• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铀同位素反演古海洋环境的研究进展

罗劬侃 曹建华 钟亮 白冰 王奇岗 廖红为 宗克清 覃汉莲

罗劬侃,曹建华,钟 亮,等. 铀同位素反演古海洋环境的研究进展[J]. 中国岩溶,2024,43(4):957-968 doi: 10.11932/karst20240412
引用本文: 罗劬侃,曹建华,钟 亮,等. 铀同位素反演古海洋环境的研究进展[J]. 中国岩溶,2024,43(4):957-968 doi: 10.11932/karst20240412
LUO Qukan, CAO Jianhua, ZHONG Liang, BAI Bing, WANG Qigang, LIAO Hongwei, ZONG Keqing, QIN Hanlian. Research advance for uranium isotope as a quantitative proxy for paleo-oceans anoxic or oxic environment[J]. CARSOLOGICA SINICA, 2024, 43(4): 957-968. doi: 10.11932/karst20240412
Citation: LUO Qukan, CAO Jianhua, ZHONG Liang, BAI Bing, WANG Qigang, LIAO Hongwei, ZONG Keqing, QIN Hanlian. Research advance for uranium isotope as a quantitative proxy for paleo-oceans anoxic or oxic environment[J]. CARSOLOGICA SINICA, 2024, 43(4): 957-968. doi: 10.11932/karst20240412

铀同位素反演古海洋环境的研究进展

doi: 10.11932/karst20240412
基金项目: 广西自然科学基金项目“238U/235U对泥盆纪-石炭纪古海洋环境转型的指示意义——以桂林南边村全球辅助层型剖面为例”(2022GXNSFBA035593)
详细信息
    作者简介:

    罗劬侃(1982-),女,副研究员,硕士,主要从事古环境重建方面的研究。E-mail:luoqukan11@163.com

  • 中图分类号: P736

Research advance for uranium isotope as a quantitative proxy for paleo-oceans anoxic or oxic environment

  • 摘要: 铀同位素因可定量反演全球尺度古海洋缺氧洋底分布面积占比(%)而被广泛应用在埃迪卡拉纪末期以来的重要大洋缺氧或生物事件中。通过对国内外相关文献进行综述,系统总结了利用铀同位素开展定量反演的原理、方法与成果,初步构建了铀同位素定量反演的还原性海洋洋底面积占比(%)与大气氧气浓度、大洋缺氧或生物事件的耦合关系,发现:(1)铀同位素反演结果与各缺氧或生物事件吻合度较高,表明铀同位素确实为有效的全球尺度深时尺度定量反演指标;(2)还原性海洋洋底扩张与大气氧气浓度变化之间普遍存在滞后性,推测与海平面、海洋生产力、海洋内部环流变化及底层水氧化还原反应的滞后性相关。指出铀同位素反演受样品后期成岩、风化蚀变作用的影响,可能存在解译误差;铀同位素单指标解译结果存在精准度偏低的缺点,需采用多指标综合反演的方法提升反演精度。

     

  • 图  1  海洋中铀同位素平衡模型(海洋中主要的溶解铀来源于陆地河流,海洋铀会包括还原性/缺氧沉积物、局限性滞海洋盆沉积、海相碳酸盐、铁锰结核及蚀变大洋洋壳)(据[59])

    Figure  1.  U isotope budget model in the oceans (The main sources of dissolved uranium in the ocean are terrestrial rivers, and marine uranium can include reduced/anoxic sediments, localized stagnant ocean basin deposits, marine carbonates, ferromangan-manganese nodules, and altered macrocrust) (According to [59])

    图  2  利用Lau铀汇箱式模型(A图:δ238U和B图:[U]值)计算出晚二叠纪-中晚三叠纪古海洋还原性面积占比fanox(据文献[37])

    注:虚线为平均值,延长线上、下端为最大和最小值

    Figure  2.  Proportion of anoxic seafloor area (fanox, %) of Late Permian–Late-Middle Triassic by using Uranium Box Model (Figure A: δ238U and Figure B: [U] value) (According to literature[37])

    Note: The dotted line is the average value, and the upper and lower ends of the extension line are the maximum and minimum values.

    图  3  中元古代海洋三类铀汇质量守恒模型测算 (据文献[49])

    橙线代表各种可能的模型迭代下的最小洋底面积,蓝色代表最大洋底面积,红色块状部分为中元古代海水δ238USW(–0.43%至–0.73‰),图中虚线交汇处,代表含S的还原性静海洋底面积占比最大为7%。

    Figure  3.  Estimation of three-sink mass balance modeling on Mid-Proterozoic seawater (According to literature [49])

    The orange line represents the minimum seafloor area under various possible model iterations; the blue line represents the maximum seafloor area, and the red block represents the δ238USW (–0.43% to –0.73‰) of the Mesoproterozoic seawater. The intersection of dotted lines in the figure represents the maximum 7% of the seafloor area of the anoxic quiet sea containing S.

    图  4  显生宙主要大洋缺氧事件(或生物大灭绝/生命大爆发事件)发生时期大气氧气浓度与还原性洋底面积占比变化耦合关系图(据[68]修改)

    注:深蓝色实线为GEOCARBSULFOR生物地球化学模型模拟出的大气氧气含量变化范围[77];深蓝色虚线为COPSE生物地球化学模型模拟出的大气氧气含量变化范围[78];灰色不规则区域代表通过化石木炭重建的大气氧气含量变化曲线[79]。灰色线条代表通过地球化学指标、寒武纪生物群和大火燃烧记录重建的大气氧气浓度阈值[8084]。浅蓝色方框代表对应年代还原性海洋洋底面积占比变化范围。

    Figure  4.  Coupling relationship between atmospheric oxygenation concentration, anoxic seafloor area (fanox, %) during the oceanic anoxic events (or mass extinction/life explosion) (Modified based on [68])

    Note: The deep blue solid line represents the range of atmospheric oxygen content simulated by the GEOCARBSULFOR biogeochemical model [77]; the deep blue dashed line represents the range of atmospheric oxygen content simulated by the COPSE biogeochemical model[78]; the gray irregular region represents the curve of atmospheric oxygen content change reconstructed from fossil charcoal[79]. The gray lines represent the threshold values of atmospheric oxygen concentration reconstructed from geochemical indicators, Cambrian biota, and fire burning records[8084]. The light blue box represents the range of the proportion of anoxic seafloor area for the corresponding period.

  • [1] Kaiho K, Kajiwara Y, Tazaki K, et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: Their decrease, subsequent warming, and recovery[J]. Palaeoceanography, 1999, 14(4): 511-524.
    [2] Isozaki Y. Permian-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea[J]. Science, 1997, 276: 235-238. doi: 10.1126/science.276.5310.235
    [3] Bratton J F, Berry W B N, Morrow J R. Anoxia predates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154: 275-292. doi: 10.1016/S0031-0182(99)00116-9
    [4] Turgeon S C, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of Central Italy[J]. Chemical Geology, 2006, 234: 321-339. doi: 10.1016/j.chemgeo.2006.05.008
    [5] 黄永建, 王成善, 顾健. 白垩纪大洋缺氧事件:研究进展与未来展望[J]. 地质学报, 2008, 82(1):21-30. doi: 10.3321/j.issn:0001-5717.2008.01.003

    HUANG Yongjian, WANG Chengshan, GU Jian. Cretaceous Oceanic Anoxic Events: Research progress and forthcoming prospects[J]. Acta Geologica Sinica, 2008, 82(1): 21-30. doi: 10.3321/j.issn:0001-5717.2008.01.003
    [6] 陈曦, 郭会芳, 姚翰威, 韩凯博, 汪恒慧. 白垩纪大洋缺氧事件OAE2期间碳循环扰动的过程与机制[J]. 科学通报, 2022, 67(15):1677-1688.

    CHEN Xi, GUO Huifang, YAO Hanwei, HAN Kaibo, WANG Henghui. Processes and forcing mechanisms of the carbon cycle perturbation during Cretaceous Oceanic Anoxic Event 2[J]. Chinese Science Bulletin, 2022, 67(15): 1677-1688.
    [7] 常华进, 储雪蕾, 冯连君, 黄晶, 张启锐. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, HUANG Jing, ZHANG Qirui. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011
    [8] Clarkson M O, Stirling C H, Jenkynsb H C, et al. Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2918-2923.
    [9] Jenkyns H C. Geochemistry of Oceanic Anoxic Events[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): Q03004.
    [10] Francois R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada[J]. Marine Geology, 1988, 83(1/2/3/4): 285-308.
    [11] Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174(1/2/3/4): 341-354.
    [12] Algeo T J. Can marine anoxic events draw down the trace element inventory of seawater?[J]. Geology, 2004, 32: 1057-1060.
    [13] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
    [14] Piper D Z, Perkins R B. A modern vs. Permian black shale: The hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
    [15] Morse J W, Luther G W III. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3373-3378.
    [16] Grosjean E, Adam P, Connan J, Albrecht P. Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 789-804. doi: 10.1016/S0016-7037(03)00496-4
    [17] Wanty R B, Goldhaber M B. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1992, 56 (4): 1471-1483.
    [18] Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63 (11/12): 1735-1750.
    [19] Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society, London, Spec Publications, 1991, 58: 1-24. doi: 10.1144/GSL.SP.1991.058.01.01
    [20] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A.[J]. Chemical Geology, 1992, 99: 65-82. doi: 10.1016/0009-2541(92)90031-Y
    [21] Bryn Jones, David A C Manning. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111: 111-129. doi: 10.1016/0009-2541(94)90085-X
    [22] Wignall P B. Black Shale[M]. Oxford: Claredon Press, 1994.
    [23] 周炼, 苏洁, 黄俊华, 颜佳新, 解习农, 高山, 戴梦宁, 腾格尔. 判识缺氧事件的地球化学新标志—钼同位素[J]. 中国科学:地球科学, 2011, 41(3):309-319.
    [24] 尚墨翰, 汤冬杰, 史晓颖, 魏昊明, 刘安琪. I/(Ca+Mg)作为指示碳酸盐沉积氧化还原条件的重要指标:研究进展与问题评述[J]. 古地理学报, 2018, 20(4):651-664. doi: 10.7605/gdlxb.2018.04.047

    SHANG Mohan, TANG Dongjie, SHI Xiaoying, WEI Haoming, LIU Anqi. I/(Ca+Mg) as an important redox proxy for carbonate sedimentary environments: Progress and problems[J]. Journal of Palaeogeography, 2018, 20(4): 651-664. doi: 10.7605/gdlxb.2018.04.047
    [25] 张俊鹏, 李超, 张元动. 早古生代海洋缺氧事件的地质记录与背景机制[J]. 科学通报, 2022, 67(15):1644-1659.

    ZHANG Junpeng, LI Chao, ZHANG Yuandong. Geological evidences and mechanisms for oceanic anoxic events during the Early Paleozoic[J]. Chinese Science Bulletin, 2022, 67(15): 1644-1659.
    [26] Kabanov P, Hauck T E, Gouwy S A, Grasby S E, Boon A v d. Oceanic anoxic events, marine photic-zone euxinia, and controversy of sea-level fluctuations during the Middle-Late Devonian[J]. Earth-Science Reviews, 2023, 241: 104415. doi: 10.1016/j.earscirev.2023.104415
    [27] 李聪颖, 吴思璠. 大洋缺氧事件金属稳定同位素研究进展[J]. 地球科学进展, 2022, 37(11):1127-1140. doi: 10.11867/j.issn.1001-8166.2022.085

    LI Congying, WU Sifan. Advances in research on stable metal isotopes in Oceanic Anoxic Events[J]. Advances in Earth Science, 2022, 37(11): 1127-1140. doi: 10.11867/j.issn.1001-8166.2022.085
    [28] Dickson A J. A molybdenum-isotope perspective on Phanerozoic deoxygenation events[J]. Nature Geoscience, 2017, 10: 721-726.
    [29] Pearce C R, Cohen A S, Coe A L, Burton K W. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic[J]. Geology, 2008, 36(3): 231-234. doi: 10.1130/G24446A.1
    [30] 王欢, 姚军明, 李杰. 钼同位素地球化学研究进展及其在成矿作用研究中的应用潜力[J]. 地球化学, 2019, 48(3):213-229.

    WANG Huan, YAO Junming, LI Jie. A review of progress in molybdenum isotope geochemistry and itspotential application in mineralization research[J]. Geochimica, 2019, 48(3): 213-229.
    [31] Ostrander C M, Owens J D, Nielsen S G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2:~94 Ma)[J]. Science Advances, 2017, 3: e1701020.
    [32] Weyer S, Anbar A D, Gerdes A, Gordon G W, Algeo T J, Boyle E A. Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72: 345-359.
    [33] 徐林刚. 238U/235U分馏及其地质应用[J]. 矿床地质, 2014, 33(3):497-510.

    XU Lingang. 238U/235U isotope fractionation in nature and its geological applications[J]. Mineral Deposits, 2014, 33(3): 497-510.
    [34] Dunk R M, Mills R A, Jenkins W J. A reevaluation of the oceanic uranium budget for the Holocene[J]. Chemical Geology, 2002, 190: 45-67.
    [35] Romaniello S J, Herrmann A D, Anbar A D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy[J]. Chemical Geology, 2013, 362: 305-316.
    [36] Tissot F L H, Dauphas N. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia[J]. Geochimica et Cosmochimica Acta, 2015, 167: 113-143.
    [37] Lau K V, Maher K, Altiner D, et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 2360-2365.
    [38] Zhang F F, Algeo T J, Romaniello S J, et al. Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: Confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy[J]. Geology, 2018, 46(4): 327-330.
    [39] Cheng K, Elrick M, Romaniello S J. Early Mississipian ocean anoxia triggered organic carbon burial and late Paleozoic cooling: Evidence from uranium isotopes recorded in marine limestone[J]. Geology, 2020, 48(4): 363-367.
    [40] Stirling C H, Andersen M B, Potter E K, Halliday A N. Low-temperature isotopic fractionation of uranium[J]. Earth and Planetary Science Letters, 2007, 264: 208-225.
    [41] Andersen M B, Romaniello S, Vance D, Little S H, Herdman R, Lyons T W. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194.
    [42] Chen X M, Romaniello S J, Herrmann A D, Wasylenki L E, Anbar A D. Uranium isotope fractionation during coprecipitation with aragonite and calcite[J]. Geochimica et Cosmochimica Acta, 2016, 188: 189-207.
    [43] Chen X M, Romaniello S J, Hermann A D, Samankassou E, Anbar A D. Biological effects on uranium isotope fractionation (238U/235U) in primary biogenic carbonates[J]. Geochimica et Cosmochimica Acta, 2018, 240: 1-10.
    [44] Tissot F L H, Chen C, Go B M, et al. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr[J]. Geochimica et Cosmochimica Acta, 2018, 242: 233-265.
    [45] Brennecka G A, Herrmann A D, Algeo T J, Anbar A D. Rapid expansion of oceanic anoxia immediately before the end Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 17631-17634.
    [46] Dahl T W, Boyle R A, Canfield D E, Connelly J N, Gill B C, Lenton T M, Bizzarro M. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J]. Earth and Planetary Science Letters, 2014, 401: 313-326.
    [47] Dahl T W, Connelly J N, Kouchinsky A, Gill B C, Månsson S F, Bizzarro M. Reorganisation of Earth's biogeochemical cycles briefly oxygenated the oceans 520 Myr ago[J]. Geochemical Perspective Letters, 2017, 3(2): 210-220.
    [48] Elrick M, Polyak V, Algeo T J, et al. Globalocean redox variation during the middle late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates[J]. Geology, 2017, 45: 163-166.
    [49] Gilleaudeau G J, Romaniello S J, Luo G M, et al. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans[J]. Earth and Planetary Science letters, 2019, 521: 150-157.
    [50] Zhang F, Lenton T M, Rey A, et al. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: A critical review[J]. Geochimica et Cosmochimica Acta, 2020, 287: 27-49.
    [51] Andersen M B, Stirling C H, Weyer S. Uranium isotope fractionation[J]. Reviews in Mineralogy & Geochemistry, 2017, 82: 799-850.
    [52] Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63: 1735-1750.
    [53] Andersen M B, Vance D, Morford J L, et al. Closing in on the marine 238U/235U budget[J]. Chemical Geology, 2016, 420: 11-22.
    [54] Holmden C, Amini M, Francois R. Uranium isotope fractionation in Saanich Inlet: A modern analog study of a paleoredox tracer[J]. Geochimica et Cosmochimica Acta, 2015, 153: 202-215.
    [55] Rolison J M, Stirling C H, Middag R, et al. Uranium stable isotope fractionation in the Black Sea: Modern calibration of the 238U/235U paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 203: 69-88.
    [56] Zhang F F, Xiao S H, Kendall B, et al. Extensive marine anoxia during the terminal Ediacaran Period[J]. Science Advances, 2018, 4: eaan8983.
    [57] Goto K T, Anbar A D, Gordon G W, et al. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine 238U/235U isotope system[J]. Geochimica et Cosmochimica Acta, 2014, 146: 43-58.
    [58] Wang X L, Planavsky N J, Reinhard C T, Hein J R, Johnson T M. A Cenozoic Seawater redox record derived from 238U/235U in ferromanganese crusts[J]. American Journal of Science, 2016, 316(1): 64-83.
    [59] Zhang F, Dahl T W, Lenton T M, et al. Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis[J]. Earth and Planetary Science Letters, 2020, 533: 115976.
    [60] Helly J J, Levin L A. Global distribution of naturally occurring marine hypoxia on continental margins[J]. Deep Sea Research Part I-Oceanographic Research Papers, 2004, 51(9): 1159-1168.
    [61] Montoya-Pino C, Weyer S, Anbar A D, et al. Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes[J]. Geology, 2010, 38(4): 315-318.
    [62] Maher K, Steefel C I, DePaolo D J, et al. The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 337-363.
    [63] Payne J L, Kump L. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations[J]. Earth and Planetary Science Letters, 2007, 256(1-2): 264-277.
    [64] Winguth C, Winguth A M E. Simulating Permian-Triassic oceanic anoxia distribution: Implications for species extinction and recovery[J]. Geology, 2012, 40(2): 127-130.
    [65] Burgess S D, Bowring S, Shen S Z. High-precision timeline for Earth's most severe extinction[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3316-3321.
    [66] Stylo M, Neubert N, Wang Y, et al. Uranium isotopes fingerprint biotic reduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5619-5624.
    [67] Noordmann J, Weyer S, Georg R B, et al. 238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: New insights on the oceanic U isotope mass balance[J]. Isotopes in Environmental and Health Studies, 2015, 18: 1-23.
    [68] Reershemius T, Planavsky N J. What controls the duration and intensity of ocean anoxic events in the Paleozoic and the Mesozoic?[J]. Earth-Science Review, 2021, 221: 103787.
    [69] Tostevin R, Clarkson M O, Gangl S, et al. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans[J]. Earth and Planetary Science Letters, 2019, 506: 104-112. doi: 10.1016/j.jpgl.2018.10.045
    [70] Wei G, Planvasky N J, Tarhan L G, et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion[J]. Geology, 2018, 46: 587-590.
    [71] Wei G, Planvasky N J, He T, et al. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth-Science Reviews, 2021, 214: 103506.
    [72] Dahl T W, Connelly J N, Kouchinsky A. Atmosphere−ocean oxygen and productivity dynamics during early animal radiations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19352-19361.
    [73] Bartlett R, Elrick M, Wheeley J R, et al. Abrupt global-ocean anoxia during the Late Ordovician-early Silurian detected using uranium isotopes of marine carbonates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 5896-5901.
    [74] White D A, Elrick M, Romaniello S, et al. Global seawater redox trends during the Late Devonian mass extinction detected using U isotopes of marine limestones[J]. Earth and Planetary Science Letters, 2018, 503: 68-77.
    [75] Zhang F F, Shen S Z, Cui Y, et al. Two distinct peisodes of marine anoxia during the Permian-Triassic crisis evidences by uranium isotopes in marine dolostones[J]. Geochimica et Cosmochimica Acta, 2020, 287: 165-179.
    [76] Jost A B, Bachan A, Schootbrugge B, et al. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3093-3108. doi: 10.1002/2017GC006941
    [77] Krause A J, Mills B J W, Zhang S, et al. Stepwise oxygenation of the Paleozoic atmosphere[J]. Nature Communications, 2018, 9: 4081. doi: 10.1038/s41467-018-06383-y
    [78] Lenton T M, Daines S J, Mills B J W. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time[J]. Earth-Science Reviews, 2018, 178: 1-28. doi: 10.1016/j.earscirev.2017.12.004
    [79] Glasspool I J, Scott A C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal[J]. Nature Geoscience, 2010, 3: 627-630.
    [80] Sperling E A, Wolock C J, Morgan A S, et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation[J]. Nature, 2015, 523 (7561): 451-454.
    [81] Belcher C M, McElwain J C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic[J]. Science, 2008, 321: 1197-1201. doi: 10.1126/science.1160978
    [82] Glasspool I J, Scott A C, Waltham D, et al. The impact of fire on the Late Paleozoic Earth system[J]. Frontiers in Plant Science, 2015, 6: 1-13.
    [83] Canfield D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453. doi: 10.1038/24839
    [84] Canfield D E. In: Holland H D, Turekian, K K (Eds.). Treatise on Geochemistry[M]. New York: Elsevier, 2014: 197−216.
  • 加载中
图(4)
计量
  • 文章访问数:  93
  • HTML浏览量:  33
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 录用日期:  2024-04-15
  • 修回日期:  2024-02-17
  • 刊出日期:  2024-10-31

目录

    /

    返回文章
    返回