• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表层岩溶带土岩结构对降雨−径流响应特征的影响

徐子凡 陈喜 刘维翰 刘皓 张志才

徐子凡,陈 喜,刘维翰,等. 表层岩溶带土岩结构对降雨−径流响应特征的影响[J]. 中国岩溶,2024,43(4):863-875 doi: 10.11932/karst20240406
引用本文: 徐子凡,陈 喜,刘维翰,等. 表层岩溶带土岩结构对降雨−径流响应特征的影响[J]. 中国岩溶,2024,43(4):863-875 doi: 10.11932/karst20240406
XU Zifan, CHEN Xi, LIU Weihan, LIU Hao, ZHANG Zhicai. Effect of soil-rock structures on the characteristics of rainfall-runoff responses in epikarst zones[J]. CARSOLOGICA SINICA, 2024, 43(4): 863-875. doi: 10.11932/karst20240406
Citation: XU Zifan, CHEN Xi, LIU Weihan, LIU Hao, ZHANG Zhicai. Effect of soil-rock structures on the characteristics of rainfall-runoff responses in epikarst zones[J]. CARSOLOGICA SINICA, 2024, 43(4): 863-875. doi: 10.11932/karst20240406

表层岩溶带土岩结构对降雨−径流响应特征的影响

doi: 10.11932/karst20240406
基金项目: 国家自然科学基金项目(42030506)
详细信息
    作者简介:

    徐子凡(1998-),女,硕士研究生,主要研究方向为地下水数值模拟。E-mail:18915170728@163.com

    通讯作者:

    陈喜(1964-),男,教授,主要研究方向为流域水文模拟、地下水数值计算。E-mail:xi_chen@tju.edu.cn

  • 中图分类号: P333

Effect of soil-rock structures on the characteristics of rainfall-runoff responses in epikarst zones

  • 摘要: 碳酸盐岩在溶蚀作用下形成的表层岩溶带,其上层土壤特性和厚度以及下覆裂隙大小和分布控制降雨入渗、蒸散发和地下径流过程。而不同土岩结构对水文过程的影响尚不明晰。文章构建3种典型土岩结构(薄层石灰土—石灰岩块型、薄层石灰土—白云岩碎石型、厚层土壤—石灰岩碎石型)土柱试验装置并进行观测,通过对比分析,揭示不同土岩结构的产流能力和径流响应特征的差异。结果表明:土岩结构对水平衡有显著影响。厚层土壤(85 cm)极大增加了蒸发量,其产流能力较小,表现为形成地下径流所需的降雨阈值大和形成的径流总量小。相比之下,薄层土壤(20 cm)具有较大的产流能力。当薄层土壤下覆为白云岩碎石时,相比于下覆为石灰岩岩块,碎石表面滞留水分能力较强,导致蒸发损失增加和径流量减少。此外,土岩结构还显著影响降雨—径流响应特征:对于厚层土壤,其对径流的调蓄能力强,洪峰流量显著减小,初始径流和洪峰流量的响应时间延长,但这种延长的幅度随着降雨事件的雨量和强度的增加而减小;对于薄层土壤,其对径流的调蓄能力较弱,其中对于下覆石灰岩岩块结构,裂隙率低、导水性强,在小降雨下容易入渗并形成较大的洪峰;而下覆白云岩碎石结构储水能力较大,在大降雨下,有利于入渗水积蓄,从而形成较大的洪峰。

     

  • 图  1  土柱垂向分层示意图

    Figure  1.  Schematic diagram of vertical stratification in soil columns

    图  2  2020年6月21日−10月21日降雨−径流过程

    Figure  2.  Rainfall-runoff process during 21 June–21 October, 2020

    图  3  次降雨及径流响应特征示意图

    Figure  3.  Schematic diagram of rainfall-runoff response characteristics

    图  4  23场自然降雨事件降雨—径流关系

    Figure  4.  Relationship between rainfall and runoff in 23 natural rainfall events

    图  5  不同降雨类型下土岩结构径流特征平均值

    Figure  5.  Average runoff characteristics of soil-rock structures under four rainfall types

    表  1  土柱中土壤质地

    Table  1.   Soil textures in soil columns

    土壤类型土壤质地颗粒组成/%
    砂粒粉粒黏粒
    黄壤土壤土28.245.626.2
    白云岩上发育石灰土壤土36.749.114.2
    石灰岩上发育石灰土粉壤土26.157.616.3
    注:砂、粉、黏粒粒径分别为0.05~2 mm、0.002~0.05 mm、<0.002 mm;土壤质地分类按照美国农业部(United States Department of Agriculture, USDA)的土壤质地分类标准进行。
    Note: The particle sizes of sand, powder and clay are 0.05–2 mm, 0.002–0.05 mm and <0.002 mm, respectively. Soil textures are classified according to the soil texture classification standards of United States Department of Agriculture.
    下载: 导出CSV

    表  2  土柱基本结构及特征参数

    Table  2.   Basic structures and physical properties of soil columns

    土柱 分层特征 土壤占比/% 土壤容重/g·cm−3 岩石裂隙率/% 渗透系数(10−3) cm/·s−1
    a ① 0~23 cm (石灰岩上发育)石灰土 100 1.34 0.815
    ② 23~38 cm 石灰土—岩块 20 1.34 13.7*
    ③ 38~83 cm 黄壤土—岩块 20 1.25 13.7*
    ④ 83~133 cm 岩块 8 18.9
    ⑤ 133~143 cm 反滤层(碎石) 25 4.79
    b ① 0~20 cm (白云岩上发育)石灰土 100 1.00 3.14
    ② 20~150 cm 白云岩(碎石) 40 17.8
    c ① 0~15 cm (石灰岩上发育)石灰土 100 1.34 0.815
    ② 15~85 cm 黄壤土 100 1.25 0.0221
      ③ 85~148 cm 石灰岩(碎石) 12.1 21.3
    注:*23~83 cm层在注水实验中测出的渗透系数值。
    Note: * Permeability coefficient of the layers from 23 cm to 83 cm measured in water injection experiment.
    下载: 导出CSV

    表  3  次降雨、径流特征及变化范围

    Table  3.   Characteristics and variation range of rainfall and runoff

    统计指标 指标符号 单位 变化范围
    次降雨量 $ P $ mm 10.0~69.4
    降雨历时 $ T $ h 2~40
    降雨强度 $ I $ mmh−1 0.43~8.50
    最大1 h雨量 $ {P}_{m} $ mm 0.6~16.8
    土壤初始含水率 $ {S}_{w} $ 0.178~0.365
    径流深 $ R $ mm 0.33~67.37
    洪峰流量 $ {Q}_{m} $ mm 0.04~9.26
    初始径流响应时间 $ {T}_{0} $ h 0.1~18.0
    洪峰响应时间 $ {T}_{m} $ h 0.1~25.0
    下载: 导出CSV

    表  4  不同降雨类型特征指标均值

    Table  4.   Average value of characteristic indexes under different rainfall types

    降雨
    类型
    次降雨量
    $ P $/mm
    降雨历时
    $ T $/h
    降雨强度
    $ I $/mmh−1
    1小时最大雨强
    $ {P}_{m} $/mm
    A 34.5 11.8 3.2 10.8
    B 15.8 28.0 0.6 2.9
    C 52.9 31.0 1.7 12.3
    D 16.3 6.3 3.6 8.7
    下载: 导出CSV

    表  5  水量平衡计算表

    Table  5.   Annual and rainy season water balance

    土柱a土柱b土柱c
    全年雨季全年雨季全年雨季
    降雨总量$ P $/mm129485012948501294850
    径流总量$ R $/mm11368171016771717499
    土壤水蓄量差$ \Delta W $/mm10.710.01.23.5−32.08.3
    实际蒸发量$ E $/mm146.722.6276.075.5608.4342.6
    径流系数$ R/P $0.880.960.790.910.550.59
    下载: 导出CSV

    表  6  降雨径流特征统计量Spearman秩相关系数表

    Table  6.   Spearman correlation coefficient between rainfall and runoff statistical features

    次径流深/mm次洪峰流量/mm次初始径流响应时间/h次洪峰响应时间/h
    $ {R}_{a} $$ {R}_{b} $$ {R}_{c} $$ {Q}_{m,a} $$ {Q}_{m,b} $$ {Q}_{m,c} $$ {T}_{0,a} $$ {T}_{0,b} $$ {T}_{0,c} $$ {T}_{m,a} $$ {T}_{m,b} $$ {T}_{m,c} $
    $ P $0.873**0.871**0.817**0.686**0.683**0.684**−0.201−0.043−0.115−0.160−0.324−0.615**
    $ T $0.3220.2650.1940.085−0.009−0.0400.530**0.690**0.4090.2130.3250.384
    $ I $0.1400.1860.2390.2430.3960.281−0.676**−0.685**−0.318−0.302−0.484*−0.590**
    $ {P}_{m} $0.3750.516*0.458*0.3390.557*0.378−0.523**−0.438**−0.356−0.334−0.570*−0.794**
    $ {S}_{w,a} $0.2830.558*−0.150−0.137
    $ {S}_{w,b} $0.1180.3550.0830.072
    $ {S}_{w,c} $0.2470.447−0.626*0.004
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。
    Note: ** indicates a significant correlation at the level of 0.01 (bilateral); * indicates a significant correlation at the level of 0.05 (bilateral).
    下载: 导出CSV
  • [1] 曹建华, 蒋忠诚, 袁道先, 夏日元, 章程. 岩溶动力系统与全球变化研究进展[J]. 中国地质, 2017, 44(5):874-900.

    CAO Jianhua, JIANG Zhongcheng, YUAN Daoxian, XIA Riyuan, ZHANG Cheng. The progress in the study of the karst dynamic system and global changes in the past 30 years[J]. Geology in China, 2017, 44(5): 874-900.
    [2] Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242. doi: 10.1002/2013RG000443
    [3] 覃小群, 蒋忠诚. 表层岩溶带及其水循环的研究进展与发展方向[J]. 中国岩溶, 2005, 24(3):250-254.

    QIN Xiaoqun, JIANG Zhongcheng. A review on recent advances and perspective in epikarst water study[J]. Carsologica Sinica, 2005, 24(3): 250-254.
    [4] Williams P W. The role of the epikarst in karst and cave hydrogeology: A review[J]. International Journal of Speleology, 2008, 37(1): 1-10. doi: 10.5038/1827-806X.37.1.1
    [5] Williams P W. The role of the subcutaneous zone in karst hydrology[J]. Journal of Hydrology, 1983, 61(1): 45-67.
    [6] 蒋忠诚, 王瑞江, 裴建国, 何师意. 我国南方表层岩溶带及其对岩溶水的调蓄功能[J]. 中国岩溶, 2001, 20(2):106-110.

    JIANG Zhongcheng, WANG Ruijiang, PEI Jianguo, HE Shiyi. Epikarst zone in South China and its regulation function to karst water[J]. Carsologica Sinica, 2001, 20(2): 106-110.
    [7] Sohrt J, Ries F, Sauter M, Lange J. Significance of preferential flow at the rock soil interface in a semi-arid karst environment[J]. Catena, 2014, 123(1): 1-10.
    [8] 张君, 付智勇, 陈洪松, 连晋姣, 覃常. 西南喀斯特白云岩坡地土壤:表层岩溶带结构及水文特征[J]. 应用生态学报, 2021, 32(6):2107-2118.

    ZHANG Jun, FU Zhiyong, CHEN Hongsong, LIAN Jinjiao, Qin Chang. Soil-epikarst structures and their hydrological characteristics on dolomite slopes in karst region of Southwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2107-2118.
    [9] 张信宝, 王世杰, 贺秀斌, 汪阳春, 何永彬. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失[J]. 地球与环境, 2007, 35(3):202-206.

    ZHANG Xinbao, WANG Shijie, HE Xiubin, WANG Yangchun, HE Yongbin. Soil creeping in weathering crusts of carbonate rocks and underground soil losses on karst slopes[J]. Earth and Environment, 2007, 35(3): 202-206.
    [10] 何江湖, 张科利. 西南喀斯特地区地下水土流失研究综述[J]. 泥沙研究, 2022, 47(5):1-8.

    HE Jianghu, ZHANG Keli. Spatial variation of soil steady-state infiltration rates in karst hillslopes[J]. Journal of Sediment Research, 2022, 47(5): 1-8.
    [11] 唐益群, 张晓晖, 周洁, 佘恬钰, 杨坪, 王建秀. 喀斯特石漠化地区土壤地下漏失的机理研究:以贵州普定县陈旗小流域为例[J]. 中国岩溶, 2010, 29(2):121-127.

    TANG Yiqun, ZHANG Xiaohui, ZHOU Jie, SHE Tianyu, YANG Ping, WANG Jianxiu. The mechanism of underground leakage of soil in karst rocky desertification areas: A case in Chenqi small watershed, Puding, Guizhou Province[J]. Carsologica Sinica, 2010, 29(2): 121-127.
    [12] 陈喜. 西南喀斯特地区水循环过程及其水文生态效应[M]. 北京:科学出版社, 2014.

    CHEN Xi. Hydrological cycle and hydroecological effects in karst area of Southwest China[M]. Beijing: Science Press, 2014.
    [13] 张兴, 王克林, 付智勇, 陈洪松, 张伟, 史志华. 桂西北白云岩坡地典型土体构型石灰土水文特征[J]. 应用生态学报, 2017, 28(7):2186-2196.

    ZHANG Xing, WANG Kelin, FU Zhiyong, CHEN Hongsong, ZHANG Wei, SHI Zhihua. Hydrological characteristics of calcareous soil with contrasting architecture on dolomite slope of northwest Guangxi[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2186-2196.
    [14] 张志才, 陈喜, 刘金涛, 彭韬, 石朋, 严小龙. 喀斯特山体地形对表层岩溶带发育的影响:以陈旗小流域为例[J]. 地球与环境, 2012, 40(2):137-143.

    ZHANG Zhicai, CHEN Xi, LIU Jintao, PENG Tao, SHI Peng, YAN Xiaolong. Influence of topography on epikarst in karst mountain areas: A case study of Chenqi catchment[J]. Earth and Environment, 2012, 40(2): 137-143.
    [15] 张志才, 陈喜, 程勤波, 彭韬, 张艳芳, 纪忠华. 喀斯特山体表层岩溶带水文地质特征分析:以陈旗小流域为例[J]. 地球与环境, 2011, 39(1):19-25.

    ZHANG Zhicai, CHEN Xi, CHENG Qinbo, PENG Tao, ZHANG Yanfang, JI Zhonghua. Hydrogeology of epikarst in karst mountains: A case study of the Chenqi catchment[J]. Earth and Environment, 2011, 39(1): 19-25.
    [16] 高强山, 彭韬, 付磊, 王世杰, 曹乐, 程倩云. 探地雷达技术对表层岩溶带典型剖面组构刻画与界面识别[J]. 中国岩溶, 2019, 38(5):759-765.

    GAO Qiangshan, PENG Tao, FU Lei, WANG Shijie, CAO Le, CHENG Qianyun. Structure description and interface recognition on epikarst typical profiles using GPR technology[J]. Carsologica Sinica, 2019, 38(5): 759-765.
    [17] 程凭, 程勤波, 陈喜, 刘金涛, 张志才, 高满. 基于频域电磁法反演喀斯特表层土—岩结构研究[J]. 中国岩溶, 2022, 41(5):675-683. doi: 10.11932/karst20220501

    CHENG Ping, CHENG Qinbo, CHEN Xi, LIU Jintao, ZHANG Zhicai, GAO Man. Exploration of superficial soil-rock structure for karst area based on frequency domain electromagnetic method[J]. Carsologica Sinica, 2022, 41(5): 675-683. doi: 10.11932/karst20220501
    [18] 李阳兵, 王世杰, 李瑞玲. 岩溶生态系统的土壤[J]. 生态环境, 2004, 13(3):434-438.

    LI Yangbing, WANG Shijie, LI Ruiling. Some soil features of karst ecosystem[J]. Ecology and Environment, 2004, 13(3): 434-438.
    [19] 刘鸿雁, 蒋子涵, 戴景钰, 吴秀臣, 彭建, 王红亚, Meersmans J, Green S M, Quine T A. 岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖[J]. 中国科学:地球科学, 2019, 49(12):1974-1981.

    LIU Hongyan, JIANG Zihan, DAI Jingyu, WU Xiuchen, PENG Jian, WANG Hongya, Meersmans J, Green S M, Quine T A. Rock crevices determine woody and herbaceous plant cover in the karst critical zone[J]. Scientia Sinica (Terrae), 2019, 49(12): 1974-1981.
    [20] 陈喜, 张志才. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶, 2022, 41(3):356-364.

    CHEN Xi, ZHANG Zhicai. An overview on the development of science and ecological hydrology of the earth critical zones in karst area[J]. Carsologica Sinica, 2022, 41(3): 356-364.
    [21] 陈洪松, 杨静, 傅伟, 何菲, 王克林. 桂西北喀斯特峰丛不同土地利用方式坡面产流产沙特征[J]. 农业工程学报, 2012, 28(16):121-126.

    CHEN Hongsong, YANG Jing, FU Wei, HE Fei, WANG Kelin. Characteristics of slope runoff and sediment yield on karst hill-slope with different land-use types in northwest Guangxi[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16): 121-126.
    [22] 彭韬, 王世杰, 张信宝, 容丽, 杨涛, 陈波, 汪进阳. 喀斯特坡地地表径流系数监测初报[J]. 地球与环境, 2008, 36(2):125-129.

    PENG Tao, WANG Shijie, ZHANG Xinbao, RONG Li, YANG Tao, CHEN Bo, WANG Jinyang. Results of preliminary monitoring of surface runoff coefficients for karst slopes[J]. Earth and Environment, 2008, 36(2): 125-129.
    [23] Rempe D M, Dietrich W E. Direct observations of rock moisture, a hidden component of the hydrologic cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2664-2669.
    [24] Wilcox B P, Taucer P I, Munster C L, Owens M K, Mohanty B P, Sorenson J R, Bazan R. Subsurface stormflow is important in semiarid karst shrublands[J]. Geophysical Research Letters, 2008, 35(10): 1-6.
    [25] Tromp Van Meerveld H J, Mcdonnell J J. Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope[J]. Water Resources Research, 2006, 42(2): W02410.
    [26] Tromp Van Meerveld H J, Mcdonnell J J. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis[J]. Water Resources Research, 2006, 42(2): W02411.
    [27] Tromp Van Meerveld H J, Peters N E, Mcdonnell J J. Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA[J]. Hydrological Processes, 2007, 21(6): 750-769. doi: 10.1002/hyp.6265
    [28] 张轶博, 王锦国, 刘芮彤. 岩溶包气带水流衰减过程与调蓄能力影响机制研究[J]. 中国岩溶, 2023, 42(6):1140-1148.

    ZHANG Yibo, WANG Jinguo, LIU Ruitong. Research on water flow attenuation process and regulating capacity in karst vadose zone[J]. Carsologica Sinica, 2023, 42(6): 1140-1148.
    [29] 马从文, 张志才, 陈喜, 程勤波, 彭韬, 张林. 基于机器学习的西南岩溶泉流量模拟研究[J]. 中国岩溶, 2024, 43(1):48-56.

    MA Congwen, ZHANG Zhicai, CHEN Xi, CHENG Qinbo, PENG Tao, ZHANG Lin. Modelling karst spring flow in Southwest China based on machine learning[J]. Carsologica Sinica, 2024, 43(1): 48-56.
    [30] 王甲荣, 陈喜, 张志才, 张润润, 朱彪, 龚轶芳, 刘皓, 袁瞬飞. 喀斯特溶槽岩−土界面优势流及其对土壤水分动态的影响[J]. 中国岩溶, 2019, 38(1):109-116.

    WANG Jiarong, CHEN Xi, ZHANG Zhicai, ZHANG Runrun, ZHU Biao, GONG Yifang, LIU Hao, YUAN Shunfei. Preference flow at rock-soil interface and its influence on soil water dynamics in the karst troughs[J]. Carsologica Sinica, 2019, 38(1): 109-116.
    [31] Gabrielli C P, Morgenstern U, Stewart M K, Mcdonnell J J. Contrasting groundwater and streamflow ages at the Maimai watershed[J]. Water Resources Research, 2018, 54(6): 3937-3957. doi: 10.1029/2017WR021825
    [32] 闫钇全, 刘琦, 邓大鹏, 王涵. 表层岩溶裂隙带土壤地表流失/地下漏失室内模拟实验[J]. 中国岩溶, 2022, 41(2):240-248.

    YAN Yiquan, LIU Qi, DENG Dapeng, WANG Han. Laboratory simulation study on soil surface loss and underground leakage in the epikarst fissure zone[J]. Carsologica Sinica, 2022, 41(2): 240-248.
    [33] Fu Z Y, Chen H S, Zhang W, Xu Q X, Wang S, Wang K L. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study[J]. Geomorphology, 2015, 250(1): 1-14.
    [34] 严友进, 戴全厚, 伏文兵, 杨智. 下垫面变化对喀斯特坡地地下产流产沙的影响[J]. 水土保持学报, 2018, 32(1):67-73, 79.

    YAN Youjin, DAI Quanhou, FU Wenbing, YANG Zhi. Influences of underlying surface changes on underground runoff and sediment yield in karst slope land[J]. Journal of Soil and Water Conservation, 2018, 32(1): 67-73, 79.
    [35] 杨静, 王升, 丁亚丽, 陈洪松. 喀斯特白云岩地区不同土体构型土壤剖面持水导水性能研究[J]. 中国岩溶, 2020, 39(5):697-704.

    YANG Jing, WANG Sheng, DING Yali, CHEN Hongsong. Moisture-retaining and transmissibility properties of soil profiles with different architectures in dolomite karst areas[J]. Carsologica Sinica, 2020, 39(5): 697-704.
    [36] Fang Q, Zhao L S, Hou R, Fan C H, Zhang J X. Rainwater transformation to runoff and soil loss at the surface and belowground on soil-mantled karst slopes under rainfall simulation experiments[J]. Catena, 2022, 215: 106316.
    [37] Chen J, Luo W J, Zeng G N, Wang Y W, Lyu Y N, Cai X L, Zhang L, Cheng A Y, Zhang X B, Wang S J. Response of surface evaporation and subsurface leakage to precipitation for simulated epikarst with different rock-soil structures[J]. Journal of Hydrology, 2022, 610(4): 127850.
    [38] Zeng Q R, Liu Z H, Chen B, Hu Y D, Zeng S B, Zeng C, Yang R, He H B, Zhu H, Cai X L. Carbonate weathering-related carbon sink fluxes under different land uses: A case study from the Shawan simulation test site, Puding, Southwest China[J]. Chemical Geology, 2017, 474: 58-71.
    [39] Fu Z Y, Chen H S, Zhang W, Xu Q X, Wang S, Wang K L. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study[J]. Geomorphology, 2015, 250: 1-14.
    [40] Zhang J, Wang S, Fu Z Y, Chen H S, Wang K L. Soil thickness controls the rainfall-runoff relationship at the karst hillslope critical zone in Southwest China[J]. Journal of Hydrology, 2022, 609: 127779.
    [41] Zhao M, Zeng C, Liu Z H, Wang S J. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology, 2010, 388(1): 121-130.
    [42] 张杨, 宁立波, 尹峰, 赵国红, 白冰珂, 朱晛亭. 岩体体裂隙率野外测量及计算方法的研究[J]. 工程地质学报, 2020, 28(1):10-18.

    ZHANG Yang, NING Libo, YIN Feng, ZHAO Guohong, BAI Bingke, ZHU Xianting. New method of field measurement and calculation for volumetric fracture rate of rock mass[J]. Journal of Engineering Geology, 2020, 28(1): 10-18.
    [43] 霍丽娟, 李一菲, 钱天伟. 定水头法和降水头法测定黄土的饱和导水率[J]. 太原科技大学学报, 2010, 31(3):256-259.

    HUO Lijuan, LI Yifei, QIAN Tianwei. Determination of saturated hydraulic conductivity of loess soil by constant-head method and falling-head method[J]. Journal of Taiyuan University of Science and Technology, 2010, 31(3): 256-259.
    [44] 黄俊, 吴普特, 赵西宁. 多参数非线性降雨产流阈值模型试验研究[J]. 北京林业大学学报, 2011, 33(1):84-89.

    HUANG Jun, WU Pute, ZHAO Xining. Experimental study on the nonlinear multi-parameter rainfall-runoff threshold model[J]. Journal of Beijing Forestry University, 2011, 33(1): 84-89.
    [45] Spearman C. The proof and measurement of association between two things[J]. American Journal of Psychology, 1987, 15(1): 72-101.
    [46] Wei W, Chen L D, Fu B J, Huang Z L, Wu D P, Gui L D. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China[J]. Journal of Hydrology, 2007, 335(3): 247-258.
    [47] 兰旻. 山坡尺度降雨产流过程宏观本构关系研究[D]. 北京:清华大学, 2014.

    LAN Min. Study on constitutive relationship of runoff generation at the hillslope scale[D]. Beijing: Tsinghua University, 2014.
    [48] 寇平浪, 许强, 王崔林, 徐建强, 袁爽. 基于逐5 min时间分辨率的降雨—径流关系研究[J]. 人民黄河, 2022, 44(6):34-37.

    KOU Pinglang, XU Qiang, WANG Cuilin, XU Jianqiang, YUAN Shuang. Research on rainfall-runoff relationship based on time resolution of five minutes[J]. Yellow River, 2022, 44(6): 34-37.
    [49] 方胜, 彭韬, 王世杰, 刘秀明, 孟凡德. 喀斯特坡地土壤稳渗率空间分布变化特征研究[J]. 地球与环境, 2014, 42(1):1-10.

    FANG Sheng, PENG Tao, WANG Shijie, LIU Xiuming, MENG Fande. Spatial variation of soil steady-state infiltration rates in karst hillslopes[J]. Earth and Environment, 2014, 42(1): 1-10.
    [50] 焦友军, 黄奇波, 于青春. 初始裂隙对岩溶水紊流形成的影响[J]. 中国岩溶, 2022, 41(4):501-510.

    JIAO Youjun, HUANG Qibo, YU Qingchun. Influence of initial fractures on the occurrence of karst turbulent flow[J]. Carsologica Sinica, 2022, 41(4): 501-510.
    [51] 党宏宇, 陈洪松, 邵明安. 喀斯特地区不同层次土石混合介质对土壤水分入渗过程的影响[J]. 农业工程学报, 2012, 28(8):38-43.

    DANG Hongyu, CHEN Hongsong, SHAO Ming'an. Effects of laminated rock fragments on soil infiltration processes in karst regions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 38-43.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  105
  • HTML浏览量:  15
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 刊出日期:  2024-10-31

目录

    /

    返回文章
    返回