Overview of karst geology in Turkey
-
摘要: 土耳其岩溶分布面积约占其国土面积的40%,发育典型的地中海气候类型岩溶,根据构造特征,从北向南分为四个不同的岩溶区,其中托罗斯山脉是土耳其乃至地中海地区最大、最为发育的岩溶区,具有很高的研究价值。文章在系统收集地质、构造及水文地质等资料基础上,编制1∶100 万土耳其岩溶地质图,分析了影响岩溶发育的因素,总结了土耳其岩溶分布规律、主要岩溶现象及资源开发利用现状,为“全球岩溶地质”数据库建设和服务全球岩溶大科学计划提供支撑。Abstract:
Turkey is distributed with karst up to about 40% of its land area, in which karst is developed under typical Mediterranean climate. According to the structural characteristics, Turkey is divided into four different karst areas from north to south, among which the Taurus mountains is the largest and most developed karst area in this country and even in the Mediterranean region; therefore, karst in Turkey is of high research value. Based on the systematic collection of geological, structural and hydrogeological data, this study compiles a 1∶100,000,000 karst geological map of Turkey, analyzes the factors affecting karst development, and summarizes the distribution law of karst in Turkey, the main karst phenomena and the current situation of resource exploitation and utilization. Many external and internal factors contribute to the type and the degree of karstification of carbonate rocks. However, the basic fact is that the geological structure, the orogeny, and the connected tectonics provide the basic framework that permits, enhances, or impedes the processes of karstification. The Alpineorogeny and the following epiorogenic movements in Turkey have become important factors in karstification. This type of karstification of carbonate rocks is distributed almost everywhere in Turkey. According to the structural characteristics, karst areas in Turkey can be divided into four units: the karst area of the Taurus mountains, the karst area of southeast Anatolia, the karst area of central Anatolia, and the karst area of northwest Anatolia. The region of the Taurus mountains is the largest and most developed karst area in Turkey and even in the entire Mediterranean region. Carbonate rocks developed from the Cambrian to the Neogene are mainly distributed in Mesozoic and Cenozoic strata, and are the most developed in the Jurassic and Cretaceous strata. In some places, the total thickness of carbonate rocks is more than 1,500 m. The most notable karst geomorphic features are karst caves, sinkholes, dissolution funnels, poljes, karst depressions, karst canyons, karst springs, underground rivers or lakes and submarine springs. From the Mesozoic to the Holocene, limestone was deposited by thrust-nappe effect on the strata with extremely low permeability such as schist, sandstone, shale, etc. Numerous fractures generated by tectonic movements became water channels. Many large-scale karst springs composed of Mesozoic limestone, Tertiary limestone and conglomerate were developed on the contact surface between limestone and impermeable strata, which made the area home to the world’s largest karst aquifer and karst hot springs. Carbonate caves in Turkey are mainly concentrated in the Taurus mountains near the Mediterranean Sea, the central and western karst areas of the Black Sea, and the karst areas of Thrace. Although gypsum caves are developed in the central region of Anatolia, the number is limited and the scale is small. Due to differences in geological and climatic conditions, caves in the Mediterranean region and caves in the Black Sea region show different morphological characteristics. (1) The karst area of Thrace is dominated by ancient karst, with single-layer horizontal caves at altitudes of 40–60 m and multi-layer horizontal caves at altitudes of 240–450 m. (2) Dolomite and volcanic rocks are widely distributed in the karst area of the western Black Sea, in which karst is not developed vertically and multi-stage horizontal caves are mainly developed below the altitude of 350 m. (3) Vertical caves are mainly developed in the karst area of central Black Sea, some of which are more than 200-meter deep, but the deepest cave is less than 300 m, due to the thin limestone thickness. (4) In the karst area of the Taurus mountains near the Mediterranean Sea, overthrust faults are developed, and the thicknesses of carbonate rocks in some areas are more than 1,000 m, in which vertical caves are mostly developed. Both the longest cave and the deepest one in Turkey are located in this karst area. By the end of 2019, there were 52 caves in Turkey with a depth of more than 200 m, 43 of which were located in the karst area of the Taurus mountains near the Mediterranean Sea, and 7 in the karst area of central Black Sea. There were 62 caves with a length of more than 1,000 m, 34 of which were located in the karst area of the Taurus mountains near the Mediterranean Sea, 16 in the karst areas of central and western Black Sea and Thrace. Turkey is rich in karst resources such as marble, geothermal, oil, natural gas, etc., and it has abundant karst landscapes including large springs, caves, canyons, and travertine. The potential for development and utilization is vast, and there is an urgent need to conduct detailed karst hydrogeological surveys. -
Key words:
- Turkey /
- karst geology /
- karst distribution /
- cave /
- karst spring
-
表 1 托罗斯山脉岩溶区大型岩溶泉的分布及其平均流量[64]
Table 1. Distribution of large karst springs and their average flow rates in the karst area of Taurus[64]
省份 泉名称 流量/m3·s−1 lzmir Halkapınar Spring 1.2 lzmir Bakrçay plain springs 1.2 Aydin K. Menderes plain springs 2.0 Aydin B. Menderes plain springs 1.0 Antalya Finike-Tekke and Salur Springs 3.0 Antalya Elmalı-Akçay-Demre plains springs 7.0 Antalya Bogaçay plain springs 2.5 Antalya Kırkgöz Springs 20.0 Antalya Düdenbası Spring (underground river) 10.0 Antalya Dumanlı 50.0 Isparta Hoyran, Gelendost-Yalvaç plains springs 1.0 Afyon Akarçay basin springs 1.5 lçel Gilindire-Soguksu spring and
Gözce plain springs2.0 lçel Silifke and Erdemli Springs 5.0 Maras Maras plains springs 8.0 Maras Göksun plain springs 8.0 Hatay Asi basin springs 3.0 Mus Mus plain springs 0.8 洞穴名称 省份 长度/m Pınargözü Cave Yenisarbademli, Isparta 8 500 Insuyu Cave Burdur 8 350 Tilkiler Cave Manavgat, Antalya 6 818 Kızılelma Cave Zonguldak 6 630 Yaylacık-Inilti Pazan System Gündogmus, Antalya 5 929 Bulak Mencilis Cave Karabük, Safanbolu 5 250 Altınbesik Cave Akseki, Ürünlü,Antalya 5 119 Ayvaini Cave Ayvaköy, Bursa 4 866 lkigöz Cave Catalca, Istanbul 4 816 Morca Sinkhole Anamur, lcel 4 068 Yazören Cave Yazören, Balikesir 3 554 Cukurpiar Sinkhole Anamur, lçel 3 350 Gökgöl Cave Erçek, Zonguldak 3 350 Kuzgun Sinkhole Nigde 3 187 Dupnisa Cave Sarpdere, Kırklareli 3 150 Peynirlikönü Sinkhole Anamur, lçel 3 118 Düdenagzı Sinkhole Basyayla, Karaman 2 528 Susuz Cave Seydisehir, Konya 2 303 Tınaztepe Caves Seydisehir, Konya 2 195 Kızılin Cave Burdur 2 176 Saçayagı Cave Gazipasa, Antalya 2 125 洞穴名称 省份 深度/m Peynirlikönü Sinkhole Anamur, lçel 1 429 Kuzgun Sinkhole Nigde 1 400 Morca Sinkhole Anamur, lçel 1 210 Cukurpmar Sinkhole Anamur, lçel 1 196 Kuyukule Sinkhole Dedegöl, Isparta 832 Kes Sinkhole Kahramanmaras 728 Subatagi Sinkhole Yahyal, Kayseri 643 Sütlük Sinkhole Pozanti, Adana 640 Düdenagzı Sinkhole Basyayla, Karaman 612 Cem Sinkhole Tomarza, Kayseri 605 Yılanlıyurt Sinkhole Aladag 603 Yaylacık -Inilti Pazan System Gündogmus, Antalya 595 Kocadag Sinkhole Anasultan, Kütahya 458 Pınargözü Cave Yenisarbademli, Isparta 440 Düdenyayla Sinkhole Beysehir, Konya 416 Athar Sinkhole Gözne, lçel 410 Camlıköy Sinkhole Pozantı, Adana 379 Macar Sinkhole Gazipasa, Antalya 356 Bucakalan Sinkhole Akseki, Antalya 345 Ölü Köpek Sinkhole Akseki, Cevizli,Antalya 340 Düdencik Sinkhole Akseki, Cevizli, Antalya 330 -
[1] Ali Yamaç E G, Ezgi Tok, Koray Törk. Cave and karst systems of the World[M]. Berlin, Germany: Springer Nature, 2021. [2] Gilli E. Karst areas of Turkey[J]. Caves and Karst of Turkey-Volume 2, 2022: 55-65. [3] Katsanou K, Maramathas A, Sağır Ç, Kurtuluş B, Baba A, Lambrakis N. Determination of karst spring characteristics in complex geological setting using MODKARST model: Azmak Spring, SW Turkey[J]. Arabian Journal of Geosciences, 2023, 16(1): 4. [4] Şener A, Yolcubal İ, Sanğu E. Determination of recharge, storage and flow characteristics of a karst aquifer using multi-method approaches (Kocaeli, Turkey)[J]. Hydrogeology Journal, 2020, 28(6): 2141-2157. doi: 10.1007/s10040-020-02183-1 [5] Yüce G. Determination of the recharge area and salinization degree of karst springs in the Lamas Basin (Turkey)[J]. Isotopes in Environmental and Health Studies, 2005, 41(4): 391-404. doi: 10.1080/10256010500384747 [6] Acikel S, Ekmekci M. Distinction of multiple groundwater systems in a coastal karst spring zone in SW Turkey by hydrochemical and isotopic characteristics[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(7): 5781-5795. doi: 10.1007/s10064-021-02150-4 [7] Günay G, Çörekçioğlu İ, Övül G. Geologic and hydrogeologic factors affecting sinkhole (obruk) development in Central Turkey[J]. Carbonates and Evaporites, 2011, 26(1): 3-9. doi: 10.1007/s13146-011-0044-7 [8] Yetiş R, Atasoy A D, Demir Yetiş A, Yeşilnacar M İ. Hydrogeochemical characteristics and quality assessment of groundwater in Balikligol Basin, Sanliurfa, Turkey[J]. Environmental Earth Sciences, 2019, 78(11): 331. doi: 10.1007/s12665-019-8330-0 [9] Günay G. Karst hydrogeology of Pamukkale Thermal Springs, Denizli, Turkey[J]. Caves and Karst of Turkey-Volume 2, 2022: 81-84. [10] Elhatip H, Günay G. Karst hydrogeology of the Kaş-Kalkan springs along the Mediterranean coast of Turkey[J]. Environmental Geology, 1998, 36(1-2): 150-158. doi: 10.1007/s002540050330 [11] Günay G. Karst springs of Turkey: Hydrogeology of the Kirkgözler karst springs, Antalya[J]. Caves and Karst of Turkey-Volume 2, 2022: 67-73. [12] Ekmekci M. Pesticide and nutrient contamination in the Kestel polje−Kirkgoz karst springs, Southern Turkey[J]. Environmental Geology, 2005, 49(1): 19-29. doi: 10.1007/s00254-005-0022-2 [13] Bayari C S, Ozyurt N N, Kilani S. Radiocarbon age distribution of groundwater in the Konya Closed Basin, central Anatolia, Turkey[J]. Hydrogeology Journal, 2009, 17(2): 347-365. doi: 10.1007/s10040-008-0358-2 [14] Ozyurt N, Bayari C. Temporal variation of chemical and isotopic signals in major discharges of an alpine karst aquifer in Turkey: Implications with respect to response of karst aquifers to recharge[J]. Hydrogeology Journal, 2008, 16(2): 297-309. doi: 10.1007/s10040-007-0217-6 [15] G Günay, N Güner, Trk K. Turkish karst aquifers[J]. Environmental Earth Sciences, 2015, 74(1): 217-226. doi: 10.1007/s12665-015-4298-6 [16] Ekmekci M, Nazik L. Evolution of Golpazari-huyuk karst system (Bilecik-Turkey): Indications of morpho-tectonic controls[J]. International Journal of Speleology, 2004, 33(1-4): 49. [17] Dogan U, Ozel S. Gypsum karst and its evolution east of Hafik (Sivas, Turkey)[J]. Geomorphology, 2005, 71(3-4): 373-388. doi: 10.1016/j.geomorph.2005.04.009 [18] Lewin J, Woodward J. 10 karst geomorphology and environmental change[J]. The Physical Geography of the Mediterranean, 2009: 287-318. [19] Catherine Kuzucuoğlu. Geomorphological landscapes in the Konya Plain and surroundings[J]. Landscapes and Landforms of Turkey, 2019. [20] Catherine Kuzucuoğlu, Şengör A M C, Attila Çiner. The tectonic control on the geomorphological landscapes of Turkey[J]. Landscapes and Landforms of Turkey, 2019. [21] Ergin Gökkaya, Francisco Gutiérrez, Mateja Ferk, Tolga Görüm. Sinkhole development in the Sivas gypsum karst, Turkey[J]. Geomorphology, 2021, 386: 107746. doi: 10.1016/j.geomorph.2021.107746 [22] Gökkaya E. Poljes in the Sivas gypsum karst, Turkey[J]. Geomorphology, 2022, 417: 108451. doi: 10.1016/j.geomorph.2022.108451 [23] Aydn Topu T T, Osman Seyyar, Nurcan Demircan, Hayriye Karabulut. A new species of Troglohyphantes (Araneae: Linyphiidae) from a Turkish cave[J]. Open Journal of Animal Sciences, 2014, 4(2): 85-87, 89-91. doi: 10.4236/ojas.2014.42012 [24] Candiroglu B, Gungor N D. Cave ecosystems: Microbiological view[J]. European Journal of Biology, 2017, 76(1): 36-42. doi: 10.5152/EurJBiol.2017.1707 [25] Klimchouk A, Bayari S, Nazik L, Törk K. Glacial destruction of cave systems in high mountains, with a special reference to the Aladaglar massif, Central Taurus, Turkey[J]. Acta Carsologica, 2006, 35(2): 111-121. [26] Ozturk S. Algal flora of an extremophile ecosystem: Kaklik Cave (Denizli, Turkey)[J]. Maejo International Journal of Science & Technology, 2021, 15(2): 173-186. [27] Ozyurt N N, Bayari C S. Evolution of noble gas and water isotopes along the regional groundwater flow path of the Konya Closed Basin, Turkey[J]. International Journal of Speleology, 2018, 47(3): 333-342. doi: 10.5038/1827-806X.47.3.2176 [28] Rachid N A, Güngör N D. Major impacts of caving activities on cave microbial diversity: Case study of Morca Cave, Turkey[J]. International Microbiology, 2023, 26(2): 179-190. [29] Ulcay S, Kurt O, Akcora C M, Ozturk M. Environmental monitoring in the Kaklik Cave (Denizli, Turkey)[J]. Natural Science, 2012, 4(3): 159-165. doi: 10.4236/ns.2012.43023 [30] Yamaç M, Işik K, Şahi̇n N. Numerical classifıcation of streptomycetes isolated from karstic caves in Turkey[J]. Turkish Journal of Biology, 2011, 35(4): 473-484. [31] Şener A, Pekşen E, Yolcubal İ. Application of square array configuration and electrical resistivity tomography for characterization of the recharge area of a karst aquifer: A case study from Menekşe karst plateau (Kocaeli, Turkey)[J]. Journal of Applied Geophysics, 2021, 195: 104474. doi: 10.1016/j.jappgeo.2021.104474 [32] Gemici U, Somay M, Akar T, Tarcan G. An assessment of the seawater effect by geochemical and isotopic data on the brackish karst groundwater from the Karaburun Peninsula (Izmir, Turkey)[J]. Environmental Earth Sciences, 2016, 75(12): 1008. doi: 10.1007/s12665-016-5808-x [33] Özdemir A. Defining groundwater resource protection zones in aquifers using stable isotope analysis: A case study from the Namazgah Dam Basin in Turkey[J]. Environmental Earth Sciences, 2019, 78(16): 509. doi: 10.1007/s12665-019-8514-7 [34] Özel S, Darıcı N. Environmental hazard analysis of a gypsum karst depression area with geophysical methods: A case study in Sivas (Turkey)[J]. Environmental Earth Sciences, 2020, 79(5):1-14. [35] Balkaya Ç, Göktürkler G, Erhan Z, Ekinci Y L. Exploration for a cave by magnetic and electrical resistivity surveys: Ayvacık Sinkhole example, Bozdağ, İzmir (western Turkey)[J]. Geophysics, 2012, 77(3): B135-B146. doi: 10.1190/geo2011-0290.1 [36] Jacobson M J, Flohr P, Gascoigne A, Leng M J, Sadekov A, Cheng H, Edwards R L, Tüysüz O, Fleitmann D. Heterogenous Late Holocene climate in the Eastern Mediterranean: The Kocain cave record from SW Turkey[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094733. doi: 10.1029/2021GL094733 [37] Drahor M G. Identification of gypsum karstification using an electrical resistivity tomography technique: The case-study of the Sivas gypsum karst area (Turkey)[J]. Engineering Geology, 2019, 252: 78-98. doi: 10.1016/j.enggeo.2019.02.019 [38] Karaman A, Karadayılar T. Identification of karst features using seismic P-wave tomography and resistivity anisotropy measurements[J]. Environmental Geology, 2004, 45(7): 957-962. doi: 10.1007/s00254-003-0953-4 [39] Sağır Ç, Kurtuluş B, Soupios P, Ayrancı K, Düztaş E, Aksoy M E, Avşar Ö, Erdem G, Pekkan E, Canoğlu M C, Kaka S I, Razack M. Investigating the structure of a coastal karstic aquifer through the hydrogeological characterization of springs using geophysical methods and field investigation, Gökova Bay, SW Turkey[J]. Water, 2020, 12(12): 3343. doi: 10.3390/w12123343 [40] Kilic G, Eren L. Neural network based inspection of voids and karst conduits in hydro−electric power station tunnels using GPR(Article)[J]. Journal of Applied Geophysics, 2018, 151: 194-204. doi: 10.1016/j.jappgeo.2018.02.026 [41] Bayari C S, Pekkan E, Ozyurt N N. Obruks, as giant collapse dolines caused by hypogenic karstification in central Anatolia, Turkey: Analysis of likely formation processes[J]. JOM: Journal of the Minerals Metals & Materials Society, 2009, 17(2): 327-345. [42] Jex C N, Phipps S J, Baker A, Bradley C. Reducing uncertainty in the climatic interpretations of speleothem δ18O[J]. Geophysical Research Letters, 2013, 40(10): 2259-2264. doi: 10.1002/grl.50467 [43] René Putiška M M, Isik Yilmaz, Dominik Niemiec, Xianfeng Cheng, Ivan Dostal, Ján Kubáč. Surface geophysical methods used to verify the karst geological structure in the built-up area: A case study of specific engineering-geological conditions[J]. Acta Geologica Sinica-English Edition, 2021, 95(5): 1763-1770. doi: 10.1111/1755-6724.14761 [44] 宋国明. 土耳其矿业投资环境[J]. 国土资源情报, 2014(10):43-47.SONG Guoming. Mining investment environment in turkey[J]. Land and Resources Information, 2014(10): 43-47. [45] Dinçer T, Payne B R. An environmental isotope study of the south-western karst region of Turkey[J]. Journal of Hydrology, 1971, 14(3-4): 233-258. doi: 10.1016/0022-1694(71)90037-0 [46] M 贝阿济特. 土耳其水资源规划和开发及管理[J]. 水利水电快报, 1998(18):22-27. [47] Bozkurt E, Mittwede S K. Introduction to the geology of Turkey: A synthesis[J]. International Geology Review, 2001, 43(7): 578-594. doi: 10.1080/00206810109465034 [48] Raja N B, Aydin O, Iek H, Türkolu N. A reconstruction of Turkey's potential natural vegetation using climate indicators[J]. Journal of Forestry Research, 2019, 30(6): 2199-2211. doi: 10.1007/s11676-018-0855-7 [49] Wolf D, Rotter V. A general review of the geology of Turkey[J]. Bulletin of the Mineral Research and Exploration, 2018, 48: 2018. [50] 康小兵, 杨四福, 管振德, 张文发, 许模. 川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征[J]. 中国岩溶, 2021, 40(3):381-388.KANG Xiaobing, YANG Sifu, GUAN Zhende, ZHANG Wenfa, XU Mo. Distribution of soluble rock strata and development of karst landforms in the Batang area, west Sichuan plateau[J]. Carsologica Sinica, 2021, 40(3): 381-388. [51] 李芳涛, 李华明, 胡志平, 陈南南, 晏长根. 峨汉高速廖山隧道岩溶发育规律及其工程效应浅析[J]. 中国岩溶, 2020, 39(4):592-603.LI Fangtao, LI Huangming, HU Zhiping, CHEN Nannan, YAN Changgen. Features of karst development and geotechnical effects in the Liaoshan tunnel on the E-Han expressway[J]. Carsologica Sinica, 2020, 39(4): 592-603. [52] 吴远斌, 刘之葵, 殷仁朝, 杨建兴, 罗伟权, 雷明堂, 戴建玲, 潘宗源. 湖南怀化盆地岩溶发育特征与分布规律[J]. 中国岩溶, 2022, 41(5):759-772,807. doi: 10.11932/karst2022y22WU Yuanbin, LIU Zhikui, YIN Renchao, YANG Jianxing, LUO Weiquan, LEI Mingtang, DAI Jianling, PAN Zongyuan. Karst development characteristics and distribution law in Huaihua basin, Hunan Province[J]. Carsologica Sinica, 2022, 41(5): 759-772,807. doi: 10.11932/karst2022y22 [53] 姜文, 柏道远, 尹欧, 杨帆, 彭祖武, 钟响, 李彬, 李银敏. 湘中灰山港—煤炭坝地区岩溶发育特征及其构造控制[J]. 中国岩溶, 2022, 41(1):1-12. doi: 10.11932/karst2021y39JIANG Wen, BAI Daoyuan, YIN Ou, YANG Fan, PENG Zuwu, ZHONG Xiang, LI Bin, LI Yinmin. Characteristics of karst development and its structural control in the Huishangang-Meitanba area of central Hunan[J]. Carsologica Sinica, 2022, 41(1): 1-12. doi: 10.11932/karst2021y39 [54] Günay G, Törk K, Güner İ N. Karst of Turkey[J]. Caves and Karst of Turkey-Volume 2, 2022: 1-5. [55] Yǐlmaz I Ş. GIS based susceptibility mapping of karst depression in gypsum: A case study from Sivas basin (Turkey)[J]. Engineering Geology, 2007, 90(1-2): 89-103. doi: 10.1016/j.enggeo.2006.12.004 [56] Uğur Doğan, Serdar Yeşilyurt. Gypsum karst landscape in the Sivas Basin[J]. Landscapes and Landforms of Turkey, 2019. [57] Bayari C S, Pekkan E, Ozyurt N N. Obruks, as giant collapse dolines caused by hypogenic karstification in central Anatolia, Turkey: Analysis of likely formation processes[J]. Hydrogeology Journal, 2009, 17(2): 327-345. doi: 10.1007/s10040-008-0351-9 [58] Bayarı C S, Özyurt N N, Törk A K, Avcı P, Güner İ N, Pekkan E. Geodynamic control of hypogene karst development in central Anatolia, Turkey[J]. Hypogene Karst Regions and Caves of the World, 2017: 449-462. [59] S K. How Roman engineers selected their water supplies[J]. Water Management, 2007, 160(4): 249-253. [60] Elhatipc H. The influence of karst features on environmental studies in Turkey[J]. Environmental Geology, 1997, 31(1-2): 27-33. doi: 10.1007/s002540050160 [61] Eroskay S O. Engineering properties of carbonate rocks and karst regions in Turkey[J]. Bulletin of Engineering Geology and the Environment, 1982, 25(1): 61-65. [62] Günay G. Turkey's karst and water resources[J]. Caves and Karst of Turkey-Volume 2, 2022: 7-15. [63] Günay G. Karst of Antalya travertine, Southwest of Turkey[J]. Caves and Karst of Turkey-Volume 2, 2022: 17-25. [64] Günay G. Chapter 10.6−Case Study: Geological and hydrogeological properties of Turkish karst and major karstic springs[J]. Groundwater Hydrology of Springs, 2010: 479-497. [65] Ekmeci M. Review of Turkish karst with emphasis on tectonic and paleogeographic controls[J]. Acta Carsologica, 2016, 32(2). [66] Lütfi Nazik, Murat Poyraz, Mustafa Karabıyıkoğlu. Karstic landscapes and landforms in Turkey[J]. Landscapes and Landforms of Turkey, 2019. [67] Özçelikc M. Foundation investigations and design in a karst terrain for the Antalya aquarium complex, Turkey[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2015, 48(3-4): 204-211. doi: 10.1144/qjegh2014-044 [68] 董发勤, 代群威, 赵玉连, 陈木兰, 饶瀚云, 吕珍珍, 宗美荣, 李博文, Ciftci Emin, Sener Mehmet Furkan. 土耳其棉花堡与中国黄龙和白水台钙华退化原因对比研究[J]. 中国岩溶, 2021, 40(6):1069-1076. doi: 10.11932/karst20210619DONG Faqin, DAI Qunwei, ZHAO Yulian, CHEN Mulan, RAO Hanyun, LV Zhenzhen, ZONG Meirong, LI Bowen, Ciftci Emin, Sener Mehmet Furkan. Comparative study on the causes of travertine degradation between Pamukkale in Turkey and Huanglong, Baishuitai in China[J]. Carsologica Sinica, 2021, 40(6): 1069-1076. doi: 10.11932/karst20210619 [69] Akbulutc G. Geotourism in Turkey[J]. GeoJournal Library, 2016, 121: 87-107. [70] Doan U, Ylmaz M. Natural and induced sinkholes of the Obruk Plateau and Karapinar-Hotamis Plain, Turkey[J]. Journal of Asian Earth Sciences, 2011, 40(2): 496-508. doi: 10.1016/j.jseaes.2010.09.014 [71] Ozdemir A. Investigation of sinkholes spatial distribution using the weights of evidence method and GIS in the vicinity of Karapinar (Konya, Turkey)[J]. Geomorphology, 2015, 245: 40-50. [72] 许百立. 土耳其水资源及其开发[J]. 水力发电, 1997(11):51-54. [73] 许燕, 施国庆. 土耳其水资源及其开发与利用[J]. 节水灌溉, 2009(12):54-57. doi: 10.3969/j.issn.1007-4929.2009.12.017 [74] Karanjac J, Günay G. Development of karst water resources in Turkey with emphasis on groundwater[J]. Natural Resources Forum, 1980, 4(1): 61. doi: 10.1111/j.1477-8947.1980.tb00962.x [75] Yücer A A. The land use in Turkey: A general assessment and affecting factors[J]. Journal of Geoscience and Environment Protection, 2020, 8(10): 102-116. doi: 10.4236/gep.2020.810007 [76] Çolak A H, Rotherham I D. A review of the forest vegetation of Turkey: Its status past and present and its future conservation[J]. Biology and Environment, 2006, 106(3): 343-354. doi: 10.3318/BIOE.2006.106.3.343 [77] 崔俊艳, 李胜涛, 姚亚辉, 刘东林, 刘伟朋, 王君照. 土耳其地热能产业发展对中国的启示[J]. 中国地质, 2023, 50(5):1375-1386. doi: 10.12029/gc20221019002CUI Junyan, LI Shengtao, YAO Yahui, LIU Donglin, LIU Weipeng, WANG Junzhao. Development of geothermal energy industry in Türkiye and its enlightenment to China[J]. Geology in China, 2023, 50(5): 1375-1386. doi: 10.12029/gc20221019002 [78] Bilgin O. The importance of geothermal energy resources in Turkey[J]. Open Access Library Journal, 2018, 5(2): e4317. [79] Mertoglu O, Simsek S, Basarir N. Geothermal energy use: Projections and country update for Turkey[C]//Proceedings of World Geothermal Congress, 2020. [80] 吴林强, 张涛, 苗淼, 徐晶晶, 杨振, 蒋成竹, 梁前勇. 土耳其海洋油气勘探开发现状及合作潜力[J]. 地质通报, 2021, 40(2-3):401-407.WU Linqiang, ZHANG Tao, MIAO Miao, XU Jingjing, YANG Zhen, JIANG Chengzhu, LIANG Qianyong. Exploration and development status of offshore oil and gas resources in Turkey and its cooperation potential[J]. Geological Bulletin of China, 2021, 40(2-3): 401-407. [81] 刘伟, 宋国明, 李延河. 土耳其矿产资源管理与投资前景分析[J]. 中国矿业, 2014, 23(10):61-64. doi: 10.3969/j.issn.1004-4051.2014.10.015LIU Wei, SONG Guoming, LI Yanhe. Mineral resource management of Turkey and analysis of investment prospect[J]. China Mining Magazine, 2014, 23(10): 61-64. doi: 10.3969/j.issn.1004-4051.2014.10.015 [82] Jasper C. China's property slowdown rocks Turkish marble exports[J]. Bloombergcom, 2019.