Genesis model of geothermal fields in Yangmeichong, Guangxi
-
摘要: 广西贺州地热资源丰富,所蕴含的地热能潜力巨大,极具开发前景和研究价值,但该地区地热资源存在补给来源、循环演化过程及成因机制不清的问题。本研究通过地热地质调查、地球物理、地球化学和环境同位素等方法探究贺州杨梅冲地热水的热储特征、补给来源、循环深度和成因模式,初步建立地热资源温度、组分、深度、磁性等参数与地质认识一致的地质-地球物理模型和隆起山地断裂对流型地热概念模型。结果显示,杨梅冲地热田属带状热储,姑婆山断层是杨梅冲地热田主要导水、控热构造。杨梅冲地热田地热流体水化学类型为HCO3-Na型。氢氧同位素显示区内地热水的补给来源于降水入渗。降雨在水力和热力的驱动下沿着断裂带和岩石孔隙循环交替水热对流,形成了杨梅冲断裂对流地热模型。研究结果为广西杨梅冲地热资源的勘查和合理利用提供理论依据。Abstract: Hezhou in Guangxi is rich in geothermal resources with great development prospects and research value. However, there are problems to be addressed in terms of supply sources, cyclic evolution processes, and genesis mechanisms of geothermal resources in this region. Through geothermal geological surveys and analyses of geophysics, geochemistry, and environmental isotopes, this study has explored thermal storage characteristics, supply sources, circulation depths, and genetic models of the geothermal fields in Yangmeichong, Hezhou. A geological geophysical model and a convective geothermal model of uplift mountain faults have been preliminarily established, whose geological parameters such as temperature, composition, depth, and magnetism of geothermal resources are consistent with the understanding of geology. The thermal reservoir of geothermal fields in Yangmeichong is belt shaped and composed of the Yanshanian granite fracture zone. The Guposhan Fault (F1) is the main water conducting and heat controlling structure in the geothermal fields in Yangmeichong. The source of geothermal heat flow in the geothermal fields is the heat from the upper mantle and deep crust (mantle heat flow), as well as the heat generated by the decay of radioactive elements in the shallow crust (crust heat flow), providing a heat source for the formation of deep circulating groundwater. Temperatures and geothermal gradients gradually increase from the western boundary (F1-1) to the eastern boundary (F1) and from the northern boundary to the southern boundary of the geothermal fields in Yangmeichong. In the vertical direction, geothermal gradients increase with the increase of depths. Temperatures within the depth range of 800–1,200 m are 53.5–73.0 ℃, and the geothermal gradient is 4.88 ℃/100 m. The deep thermal storage temperatures of the Yangmeichong geothermal fields have been measured by both silicon dioxide geothermal temperature scale and potassium magnesium geothermal temperature scale, and temperatures are 92.24 ℃ and 87.22 ℃, respectively. Accordingly, the depths of underground thermal mineral water circulation are 3,292 m and 3,069 m, respectively. The hydrochemical type of geothermal fluid in the geothermal fields in Yangmeichong is HCO3-Na. Due to the leaching effect of deep groundwater on granite bodies, the contents of silicic acid and sodium ions in underground hot water are relatively high. The isotopic detection results indicate that the supply of geothermal water in the area comes from precipitation infiltration, and the tritium content of geothermal water is less than 2 TU. It is speculated that geothermal water in Yangmeichong was formed by atmospheric precipitation before 1960. The geothermal energy in Yangmeichong is a fault convection geothermal model. Geothermal water is directly supplied by atmospheric precipitation with fault zones and rock pores as water channels, and it flows deep by both hydraulic and thermal forces. After alternating water thermal convection, geothermal water is formed. Subsequently, the convection of geothermal water took place along the fault of Gupo mountain from deep to shallow and from north to south, which formed the fault convective geothermal model in Yangmeichong. The research results provide a theoretical basis for the exploration and rational utilization of geothermal resources in Yangmeichong, Guangxi.
-
图 1 研究区地质简图与地热田分布图(Q:第四系冲洪积层;K1ηγ:早白垩世新路岩体;J3ηγ:晚侏罗世里松岩体、姑婆山岩体;D:泥盆系砂岩、白云岩)
Figure 1. Geological map and distribution of geothermal fields in the study area (Q: Quaternary alluvial eluvium; K1ηγ: early Cretaceous Xinlu pluton; J3ηγ: late Jurassic Lisong rock mass and Gupo mountain rock mass; D: Devonian sandstone and dolomite)
表 1 地热水和地表水常规组分和特征组分
Table 1. Conventional and characteristic components of geothermal water and surface water
样品 热储带
深度/m常规组分/mg·L−1 特征组分/mg·L−1 Na+ K+ Ca2+ Mg2+ ${\rm{HCO}}_3^{-}$ ${\rm{SO}}_4^{2-}$ Cl− H2SiO3 F Rn H2S ZK01 308~315 22.90 0.87 18.30 0.20 95.50 5.86 1.06 51.80 5.22 601.35 − ZK02 418~423 23.90 1.00 18.00 0.18 94.70 6.77 1.08 53.30 5.48 195.24 0.22 ZK03 905~918 32.40 1.06 17.60 0.088 91.30 14.70 1.90 53.90 6.66 1369.30 0.42 S1(温泉) − 22.40 1.02 18.20 0.18 94.30 6.02 1.03 51.60 5.03 338.27 − X1(溪流) − 9.96 1.16 10.60 0.49 47.60 6.08 1.00 − − − − 表 2 硅酸盐岩矿检测结果(单位:%)
Table 2. Testing results of silicate rocks and minerals (Unit: %)
样品 SiO2 Al2O3 Fe2O3 FeO K2O Na2O CaO MgO MnO P2O5 TiO2 H2O+ 烧失量 ZK03-1 78.68 10.89 1.11 0.53 4.59 2.32 0.51 0.071 0.026 0.014 0.092 0.96 0.89 ZK03-2 77.51 11.40 1.49 0.84 4.61 2.45 0.71 0.093 0.034 0.017 0.10 1.40 1.14 表 3 地热水与雨水中同位素含量
Table 3. Isotope contents in geothermal water and rainwater
检测项目 ZK03 ZK02 雨水 δD/‰ −42.70 −39.80 −8.90 δ18D/‰ −7.06 −6.54 −2.55 3H(TU) <2 <2 5.42 表 4 热储带(含水层)空间几何参数
Table 4. Spatial geometric parameters of thermal storage zones (aquifers)
热储带 计算基准
高度D/m顶板埋
深d/m含水层
倾角α/°含水层平均
铅直厚度m/m含水层真
厚度M/m含水层倾
斜深度/L·m−1地热田
面积A/m2体积V
/m3总体积
V总/m3第一层 3 180 308 70 7.3 2.48 3 055 150×103 4.58×108 1.2×109 第二层 3 180 801 70 9.3 3.16 2 530 3.80×108 第三层 3 180 905 70 9.3 3.16 2 420 3.63×108 表 5 二氧化硅和钾镁地热温标法热储温度计算结果
Table 5. Thermal storage temperatures measured by silica geothermal temperature scale and potassium magnesium geothermal temperature scale
样品 水温
/℃计算指标浓度/mg·L−1 二氧化硅地热温标法
热储温度/℃计算指标浓/mg·L−1 钾镁地热温标法
热储温度/℃H2SiO3 SiO2 K+ Mg2+ ZK01 37.2 51.8 39.84 91.47 0.87 0.20 81.64 ZK02 39.0 53.3 41.00 92.49 1.00 0.18 85.81 ZK03 46.0 53.9 41.46 93.52 1.06 0.088 95.20 S1 (温泉) 38.3 51.6 39.69 91.47 1.02 0.18 86.24 -
[1] Xing Y, Yu H, Liu Z, et al. Study on chemical genesis of deep geothermal fluid in Gaoyang geothermal field[J]. Frontiers in Earth Science, 2022, 9: 787222. doi: 10.3389/feart.2021.787222 [2] Huang Junpeng, Wu Xiyong, Ling Sixiang, et al. A bibliometric and content analysis of research trends on GIS-based landslide susceptibility from 2001 to 2020[J]. Environmental Science and Pollution Research, 2022, 29: 86954-86993. doi: 10.1007/s11356-022-23732-z [3] 康志强, 张起钻, 管彦武, 刘德民, 袁金福, 杨志强, 陆济璞, 王新宇, 张勤军, 张美玲, 冯民豪. 广西干热岩地热资源赋存条件分析[J]. 地学前缘, 2020, 27(1):55-62.KANG Zhiqiang, ZHANG Oizuan, GUAN Yanwu, LIU Demin, YUAN Jinfu, YANG Zhiqiang, LU Jipu, WANG Xinyu, ZHANG Qinjun, ZHANG Meiling, FENG Minhao. Analysis on the occurrenee condition of geothermal resources of hot dry rock in Guangxi[J]. Earth Sciences Frontiers, 2020, 27(1): 55-62. [4] 吴少斌, 欧业成, 卢进林, 钱小鄂. 广西合浦盆地地热资源及其开发利用初步评价[J]. 桂林工学院学报, 2005, 25(2):155-160.WU Shaobin, OU Yecheng, LU jinlin, QIAN Xiaoe. Exploration and assessment of the geothermic resources at Hepu basin in Guangxi[J]. Journal of Guilin University of Technology, 2005, 25(2): 155-160. [5] 康志强, 张起钻, 管彦武, 冯波, 袁金福, 孙明行, 刘德民, 王新宇, 杨志强, 陆济璞, 张勤军, 冯民豪. 广西合浦盆地干热岩资源成热条件及潜力评价[J]. 吉林大学学报(地球科学版), 2020, 50(4):1151-1160.KANG Zhiqiang, ZHANG Qizuan, GUAN Yanwu, FENG Bo, YUAN Jinfu, SUN Minghang, LIU Demin, WANG Xinyu, YANG Zhiqiang, LU Jipu, ZHANG Qinjun, FENG Minhao. Evaluation of thermal conditions and potential of dry hot rock resources in Hepu basin, Guangxi[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(4): 1151-1160. [6] 孙明行, 张起钻, 刘德民, 孙兴庭, 林珊, 吴祥珂, 梁国科, 李玉坤, 管彦武, 李叶飞. 广西干热型地热资源成因机制与赋存模式[J]. 地质科技通报, 2022, 41(3):330-340.SUN Minghang, ZHANG Qizuan, LIU Demin, SUN Xingting, LIN Shan, WU Xiangke, LIANG Guoke, LI Yukun, GUAN Yanwu, LI Yefei. Genesis and occurrence models of hot-dry geothermal resources in Guangxi[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 330-340. [7] 莫亚军, 区小毅, 朱国器, 杨富强, 卢胜辉, 黎海龙. 广西柳州市北部地区地热资源调查及远景分析[J]. 矿产与地质, 2021, 35(6):1102-1110.MO Yajun, OU Xiaoyi, ZHU Guoqi, YANG Fuqiang, LU Shenghui, LI Hailong. Investigation and prospective analysis of geothermal resources in the north of Liuzhou City, Guangxi[J]. Mineral Resources and Geology, 2021, 35(6): 1102-1110. [8] 廖海吉, 蓝俊康, 洪淑娜, 闫志为, 黄希明. 汤水寨温泉带状热储特征及其热储量评价[J]. 桂林理工大学学报, 2013, 33(3):449-453. doi: 10.3969/j.issn.1674-9057.2013.03.010LIAO Haiji, LAN Junkang, HONG Shuna, YAN Zhiwei, HUANG Ximing. Geothermal reserves evaluation and characteristics of zoned reservoir in Tangshuizhai spring area[J]. Journal of Guilin University of Technology, 2013, 33(3): 449-453. doi: 10.3969/j.issn.1674-9057.2013.03.010 [9] 吴伟志, 莫燕娟, 黄丽霞, 蓝俊康. 贺州大汤温泉的形成条件及其水化学特征[J]. 广西科学院学报, 2013, 29(4):230-234.WU Weizhi, MO Yanjuan, HUANG Lixia, LAN Junkang. Forming conditions and hydrochemical characteristics of Datang hot spring, Hezhou City[J]. Journal of Guangxi Academy of Sciences, 2013, 29(4): 230-234. [10] 朱思萌, 梁礼革, 朱明占, 谢先军. 广西贺州热泉水文地球化学特征、热储温度与循环深度估算[J]. 桂林理工大学学报, 2015, 35(2):274-279. doi: 10.3969/j.issn.1674-9057.2015.02.009ZHU Simeng, LIANG Lige, ZHU Mingzhan, XIE Xianjun. Hydrogeochemistry, temperatures and circulation depth of geothermal springs from Hezhou, Guangxi[J]. Journal of Guilin University of Technology, 2015, 35(2): 274-279. doi: 10.3969/j.issn.1674-9057.2015.02.009 [11] 王建超, 施玉娇, 曾晖, 敬荣中. 多种物化探方法在贺州某地热温泉勘查中的综合应用[J]. 矿产与地质, 2019, 33(2):304-309. doi: 10.3969/j.issn.1001-5663.2019.02.016WANG Jianchao, SHI Yujiao, ZENG Hui, JING Rongzhong. Combined application of various geophysical and geochemical exploration methods in geothermal hot spring exploration in Hezhou[J]. Mineral Resources and Geology, 2019, 33(2): 304-309. doi: 10.3969/j.issn.1001-5663.2019.02.016 [12] 孙明行, 王瑞湖, 梁礼革, 邓宾, 李玉坤, 刘德民, 管彦武. 广西地热资源特征与潜力评价[J]. 中国地质, 2023, 50(5):1387-1398. doi: 10.12029/gc20220221001SUN Minghang, WANG Ruihu, LIANG Lige, DENG Bin, LI Yukun, LIU Demin, GUAN Yanwu. Characteristics and potential evaluation of geothermal resources in Guangxi[J]. Geology in China, 2023, 50(5): 1387-1398. doi: 10.12029/gc20220221001 [13] 钟振楠, 康凤新, 宋明忠, 郎旭娟, 柳禄湧, 傅朋远, 李志杰. 鲁东招远地热田地热通量及地热成因研究[J]. 地质论评, 2021, 67(3):828-840.ZHONG Zhennan, KANG Fengxin, SONG Mingzhong, LANG Xujuan, LIU Luyong, FU Pengyuan, LI Zhijie. Study on geothermal flux and geothermal genesis of Zhaoyuan geothermal field in eastern Shandong geothermal area[J]. Geological Review, 2021, 67(3): 828-840. [14] 李明辉, 袁建飞, 黄从俊, 刘慧中, 郭镜. 四川广安铜锣山背斜热储性质及地热成因模式[J]. 水文地质工程地质, 2020, 47(6):36-46.LI Minghui, YUAN Jianfei, HUANG Congjun, LIU Huizhong, GUO Jing. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang'an in east Sichuan[J]. Hydrogeology & Engineering Geology, 2020, 47(6): 36-46. [15] 潘明, 郝彦珍, 吕勇, 李波. 云南昌宁橄榄河热泉水化学特征及复合成因机制研究[J]. 中国岩溶, 2021, 40(2):281-289. doi: 10.11932/karst20210208PAN Ming, HAO Yanzhen, LV Yong, LI Bo. Hydrochemical characteristics and composite genesis of a geothermal spring in Ganlanhe, Changning, Yunnan Province[J]. Carsologica Sinica, 2021, 40(2): 281-289. doi: 10.11932/karst20210208 [16] 杨冬, 胡政, 黄锋, 刘星辰. 尼格高地温隧道地热成因及地温分布特征研究[J]. 铁道科学与工程学报, 2023, 20(6):2326-2339.YANG Dong, HU Zheng, HUANG Feng, LIU Xingchen. Study on geothermal origin and geothermal distribution characteristics of Nige high geothermal tunnel[J]. Journal of Railway Science and Engineering, 2023, 20(6): 2326-2339. [17] 尹政, 柳永刚, 张旭儒, 李玉山, 冯嘉兴. 张掖盆地地热资源赋存特征及成因分析[J]. 水文地质工程地质, 2023, 50(1):168-178.YIN Zheng, LIU Yonggang, ZHANG Xuru, LI Yushan, FENG Jiaxing. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye basin[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 168-178. [18] 白博文, 平建华, 赵继昌, 杨振威, 宁艺武, 熊超凡. 河南淮阳县地热流体化学特征及其成因分析[J]. 中国地质, 2022, 49(3):956-966.BAI Bowen, PING Jianhua, ZHAO Jichang, YANG Zhenwei, NING Yiwu, XIONG Chaofan. Chemical characteristics and causes analysis of the geothermal fluid in Huaiyang county, Henan Province[J]. Geology in China, 2022, 49(3): 956-966. [19] 赵佳怡, 张薇, 张汉雄, 屈泽伟, 李曼, 岳高凡. 四川巴塘地热田水文地球化学特征及成因[J]. 水文地质工程地质, 2019, 46(4):81-89.ZHAO Jiayi, ZHANG Wei, ZHANG Hanxiong, QU Zewei, LI Man, YUE Gaofan. Hydrogeochemical characteristics and genesis of the geothermal fields in Batang of Sichuan[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 81-89. [20] 郭本力, 杨鹏, 袁杰. 日照市松柏地热井水化学特征及地热成因分析[J]. 山东科技大学学报(自然科学版), 2022, 41(6):15-23, 31.GUO Benli, YANG Peng, YUAN Jie, Hydrochemical characteristics and geothermal genesis of Songbai geothermal well in Rizhao City[J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(6): 15-23, 31. [21] 李小林, 吴国禄, 雷玉德, 李重阳, 赵继昌, 白银国, 曾昭发, 赵振, 张珊珊, 赵爱军. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版), 2016, 46(1):220-229.LI Xiaolin, WU Guolu, LEI Yude, LI Chongyang, ZHAO Jichang, BAI Yinguo, ZENG Zhaofa, ZHAO Zhen, ZHANG Shanshan, ZHAO Aijun. Suggestions for geothermal genetic mechanism and exploitation of Zhacang temple geothermal energy in Guide county, Qinghai Province[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1): 220-229. [22] 王治祥, 蒋晶, 邹胜章, 冉瑜, 谢斌, 吕玉香, 杨平恒. 渝东南深部地热温度解析[J]. 中国岩溶, 2019, 38(5):663-669. doi: 10.11932/karst20190502WANG Zhixiang, JIANG Jing, ZOU Shengzhang, RAN Yu, XIE Bin, LV Yuxiang, YANG Pingheng. Analysis of deep geothermal temperature in southeast Chongqing[J]. Carsologica Sinica, 2019, 38(5): 663-669. doi: 10.11932/karst20190502 [23] 马鑫, 付雷, 李铁锋, 闫晶, 刘廷, 王明国, 邵炜. 喜马拉雅东构造结地区地热成因分析[J]. 现代地质, 2021, 35(1):209-219.MA Xin, FU Lei, LI Tiefeng, YAN Jing, LIU Ting, WANG Mingguo, SHAO Wei. Analysis of geothermal origin in eastern Himalayan syntaxis[J]. Geoscience, 2021, 35(1): 209-219. [24] 李善民, 刘红舟, 王新伟, 唐名富, 吴继炜. 广西贺州市杨梅冲温泉热储特征及其资源量评价[J]. 矿产与地质, 2022, 36(2):374-379.LI Shanmin, LIU Hongzhou, WANG Xingwei, TANG Mingfu, WU Jiwei. Thermal storage characteristics and geothermal resources evaluation of Yangmeichong hot spring in Hezhou City, Guangxi[J]. Mineral Resources and Geology, 2022, 36(2): 374-379. [25] 冯佐海. 广西姑婆山-花山花岗岩体侵位过程及构造解析[D]. 长沙:中南大学, 2003.FENG Zuohai. Emplacement process and structural analysis of Gupuoshan-Huashan granitic pluton, Guangxi[D]. Changsha: Central South University, 2003. [26] 罗伟, 杨仕江, 彭静, 袁余洋, 李生红, 曾祥建, 张信. 黔北遵义地区地热水化学特征及成因[J]. 中国岩溶, 2024, 43(1):72-83. doi: 10.11932/karst20240106LUO Wei, YANG Shijiang, PENG Jing, YUAN Yuyang, LI Shenghong, ZENG Xiangjian, ZHANG Xin. Hydrochemical characteristics and genesis of geothermal water in the Zunyi area, north Guizhou[J]. Carsologica Sinica, 2024, 43(1): 72-83. doi: 10.11932/karst20240106 [27] 崔锐, 王学鹏, 冯波, 刘曦遥, 冯守涛, 刘帅. 基于水化学同位素技术的地热储层成因模式对比分析:以鲁西北埕宁隆起区为例[J]. 中国岩溶, 2023, 42(5):969-981, 994. doi: 10.11932/karst20230513CUI Rui, WANG Xuepeng, FENG Bo, LIU Xiyao, FENG Shoutao, LIU Shuai. Comparative analysis of the genesis models of different geothermal reservoirs in Chengning uplift area in northwest Shandong based on hydrochemical isotope technology[J]. Carsologica Sinica, 2023, 42(5): 969-981, 994. doi: 10.11932/karst20230513