Characteristics of groundwater system and assessment of groundwater vulnerability of the Tengchong volcano group in western Yunnan
-
摘要: 腾冲火山群面积广、喷发类型齐全,是中国最年轻的火山区之一,研究其地下水系统特征是进行污染机制分析与评价的基础。文章从地质结构、水文地质特征入手,归纳总结研究区地下水系统、含水层流动特征,采用单因子分析法对所采集的39组水样进行分析,采用DRASTIC模型,对研究区进行地下水脆弱性评价。结果表明:研究区为石头山北东侧山间谷地、南底河沟谷、明朗河河谷形成的河间地块,主要接受花岗岩裂隙水、风化裂隙水以及断裂构造带裂隙水的入渗补给,最终排泄于坝派大泉;系统结构为成因及性质差异明显的含、隔水层(带)交互多层结构与断裂、断块和裂隙储水构造叠加形成的空间组合结构,复杂性突出。研究区内低脆弱性地区、中等脆弱性地区、高脆弱性地区的占比分别为3.6%、42.1%、54.3%,表明研究区地下水脆弱性整体偏高,水质相对较差的为Ⅲ、Ⅳ的水样点多分布在脆弱性中等与较高区域,表明地下水脆弱性评价结果基本可靠。Abstract:
The Tengchong volcanic group encompasses a vast area and exhibits a diverse range of eruption types. It is one of the youngest volcanic areas in China. Studying the characteristics of its groundwater system is the basis for analysis and evaluation of pollution mechanisms. Ma'anshan exhibits typical genetic and morphological characteristics in the Tengchong volcanic group. The volcanic cones and craters of Ma'anshan are relatively complete. Because the lava flows exhibit no weathered layers, Ma'anshan retains the geomorphological characteristics of the volcanos with the most recent eruption. It is dated at the Late Pleistocene or Holocene. The boundary of the groundwater system is relatively clear. Starting with the geological structure and hydrogeological characteristics of Ma'anshan area, this paper summarized the boundary characteristics of groundwater system, aquifer system characteristics, aquifer flow characteristics, and characteristics of groundwater recharge and drainage in the study area. The single factor analysis was conducted to evaluate 39 groups of water samples collected. Combined with on-site investigations, pollution sources, pollution mechanisms were explored and the groundwater vulnerability of the study area was evaluated through DRASTIC model. The results show as follows. (1) The Ma'anshan area is located in the groundwater system of Bapaidaquan, bounded by the Shitoushan underground watershed at the northeast, by the groundwater barrier on the right bank of the Nandi river at the southeast, and by the recharge boundary of the Minglang river valley at the west. The Ma'anshan area constitutes an inter-river landmass composed of the Minglang river, the Nandi river, and north-east oriented catchment valley, and mainly receives infiltration and recharge from granite fissure water, weathered fissure water and fissure water from fractured structural zones. (2) Under the strong tectonic movement and volcanic eruption, the groundwater system exhibits a complex structure and changeable hydrodynamic properties. The water-collecting chambers formed by pumice aggregates, breccia, and volcanic bomb fragments in the volcanic lava accumulation, and the lava fissures connected between them, are evenly distributed in space. Each water collecting chamber is also hydraulically connected under the communication of fractures or pores. Showing obvious characteristics with layered structures, the aquifers of the mountains in the study area are all exposed in the alluvial and pluvial layers underlying the volcanic accumulations, which supports the multi-layer interactive structural characteristics of water from lava pores and from alluvial and pluvial layers. (3) Groundwater in the study area forms pipe-type runoff along faults and continuous lava channels, and forms strands of runoff in the loose accumulations along lava fissures, volcanic bombs and volcanic breccia of varying sizes and in macropores of alluvial and pluvial gravel layers. Then, runoff converges in the lava fissure zone on the gentle slope of the mountain on the east side of the Minglang river valley and in the ancient river channel at the valley edge, and is finally discharged into the Bapai spring. (4) Areas where the water quality exceeds permitted levels are mainly distributed in industrial parks, solid waste landfills and agricultural living areas. In industrial parks, the water quality exceeds permitted levels mainly due to excessive heavy metal elements. In solid waste landfills and agricultural living areas, water contains excessive pH values. According to the characteristics of pollution sources, structure and water-containing media, aquifer anti-fouling performance, and conversion process between surface water and groundwater, there are two main types of groundwater pollution mechanisms in the study area: trans-flow infiltration and direct infiltration. (5) The proportions of low-vulnerability areas, medium-vulnerability areas, and high-vulnerability areas in the study area are 3.6%, 42.1%, and 54.3% respectively. The high-vulnerability areas are mainly distributed in the lower reaches of the Minglang river, Ganzhezhai–Hehua–Bapai and other areas with more water resources. The depth of the groundwater level in this area is small, and the water-bearing medium is uneven. The recharge of groundwater can be directly infiltrated through pipes and trough fissures. The adsorption effect of volcanic ash and alluvial mud filled or accumulated in the air-bearing zone is approximate to be missing. Because industrial enterprises are also concentrated here, the background values of heavy metals and harmful metals in groundwater are high. Aquifers are highly sensitive to pollutants or human activities, and are, therefore, highly vulnerable. The water samples with relatively poor water quality of Class III and Class IV are mostly distributed in the areas with medium-and-high-vulnerability, indicating that the results of groundwater vulnerability assessment are basically reliable. -
图 2 研究区地下水系统含水介质结构示意图
1.火山角砾集水腔室 ⒉不充水火山角砾 3.充水熔岩裂隙 4.地下水水位 5.推测岩性分界线 6.安山岩、安山玄武岩 7.冲洪积层砂、砾石夹亚黏土 8.花岗岩
Figure 2. Schematic diagram of aquifer medium structures of the groundwater system in the study area
1. water-collecting chamber of volcanic breccia 2. volcanic breccia not filled with water 3. water-filled lava fissure 4. groundwater level 5. estimated lithological boundary line 6. andesite and andesite basalt 7. alluvial and pluvial gravel 8. granite
图 7 研究区地下水流场示意图
1.推测等水位线及水位标高 2.地下水流线 3.地名 4.研究区范围 5.泉点及流量 6.泉群及流量 7.钻孔编号
Figure 7. Schematic diagram of groundwater flow field in the study area
1. estimated water level line and water level elevation 2. groundwater flow line 3. place name 4. scope of the study area 5. spring point and flow 6. spring group and flow 7. borehole numbering
表 1 研究区不同类型裂隙水径流特征
Table 1. Runoff characteristics of different types of fissure water in the study area
序号 裂隙水类型 径流特征 1 基岩裂隙水 分布于明朗河谷地西侧、石头山东侧的带状花岗岩山体内,分别以网状风化裂隙和带状构造裂隙形式富集地下水、沿坡脚或河流切割部位呈散流状或带状出露 2 松散岩类孔隙水 以潜水形式向山体四周径流,进入熔岩堆积层转换为熔岩孔洞裂隙水,或短径流排入山谷 3 火山岩类孔洞裂隙水 多在河流切穿含水层部位集中溢出形成下降泉,或深循环的地下水沿断裂带露头、上覆盖层薄弱部位上升溢出,形成温泉及热泉 表 2 单因子评价法评价结果(表长而单调,结果相同的水样归纳一下,如SY1-SY6,Ⅰ)
Table 2. Results of single factor evaluation (summary of water samples with the same results)
样品编号 pH 六价铬(Cr6+) 砷(As) 汞(Hg) 铜(Cu) 锌(Zn) 镉(Cd) 铅(Pb) 镍(Ni) 水质评价 备注 SY1—SY6 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ 地下水 SY7—SY9 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ 地表水 SY10 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅲ Ⅰ Ⅰ Ⅲ SY11—SY12 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY18 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅲ Ⅰ Ⅲ SY20 Ⅰ Ⅰ Ⅳ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅳ SY13 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ 地下水 SY14 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅲ Ⅲ SY15 Ⅳ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅳ SY16—SY17 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY19 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY21 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY36 Ⅰ Ⅰ Ⅲ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅲ 地表水 SY22 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY23 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY24 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅱ Ⅲ Ⅰ Ⅲ SY25 Ⅳ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅳ SY26 Ⅳ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅳ SY32 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅳ Ⅰ Ⅳ SY35 Ⅰ Ⅰ Ⅳ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅳ SY37 Ⅰ Ⅰ Ⅲ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅲ SY27 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ 地下水 SY28 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY29 Ⅳ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅳ SY30— SY31 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY33—SY34 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY38 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ SY39 Ⅰ Ⅰ Ⅳ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅳ 表 3 DRASTIC模型各指标说明和权重值
Table 3. Description and weight value of each index of DRASTIC model
指标 数据来源 单位 权重 地下水位埋深(D) 现有水文地质资料收集 m 5 垂向净补给(R) 收集当地多年平均降雨量乘以降雨入渗系数 mm∙a−1 4 含水层介质类型(A) 收集已有钻孔及区域水文地质资料进行综合分析 m 3 土壤介质(S) 综合收集地质资料、水文地质资料结合经验初步分析不同岩性全风化呈土壤后的类型 2 地形坡度(T) 10 m精度地形DEM提取 ‰ 1 包气带介质类型(I) 根据收集区域勘察资料、已有水文地质资料,综合分析进行统计 5 含水层渗透系数(C) 根据水文地质普查资料的抽水试验结合经验值进行取值 m∙d−1 3 表 4 脆弱性评估各指标等级划分和赋值
Table 4. Grading and assignment of indicators for vulnerability assessment
指标 评分 1 2 3 4 5 6 7 8 9 10 D >300 (250,300] (200,250] (150,200] (125,150] (100,125] (75,100] (50,75] (25,50] (0,25] R 0 (0,51] (51,71] (72,117] (117,147] (147,178] (178,216] (216,235] (216,235] >235 A 块状页岩、黏土 裂隙发育非常轻微变质岩或火成岩、亚黏土 裂隙中等发育变质岩或火成岩、亚砂土 风化变质岩或火成岩、粉砂 裂隙非常发育变质岩或火成岩、细粉砂 块状砂岩、细砂 层状砂岩、页岩序列、中砂 砂砾岩、
粗砂玄武岩、
砂砾石卵砾石 S 非涨缩和非凝聚性黏土 粘质壤土 粉质壤土 壤土 砂质壤土 膨胀或凝聚性黏土 粉砂、细沙 砾石、中砂、粗砂 卵砾石 缺失 T >10 (9,10] (8,9] (7,8] (6,7] (5,6] (4,5] (3,4] (2,3] ≤2 I 黏土 亚黏土 亚砂土 粉砂 粉细砂 细砂 中砂 粗砂 砂砾石 卵砾石 C ≤4 (4,12] (12,20] (20,30] (30,35] (35,40] (40,60] (60,80] (80,100] >100 表 5 地下水脆弱性评价结果等级划分表
Table 5. Grading of assessment results of the groundwater vulnerability
地下水脆弱性综合指数值DI ≤70 (70,100] (100,120] (120,150] >150 地下水脆弱性级别 低 较低 中等 较高 高 -
[1] 张俊, 尹立河, 赵振宏. 地下水系统理论研究综述[J]. 地下水, 2010, 32(6):27-30. doi: 10.3969/j.issn.1004-1184.2010.06.008ZHANG Jun, YIN Lihe, ZHAO Zhenhong. Review on groundwater systems[J]. Ground Water, 2010, 32(6): 27-30. doi: 10.3969/j.issn.1004-1184.2010.06.008 [2] 陈梦熊, 马凤山. 中国地下水资源与环境[M]. 北京:地震出版社, 2002:385-417.CHEN Mengxiong, MA Fengshan. Groundwater resources and environment in China[M]. Beijing: Seismological Press, 2002: 385-417. [3] 张文强, 滕跃, 唐飞, 王金晓, 许庆宇, 张海林. 山东省肥城断块岩溶水系统地下水水化学特征及演化分析[J]. 中国岩溶, 2023, 42(5):1047-1060, 1084. doi: 10.11932/karst20230515ZHANG Wenqiang, TENG Yue, TANG Fei, WANG Jinxiao, XU Qingyu, ZHANG Hailin. Groundwater hydrochemical characteristics and evolution of the karst water system in the Feicheng fault block in Shandong Province[J]. Carsologica Sinica, 2023, 42(5): 1047-1060, 1084. doi: 10.11932/karst20230515 [4] 胡大儒, 郑克勋, 赵代尧, 陈占恒. 复杂岩溶水系统势汇区建坝成库可行性研究:以北盘江流域普岔河水库为例[J]. 中国岩溶, 2022, 41(5):736-745.HU Daru, ZHENG Kexun, ZHAO Daiyao, CHEN Zhanheng. Feasibility study on dam and reservoir construction in the catchment area of complex karst water system: Taking Pucha reservoir of Beipan river as an example[J]. Carsologica Sinica, 2022, 41(5): 736-745. [5] 任世川, 杨晓艳, 杨颖彬, 刘海峰, 杨帆. 丽江黑龙潭地下河系统的水均衡分析与预测评价[J]. 中国岩溶, 2023, 42(6):1183-1192. doi: 10.11932/karst20230604REN Shichuan, YANG Xiaoyan, YANG Yingbin, LIU Haifeng, YANG Fan. Equilibrium analysis and prediction evaluation of the Heilongtan groundwater system in Lijiang of northwestern Yunnan Province[J]. Carsologica Sinica, 2023, 42(6): 1183-1192. doi: 10.11932/karst20230604 [6] 刘元晴, 文冬光, 吕琳, 李伟, 张福存, 王新峰, 孟顺祥. 沂蒙山区典型断陷盆地岩溶地下水系统特征:以莱芜盆地为例[J]. 地质科技通报, 2022, 41(1):157-167.LIU Yuanqing, WEN Dongguang, LYU Lin, LI Wei, ZHANG Fucun, WANG Xinfeng, MENG Shunxiang. Characteristics of karst groundwater flow systems of typical faulted basins in Yimeng mountain area: A case study of Laiwu basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 157-167. [7] 莫美仙, 王宇, 李峰. 滇东断陷盆地地下水污染的水文地质模式[J]. 昆明理工大学学报(自然科学版), 2014, 39(5):88-95.MO Meixian, WANG Yu, LI Feng. Hydrogeological model of groundwater pollution in eastern Yunnan plateau downfaulted basin[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2014, 39(5): 88-95. [8] 姚金. 腾冲新生代火山岩地球化学组成及其成因研究[D]. 合肥:中国科学技术大学, 2018.YAO Jin. The geochemical characteristics and petrogenesis of Cenozoic volcanic rocks in Tengchong block[D]. Hefei: University of Science and Technology of China, 2018. [9] 段毅, 危自根, 杨小林, 叶泵, 王军. 腾冲火山结构研究进展和展望[J]. 地球物理学进展, 2019, 34(4):1288-1297. doi: 10.6038/pg2019CC0219DUAN Yi, WEl Zigen, YANG Xiaolin, YE Beng, WANG Jun. Research progress and prospect of structure in Tengchong volcanic area[J]. Progress in Geophysics, 2019, 34(4): 1288-1297. doi: 10.6038/pg2019CC0219 [10] 皇甫岗. 腾冲火山研究综述[J]. 地震研究, 1997, 20(4):431-437.HUANGFU Gang. Review of studies on Tengchong volcanoes[J]. Journal of Seismological Research, 1997, 20(4): 431-437. [11] 赵勇伟, 樊祺诚. 腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化[J]. 岩石学报, 2010, 26(4):1133-1140.ZAHO Yongwei, FAN Qicheng. Magma origin and evolution of Maanshan volcano, Dayingshan volcano and Heikongshan volcano in Tengchong area[J]. Acta Petrologica Sinica, 2010, 26(4): 1133-1140. [12] 穆治国, 佟伟, Garniss H Curtis. 腾冲火山活动的时代和岩浆来源问题[J]. 地球物理学报, 1987, 30(3):261-270. doi: 10.3321/j.issn:0001-5733.1987.03.005MU Zhiguo, TONG Wei, Garniss H Curtis. Times of vlocanic activity and origin of magma in Tengchong geothermal area, west Yunnan Province[J]. Acta Geophysica Sinica, 1987, 30(3): 261-270. doi: 10.3321/j.issn:0001-5733.1987.03.005 [13] 崔笛. 腾冲新生代火山群岩浆起源与演化[D]. 北京:中国地质大学(北京), 2015.CUI Di. The origin and evolvement of Cenozoic vocanic magma in Tengchong area[D]. Beijing: China University of Geosciences (Beijing), 2015. [14] 陈克非, 林叶, 申文豪, 徐锡伟, 汪文帅, 刘少林. 腾冲火山起源的地球物理和地球化学研究进展[J]. 地球与行星物理论评(中英文), 2023, 54(2):216-230.CHEN Kefei, LIN Ye, SHEN Wenhao, XU Xiwei, WANG Wenshuai, LIU Shaolin. The origin of the Tengchong volcano: A review of geophysical and geochemical studies[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(2): 216-230. [15] 季洪伟. 云南腾冲黑空山全新世火山岩地球化学与岩石成因[D]. 北京:中国地质大学(北京), 2018.JI Hongwei. Geochemistry and petrogenesis of Heikongshan Holocene volcanic rocks in Tengchong, Yunnan[D]. Beijing: China University of Geosciences (Beijing), 2018. [16] 杨逸云, 赵志丹, 雷杭山, 武精凯, 苗壮, 张双全, 陈玲, 季宏伟. 云南腾冲全新世火山岩岩浆演化和岩石成因[J]. 岩石学报, 2019, 35(2):472-484. doi: 10.18654/1000-0569/2019.02.13YANG Yiyun, ZHAO Zhidan, LEl Hangshan, WU Jingkai, MIAO Zhuang, ZHANG Shuangquan, CHEN Ling, JI Hongwei. Magma evolution and petrogenesis of Holocene volcanic rocks in Tengchong, Yunnan[J]. Acta Petrologica Sinica, 2019, 35(2): 472-484. doi: 10.18654/1000-0569/2019.02.13 [17] Li N, Zhao Y W, Zhang L Y. New chronology of the Quaternary Tengchong volcanic swarm, SW China and the discovery of a Holocene volcano[J]. Acta Geologica Sinica-English Edition, 2017, 91(5): 1940-1941. doi: 10.1111/1755-6724.13433 [18] Li N, Wei H Q, Zhang L Y. The discovery of Late Pleistocene Daliuchong volcanic conduit in the Tengchong volcanic field[J]. Acta Geologica Sinica-English Edition, 2016, 90(5): 1911-1912. doi: 10.1111/1755-6724.12828 [19] Li N, Zhao Y W, Zhang L Y, Wang J L. The quaternary eruptive sequence of the Tengchong volcanic group, Southwestern China[J]. Lithos, 2020(354-355): 105173. [20] 侯正阳, 王成虎, 王璞, 江英豪, 杨汝华. 基于火山口排列调查法的腾冲地区古地应力场反演[J]. 地震地质, 2019, 41(4):1042-1059. doi: 10.3969/j.issn.0253-4967.2019.04.015HOU Zhengyang, WANG Chenghu, WANG Pu, JIANG Yinghao, YANG Ruhua. Inversion research of paleostress field in Tengchong area based on vent alignment survey method[J]. Seismology and Geology, 2019, 41(4): 1042-1059. doi: 10.3969/j.issn.0253-4967.2019.04.015 [21] 郑瑾, 邵曰舜. 云南腾冲火山群区域内水环境状况分析研究[J]. 水利规划与设计, 2007, 80(6):21-24. doi: 10.3969/j.issn.1672-2469.2007.06.008 [22] 马致远, 李嘉祺, 翟美静, 吴敏, 许勇. 沉积型和火山型地热流体的同位素水文地球化学对比研究[J]. 水文地质工程地质, 2019, 46(6):9-18.MA Zhiyuan, LI Jiaqi, ZHAI Meiiing, WU Min, XU Yong. A comparative study of isotopic hydrogeochemistry of geothermal fluids of sedimentary basin type and volcanic type[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 9-18. [23] 穆桂春, 刘淑珍, 戴鹤之, 孙兆明. 腾冲火山地貌[J]. 西南师范学院学报(自然科学版), 1982(4):97-143, 147. [24] 中国地质调查局. 水文地质手册(第二版)[M]. 北京:地质出版社, 2012:128-131.China Geological Survey. Handbook of hydrogeology[M]. Beijing: Geology Press, 2012: 128-131. [25] 王宇. 西南岩溶地区岩溶水系统分类、特征及勘查评价要点[J]. 中国岩溶, 2002, 21(2):114-119. doi: 10.3969/j.issn.1001-4810.2002.02.008WANG Yu. Classification, features of karst water system and key point for the evaluation to karst water exploration in Southwest China karst area[J]. Carsologica Sinica, 2002, 21(2): 114-119. doi: 10.3969/j.issn.1001-4810.2002.02.008 [26] 杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究:以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123. doi: 10.11932/karst20220106YANG Yang, ZHAO Liangiie, PAN Xiaodong, XlA Riyuan, CAO Jianwen. Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J]. Carsologica Sinica, 2022, 41(1): 111-123. doi: 10.11932/karst20220106 [27] 王宇. 岩溶高原地下水径流系统垂向分带[J]. 中国岩溶, 2018, 37(1):1-8. doi: 10.11932/karst20180101WANG Yu. Vertical zoning of groundwater runoff system in karst plateau[J]. Carsologica Sinica, 2018, 37(1): 1-8. doi: 10.11932/karst20180101 -