达遥感识别与形变监测[J]. 武汉大学学报(信息科学版), 2021, 46(10):1529-1537.

    LI Menghua, ZHANG Lu, DONG Jie, CAI Jiehua, LIAO Mingsheng. Detection and monitoring of potential landslides along Minjiang river valley in Maoxian county, Sichuan using radar remote sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1529-1537.
    [24] Jiang Z, Zhao C Y, Yan M, Wang B H, Liu X J. The early identification and spatio-temporal characteristics of loess landslides with SENTINEL-1A datasets: A case of Dingbian county, China[J]. Remote Sensing, 2022, 14(23): 6009. doi: 10.3390/rs14236009
    [25] 王志旺, 李端有, 王湘桂. 区域滑坡空间预测方法研究综述[J]. 长江科学院院报, 2012, 29(5):78-85, 94.

    WANG Zhiwang, LI Duanyou, WANG Xianggui. Review of researches on regional landslide susceptibility mapping model[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(5): 78-85, 94.
    [26] Shortliffe E H, Buchanan B G. A model of inexact reasoning in medicine[J]. Mathematical Biosciences, 1975, 23(3-4): 351-379.
    [27] Heckerman D. Probabilistic interpretations for MYCIN's certainty factors[J]. Machine Intelligence and Pattern Recognition, 1986: 167-196.
    [28] 李文彦, 王喜乐. 频率比与信息量模型在黄土沟壑区滑坡易发性评价中的应用与比较[J]. 自然灾害学报, 2020, 29(4):213-220.

    LI Wenyan, WANG Xile. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region[J]. Journal of Natural Disasters, 2020, 29(4): 213-220.
    [29] 丁永辉, 张勤, 杨成生, 王猛, 丁辉. 基于高分遥感的金沙江流域滑坡识别:以巴塘县王大龙村为例[J]. 测绘通报, 2022(4):51-55.

    DING Yonghui, ZHANG Qin, YANG Chengsheng, WANG Meng, DING Hui. Landslide identification in Jinsha river basin based on high-resolution remote sensing: Taking Wangdalong village of Batang county as an example[J]. Bulletin of Surveying and Mapping, 2022(4): 51-55.
    [30] 杨旭东, 李媛, 佟彬, 闫金凯, 徐为, 李崇贵. 基于移动3S技术的地质灾害野外调查数据采集系统设计与实现[J]. 中国地质灾害与防治报, 2016, 27(4):93-96, 113.

    YANG Xudong, LI Yuan, TONG Bin, YAN Jinkai, XU Wei, LI Chonggui. Design and implementation of field data acquisition system for geo-hazards urvey based on mobile 3S technology[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(4): 93-96, 113.
    [31] 王宇, 黄成, 周翠琼, 杨迎冬, 肖华宗, 晏祥省, 张令泽, 王裕琴. 山区地质灾害应急调查的内涵及方法分析评述[J]. 中国岩溶, 2020, 39(4):492-499.

    WANG Yu, HUANG Cheng, ZHOU Cuixiong, YANG Yingdong, XIAO Huazong, YAN Xiangsheng, ZHANG Lingze, WANG Yuqin. Review on the connotation and methods of emergency investigations to geological hazards in mountainous area[J]. Carsologica Sinica, 2020, 39(4): 492-499.
    [32] 张钟远, 邓明国, 徐世光, 张云波, 付弘流, 李忠海. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报, 2022, 41(1):157-171.

    ZHANG Zhongyuan, DENG Mingguo, XU Shiguang, ZHANG Yunbo, FU Hongliu, LI Zhonghai. Comparison of landslide susceptibility assessment models in Zhenkang county, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157-171 .
    [33] Shano L, Raghuvanshi T K, Meten M. Landslide susceptibility mapping using frequency ratio model: The case of Gamo highland, South Ethiopia[J]. Arabian Journal of Geosciences, 2021, 14(7): 1-18.
    [34] 赵占骜, 王继周, 毛曦, 马维军, 路文娟, 何毅, 高轩宇. 多维CNN耦合的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2024, 49(8):1466-1481.

    ZHAO Zhan'ao, WANG Jizhou, MAO Xi, MA Weijun, LU Wenjuan, HE Yi, GAO Xuanyu. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481.
    [35] 罗路广, 裴向军, 黄润秋, 裴钻, 朱凌. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报, 2021, 29(2):526-535.

    LUO Luguang, PEI Xiangjun, HUANG Runqiu, FEI Zuan, ZHU Ling. Landslide susceptibility assessment in Jiuzhaigou Scenic Area with GIS based on certainty factor and logistic regression model[J]. Journal of Engineering Geology, 2021, 29(2): 526-535.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  13
  • HTML浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-01
  • 修回日期:  2024-03-15
  • 网络出版日期:  2025-03-21
  • 刊出日期:  2024-12-25

目录

    /

    返回文章
    返回