Response of carbonate weathering and dissolution processes in the Kunming basin to changes in atmospheric CO2 concentration over the past 40 years
-
摘要: 近年来,大气中CO2浓度持续上升与全球气候变化相互关系引发了人们对地球系统碳循环的广泛关注,作为碳循环的重要环节,岩溶作用在对大气中CO2浓度变化的响应方面,存在较大的时间尺度分歧,文章以昆明盆地两个岩溶泉水40年监测数据为基础,收集了气象、大气中CO2浓度等资料,采用水化学―流量法、对比分析法定量评价了40年来岩溶作用的动态变化及对大气中CO2浓度变化的响应。研究结果表明:碳酸盐岩风化消耗CO2质量浓度与大气CO2浓度呈正相关,滞后时间约20年,变化速率基本相当;碳汇强度变化主要受降水变化控制,无明显滞后,同时受大气CO2浓度变化影响,滞后时间20年。说明大气中CO2浓度的上升会加强碳酸盐岩的溶蚀作用从大气回收更多的CO2,在缓解全球变暖中发挥着重要作用,这对进一步准确评估岩溶碳汇强度,解决“遗漏碳汇”问题,助推“双碳”目标的实现具有重要意义。Abstract:
The carbon cycle of the Earth's system coexists with global climate change. Carbon circulates in different forms between different reservoirs, with carbonate rocks actively participating in the global carbon cycling through karst processes. The recovered CO2 accounts for about one-third of the "missing sink", making it an important link between the atmosphere and the sink of CO2. Currently, the dynamic studies on the karst carbon cycling are mainly focused on short time scales such as daily, monthly, seasonal, and annual dynamics, as well as the effects of precipitation. These studies suggest that karst processes are extremely sensitive to environmental changes and are basically synchronized with various climate changes (such as precipitation and temperature) and biological activities, with no significant lag observed. The long-term dynamic changes and responses to climate change are mainly based on carbon isotope records in stalagmites. These records indicate that the changes in carbon content within stalagmites lag behind alterations in atmospheric CO2 concentration by 16 years. Although the IPCC's AR5 and AR6 reports acknowledge the important role of karst carbon sink in sequestering atmospheric CO2, they classify the carbon sink associated with carbonate rock weathering (karst action) as a long-term carbon sink with a time scale of 103–104 years. Furthermore, this process has not been incorporated into the global carbon budget. There is considerable controversy surrounding the timescale of karst carbon sink. Consequently, the long-term dynamics of carbonate weathering, carbon sink, and their responses to climate change necessitate further in-depth research. The outcropping area of carbonate rocks in the karst area of Southwest China covers 540,000 km2, encompassing three major geomorphic units of the country. This area represents the largest contiguous distribution of exposed carbonate rocks in the world. It benefits from favorable water and heat conditions, along with intense karst processes, which contribute to significant carbon sink effects. The Kunming basin is a water-collecting karst graben basin, with a catchment area of 2,924.5 km2. The outcropping area of carbonate rock layers accounts for about 32% of the total basin area. Karst water in the basin is characterized by abundant amount, concentrated storage, and good water quality. Meanwhile, Kunming, as the capital city of Yunnan Province, has a developed socio-economy. Groundwater monitoring in the area began early and has resulted in a substantial accumulation of foundational data. However, research on karst carbon sink remains relatively underdeveloped. Based on the long-term observation data of karst springs in the Kunming basin, this paper analyzes and calculates the changes in atmospheric CO2 concentration, climate indicators (temperature and precipitation), and data on spring water quality. The response of carbonate weathering to fluctuations in atmospheric CO2 concentration and climate change over the past 40 years, along with its carbon sink effect and contribution to CO2 emission reduction is preliminarily evaluated. The results show that the CO2 consumption rate by carbonate weathering is positively correlated with atmospheric CO2 concentration, exhibiting a lag time of about 20 years, and the rate of change is basically the same. The variations in carbon sink intensity are mainly controlled by changes in precipitation, with no obvious lag time, while also being affected by changes in atmospheric CO2 concentration, with a lag of 20 years. The research findings indicate that the increase in atmospheric CO2 concentration will enhance the dissolution of carbonate rocks, allowing more CO2 to be sequestrated from the atmosphere. This process plays an important role in mitigating global warming. These findings are significant for accurately evaluating the intensity of karst carbon sink, incorporating karst carbon sink into global carbon accounting, addressing the "missing sink" problem, and promoting the achievement of the "dual carbon" goals. -
图 7 1982-2021年昆明盆地碳酸盐岩风化碳汇强度与降水、大气中CO2浓度变化趋势对比图
(左侧坐标为碳汇强度,右侧坐标为降水量和大气中CO2浓度,其中大气中CO2浓度为3倍实际数值)
Figure 7. Comparison of carbon sink intensity of carbonate rock weathering, precipitation and variation trends of atmospheric CO2 concentration in the Kunming basin from 1982 to 2021
(The left axis represents the carbon sink intensity, and the right axis depicts precipitation and atmospheric CO2 concentration, with the latter being 3 times the actual value.)
表 1 白龙潭和蝙蝠洞岩溶泉水详细特征一览表[17]
Table 1. Characteristics of karst spring water from Bailong pool and Bianfu cave in the Kunming basin[17]
泉水名称 主要含水层 入渗
系数泉域
面积年均流量
/L·s−1补给、径流区
环境特征地层代号 岩性 蛇山白龙
潭泉D3zg、C1d2、
C2w、P1y灰岩、白云
质灰岩0.363 3.01 101.45 降水入渗补给为泉水唯一补给来源,补给区为蛇山南部碳酸盐岩分布区,多年来以荒山为主,局部有少量旱地,植被稀疏,以人工林为主,石漠化严重,人类工程活动弱 西山蝙蝠
洞泉D3zg、C1d2、
C2w、P1y灰岩、白云
质灰岩0.436 3.75 64.01 降水入渗补给为泉水唯一补给来源,补给区主要为西山风景区,植被发育,以次生林为主,多年来以自然状态为主,人类工程活动弱 表 2 岩溶泉水中HCO−浓度及碳汇强度变化情况一览表
Table 2. Variations of HCO− concentration and carbon sink intensity in karst spring water
对比类别划分 年份 整体
变幅1982-1991年 1992-2001年 2002-2011年 2012-2021年 数值 数值 变幅 数值 变幅 数值 变幅 HCO−浓度
/mg·L−1白龙潭 170.48 170.51 0.02 174.32 2.23 199.38 14.38 17.0 蝙蝠洞 177.11 177.98 0.49 179.41 0.80 190.62 6.25 7.6 平均变幅 0 0.26 1.52 10.3 12.3 碳汇强度
/t·km−2·a−1白龙潭 21.19 23.73 11.97 20.25 −14.66 26.54 31.07 25.24 蝙蝠洞 26.44 29.75 12.50 25.03 −15.86 30.48 21.76 15.26 平均变幅 0 12.24 −15.26 26.41 20.25 大气CO2浓度/(×10−6) 348.62 363.43 4.25 382.64 5.29 404.35 5.67 15.99 降水/mm 949.5 1063 11.95 887.3 −16.53 1016.8 14.59 7.09 气温/ ℃ 14.79 15.67 0.88 16.13 0.46 16.16 0.03 1.37 注:气温变幅为 ℃,其它参数变化均为%。
Note: The temperature range is in ℃, while changes in all other parameters are expressed as percentages. -
[1] 袁道先. 我国岩溶资源环境领域的创新问题[J]. 中国岩溶, 2015, 34(2):98-100.YUAN Daoxian. Scientific innovation in karst resources and environment research field of China[J]. Carsologica Sinica, 2015, 34(2): 98-100. [2] IPCC. Climate Change 2021: The Physical Science Basis. Con-tribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge and New York: Cambridge University Press, 2021. [3] 吕婕梅, 安艳玲, 吴起鑫, 吴永贵. 清水江流域岩石风化特征及其碳汇效应[J]. 环境科学, 2016, 37(12):4671-4679.LYU Jiemei, AN Yanling, WU Qixin, WU Yonggui. Rock weathering characteristics and the atmospheric carbon sink in the chemical weathering processes of Qingshuijiang river basin[J]. Environmental Science, 2016, 37(12): 4671-4679. [4] 袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼. 现代岩溶学[M]. 北京:科学出版社, 2016. [5] 袁道先. 地球系统的碳循环和资源环境效应[J]. 第四纪研究, 2001, 21(3):223-232.YUAN Daoxian. Carbon cycle in earth system and its effects on environment and resources[J]. Quaternary Sciences, 2001, 21(3): 223-232. [6] 蒋忠诚, 蒋小珍, 雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J]. 中国岩溶, 2000, 19(3):212-217.JIANG Zhongcheng, JIANG Xiaozhen, LEI Mingtang. Estimation of atmospheric CO2 sink of karst areas in China based on GIS and limestone tablet loss data[J]. Carsologica Sinica, 2000, 19(3): 212-217. [7] 蒋忠诚, 袁道先, 曹建华, 覃小群, 何师意, 章程. 中国岩溶碳汇潜力研究[J]. 地球学报, 2012, 33(4):129-134.JIANG Zhongcheng, YUAN Daoxian, CAO Jianhua, QIN Xiaoqun, HE Shiyi, ZHANG Cheng. A study of carbon sink capacity of karst processes in China[J]. Acta Geoscientica Sinica, 2012, 33(4): 129-134. [8] 蒋忠诚, 章程, 罗为群, 肖琼, 吴泽燕. 我国岩溶地区碳汇研究进展与展望[J]. 中国岩溶, 2022, 41(3):345-355.JIANG Zhongcheng, ZHANG Cheng, LUO Weiqun, XIAO Qiong, WU Zeyan. Research progress and prospect of carbon sink in karst region of China[J]. Carsologica Sinica, 2022, 41(3): 345-355. [9] 章程, 汪进良, 肖琼, 等. 岩溶碳循环与流域地球化学过程[M]. 北京:地质出版社, 2021. [10] 蒋忠诚, 覃小群, 曹建华, 何师意, 章程, 张强. 论岩溶作用对全球碳循环的意义与碳汇效应:兼对《对〈中国岩溶作用产生的大气CO2碳汇分区估算〉一文的商榷》的答复[J]. 中国岩溶, 2013, 32(1):1-6.JIANG Zhongcheng, QIN Xiaoqun, CAO Jianhua, HE Shiyi, ZHANG Cheng, ZHANG Qiang. Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to "Discussion on article 'Calculation of atmospheric CO2 sink formed in karst processes of karst divided regions in China' "[J]. Carsologica Sinica, 2013, 32(1): 1-6. [11] 蒋忠诚. 中国南方表层岩溶系统的碳循环及其生态效应[J]. 第四纪研究, 2000, 20(4):316-324.JIANG Zhongcheng. Carbon cycle and ecological effects in epi- karst systems in Southern China[J]. Quaternary Sciences, 2000, 20(4): 316-324. [12] 袁道先, 蒋忠诚. IGCP 379“岩溶作用与碳循环”在中国的研究进展[J]. 水文地质工程地质, 2000(1):49-51. [13] 袁道先. “岩溶作用与碳循环”研究进展[J]. 地球科学进展, 1999, 14(5):425-432.YUAN Daoxian. Progress in the study on karst processes and carbon cycle[J]. Advance in Earth Sciences, 1999, 14(5): 425-432. [14] 李彬, 袁道先. 岩溶区碳循环与大气CO2的源汇关系:以贵州岩溶区为例[J]. 中国岩溶, 1996, 15(Suppl.1):41-49.LI Bin, YUAN Daoxian. Relationship between carbon cycle in karst areas and CO2 source-sink of atmosphere: Case of Guizhou karst[J]. Carsologica Sinica, 1996, 15(Suppl.1): 41-49. [15] 曹建华, 蒋忠诚, 袁道先, 等. 中国西南岩溶碳循环及全球意义[M]. 北京:测绘出版社, 2023.CAO Jianhua, JIANG Zhongcheng, YUAN Daoxian, et al. Karst carbon cycle in southwest china and its global significance[M]. Beijing: Surveying and Mapping Press, 2023. [16] 赵丽华, 吴沿友, 谢腾祥, 李海涛. 微藻无机碳利用在岩石风化及碳循环过程中的作用[J]. 中国岩溶, 2023, 42(1):1-18. doi: 10.11932/karst20230101ZHAO Lihua, WU Yanyou, XIE Tengxiang, LI Haitao. Role of carbonic utilization of microalgae on rock weathering and carbon cycle[J]. Carsologica Sinica, 2023, 42(1): 1-18. doi: 10.11932/karst20230101 [17] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge and New York: Cambridge University Press, 2013. [18] 袁道先, 覃政教, 黄桂强, 等. 西南岩溶石山地区重大环境地质问题及对策研究[M]. 昆明:云南科技出版社, 2003.YUAN Daoxian, QIN Zhengjiao, HUANG Guiqiang, et al. Research on major environmental geological problems and countermeasures in karst mountain area in Southwest China[M]. Kunming: Yunnan Science and Technology Press, 2003. [19] 王宇, 李燕, 谭继中, 等. 断陷盆地岩溶水赋存规律[M]. 昆明:云南科技出版社, 2003.WANG Yu, LI Yan, TAN Jizhong, et al. Storage rule of karst water in fault basin[M]. Kunming: Yunnan Science and Technology Press, 2003. [20] 云南省地质环境监测院. 云南重点岩溶流域水文地质及环境地质调查报告(滇池流域)[R]. 2009. [21] 彭淑慧, 王宇, 张贵, 李继红, 李玉辉. 昆明盆地土地利用对岩溶水质的影响[J]. 昆明理工大学学报(自然科学版), 2011, 36(6):1-14.PENG Shuhui, WANG Yu, ZHANG Gui, LI Jihong, LI Yuhui. Effect of kunming basin land use on karst water quality[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2011, 36(6): 1-14. [22] 彭淑慧, 王宇, 张世涛. 昆明岩溶断陷盆地的环境地质问题及治理对策[J]. 地质灾害与环境保护, 2008, 19(2):98-103.PNEG Shuhui, WANG Yu, ZHANG Shitao. The environmental and geological problems and the countermeasures of the karst fault basin in Kunming[J]. Journal of Geological Hazards and Environment Preservation, 2008, 19(2): 98-103. [23] 康晓莉, 周俊蓉, 高瑜, 张华. 昆明盆地地下水水质水位长序列数据特征分析[J]. 中国岩溶. 2023, 42(4):662-671.KANG Xiaoli, ZHOU Junrong, GAO Yu, ZHANG Hua. Characteristics of long series data of groundwater quality and level in Kunming basin[J]. Carsologica Sinica, 2023, 42(4): 662-671. [24] 马骏, 阚丹妤, 沙敏, 尹江, 杨志勇, 王飞, 杨云丽, 宋升治. 滇池流域石漠化地区植被恢复技术研究[J]. 安徽农业科学, 2014, 42(33):11782-11783, 11807.MA Jun, KAN Danyu, SHA Min, YIN Jiang, YANG Zhiyong, WANG Fei, YANG Yunli, SONG Shengzhi. Study on rocky areas vegetation restoration techniques in Dianchi lake basin[J]. Journal of Anhui Agricultural Sciences, 2014, 42(33): 11782-11783, 11807. [25] 王宇, 张华, 张贵, 王波, 彭淑惠, 何绕生, 周翠琼. 喀斯特断陷盆地环境地质分区及功能[J]. 中国岩溶, 2017, 36(3):283-295.WANG Yu, ZHANG Hua, ZHANG Gui, WANG Bo, PENG Shuhui, HE Raosheng, ZHOU Cuiqiong. Zoning of environment-tal geology and functions in karst fault-depression basins[J]. Carsologica Sinica, 2017, 36(3): 283-295. [26] 阎坤. 60年来大气二氧化碳浓度数据的趋势方程研究[J]. 地球物理学进展, 2009, 24(5):1665-1670.YAN Kun. Research on tendency equation about the concentration data of carbon dioxide in the atmosphere over the past 60 years[J]. Progress in Geophysics, 2009, 24(5): 1665-1670. [27] 郝晓阳, 叶文, 吴利华. 1951~2013年昆明市气温变化特征分析[J]. 绿色科技, 2015(4):10-12.HAO Xiaoyang, YE Wen, WU Lihua. Characteristics and analysis of temperature in Kunming during 1951–2013[J]. Journal of Green Science and Technology, 2015(4): 10-12. [28] 潘娅婷, 杨靖新, 李晓鹏, 杨芳园, 邹灵宇. 近70年昆明市气温变化与城市化影响研究[J]. 环境科学导刊, 2019, 38(2):29-35.PAN Yating, YANG Jingxin, LI Xiaopeng, YANG Fangyuan, ZOU Lingyu. Research on the impacts of the changes of temperature and urbanization in nearly 70 years in Kunming[J]. Environmental Science Survey, 2019, 38(2): 29-35. [29] 张英华. 昆明盆地岩溶地下水水化学特征研究:以黑龙潭泉和海源寺泉为例[D]. 昆明:云南大学, 2013.ZHANG Yinghua. Hydrochemical characteristics of karst groundwater in Kunming basin: A case study of Heilongtan spring and Haiyuansi spring[D]. Kunming: Yunnan University, 2013. [30] 刘再华, 袁道先. 中国典型表层岩溶系统的地球化学动态特征及其环境意义[J]. 地质论评, 2000, 46(3):324-327.LIU Zaihua, YUAN Daoxian. Features of geochemical variations in typical epikarst systems of China and their environmental significance[J]. Geological Review, 2000, 46(3): 324-327. [31] 任美锷, 刘振中, 王飞燕, 等. 岩溶学概论[M]. 北京:商务印书馆, 1983. [32] 王效科, 白艳莹, 欧阳志云, 苗鸿. 全球碳循环中的失汇及其形成原因[J]. 生态学报, 2002, 22(1):94-103.WANG Xiaoke, BAI Yanying, OUYANG Zhiyun, MIAO Hong. Missing sink in global carbon cycle and its causes[J]. Acta Ecologica Sinica, 2002, 22(1): 94-103. -