• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外源酸作用下流域岩石风化与碳汇效应

李雪艳 李灿锋 杨克好 陈瑞 熊银洪 王兴荣 王传宇

李雪艳,李灿锋,杨克好,等. 外源酸作用下流域岩石风化与碳汇效应−以漾弓江为例[J]. 中国岩溶,2024,43(4):742-752 doi: 10.11932/karst20240402
引用本文: 李雪艳,李灿锋,杨克好,等. 外源酸作用下流域岩石风化与碳汇效应−以漾弓江为例[J]. 中国岩溶,2024,43(4):742-752 doi: 10.11932/karst20240402
LI Xueyan, LI Canfeng, YANG Kehao, CHEN Rui, XIONG Yinhong, WANG Xingrong, WANG Chuanyu. Rock weathering and carbon sink effects under exogenous acid action: A case study of the Yanggong river[J]. CARSOLOGICA SINICA, 2024, 43(4): 742-752. doi: 10.11932/karst20240402
Citation: LI Xueyan, LI Canfeng, YANG Kehao, CHEN Rui, XIONG Yinhong, WANG Xingrong, WANG Chuanyu. Rock weathering and carbon sink effects under exogenous acid action: A case study of the Yanggong river[J]. CARSOLOGICA SINICA, 2024, 43(4): 742-752. doi: 10.11932/karst20240402

外源酸作用下流域岩石风化与碳汇效应——以漾弓江为例

doi: 10.11932/karst20240402
基金项目: 中国地质调查局地质调查项目(ZD20220135)
详细信息
    作者简介:

    李雪艳(1997-),女,助理工程师,硕士研究生,主要研究方向为岩溶碳循环。E-mail:lixueyan23@mail.cgs.gov.cn

    通讯作者:

    李灿锋(1989-),男,工程师,硕士研究生,主要研究方向为自然资源碳汇。E-mail:licanfeng@mail.cgs.gov.cn

  • 中图分类号: X141

Rock weathering and carbon sink effects under exogenous acid action: A case study of the Yanggong river

  • 摘要: 流域岩石风化是重要的碳源/汇过程,也是全球碳循环中的重要环节。外源酸参与流域岩石风化,影响碳元素的地球化学循环和流域碳源/汇效应。漾弓江属长江上游金沙江水系,流域岩石风化过程和碳汇效应尚不清楚。在2023年旱季和雨季分别采集了漾弓江的干流和主要支流的水样品(地表水点9个、地下水点6个),对主要离子浓度进行检测,并利用水化学平衡法和Galy估算模型分析该流域的岩风化类型,估算了碳酸与硫酸共同作用下的岩石风化CO2消耗量。结果表明:(1)漾弓江流域水系离子成分主要源于硅酸盐岩和碳酸盐岩风化,水化学类型为HCO3-Ca型或HCO3-Ca·Mg型。(2)硫酸和碳酸共同参与了漾弓江流域的岩石风化过程。在不考虑硫酸作用时,漾弓江流域岩石风化的大气CO2消耗量为38.35 t CO2 ·km−2·a−1,而当考虑了硫酸参与时,岩石风化碳汇量降至25.54 t CO2 ·km−2·a−1,扣除约33%,大大提高了计算精度。(3)漾弓江流域岩石风化的大气CO2消耗量为4.27×104 t CO2·a−1,是一个碳汇过程。硫酸参与流域岩石的风化改变了区域碳循环,这是全球碳循环模型不可忽略重要环节。

     

  • 图  1  漾弓江流域及取样点图

    Figure  1.  Water system and sampling points in the Yanggong river basin

    图  2  漾弓江流域水体阴阳离子平衡图

    Figure  2.  Water anion and cation equilibrium in Yanggong river basin

    图  3  漾弓江流域水化学组成 Piper 三线图

    Figure  3.  Piper diagram of the hydrochemical compositions of the Yanggong river basin

    图  4  漾弓江采样点处河水Gibbs图 a:Cl/(Cl+${\rm{HCO}}_3^{-}$)与TDS的关系;b:Na+/(Na++Ca2+)与TDS的关系

    Figure  4.  Gibbs plot of river water at the sampling points. a: the relationship between Cl/(Cl+${\rm{HCO}}_3^{-}$) and TDS. b: the relationship between Na+/(Na++Ca2+) and TDS

    图  5  漾弓江水点中${\rm{HCO}}_3^{-}$/Na+与Ca2+/Na+的关系图

    Figure  5.  Relationship between [${\rm{HCO}}_3^{-}$/Na+] and [Ca2+/Na+] in the water points of Yanggong river

    图  6  硫酸参与漾弓江流域岩石风化的证据 a:(Ca2++Mg2+)/${\rm{HCO}}_3^{-}$化学当量浓度的变化关系;b:(Ca2++Mg2+)/(${\rm{HCO}}_3^{-}$+${\rm{SO}}_4^{2-}$)化学当量浓度的变化关系

    Figure  6.  Participation of sulfuric acid in the rock weathering. a: relationship between changes in chemical equivalent concentrations of [(Ca2++Mg2+)/${\rm{HCO}}_3^{-}$]. b: relationship between changes in chemical equivalent concentrations of [(Ca2++Mg2+)/(${\rm{HCO}}_3^{-}$+${\rm{SO}}_4^{2-}$)]

    图  7  水点[${\rm{SO}}_4^{2-}$/${\rm{HCO}}_3^{-}$]与[Ca2++Mg2+]/[${\rm{HCO}}_3^{-}$]当量比关系图

    Figure  7.  Equivalence ratios between [${\rm{SO}}_4^{2-}$/${\rm{HCO}}_3^{-}$] and [[Ca2++Mg2+]/[${\rm{HCO}}_3^{-}$]

    图  8  δ13CDIC与${\rm{SO}}_4^{2-}$/${\rm{HCO}}_3^{-}$(摩尔比)关系

    Figure  8.  Relationship between δ13CDIC and [${\rm{SO}}_4^{2-}$/${\rm{HCO}}_3^{-}$]

    表  1  漾弓江流域水体离子化学组成(雨季和旱季平均值)

    Table  1.   Ionic chemical compositions of water in the Yanggong river basin (averages of rainy and dry seasons)

    名称 性质 pH Ca2+ Mg2+ Na+ K+ ${\rm{HCO}}_3^{-}$ ${\rm{SO}}_4^{2-}$ Cl ${\rm{NO}}_3^{-}$ TDS H2SiO3 TZ+ TZ
    mmol·L−1 mg·L−1
    YGS1 支流 8.27 2.27 2.77 3.90 0.45 6.04 0.06 0.03 0.03 980.50 23.55 14.44 7.38
    YGS2 支流 8.09 1.17 0.35 0.12 0.01 2.74 0.11 0.03 0.03 148.00 31.10 3.16 3.03
    YGS3 干流 7.59 1.61 0.67 1.05 0.19 4.34 0.34 0.97 0.30 319.50 13.65 5.82 6.29
    YGS4 支流 8.34 0.95 0.36 0.06 0.03 2.44 0.08 0.10 0.03 150.00 10.70 2.71 2.72
    YGS5 支流 8.40 0.86 0.43 0.04 0.01 2.34 0.04 0.02 0.00 264.00 6.66 2.63 2.44
    YGS6 泉水 8.81 0.69 0.46 0.05 0.01 2.05 0.04 0.03 0.01 129.00 5.20 2.35 2.18
    YGS7 暗河出口 7.85 0.80 0.56 0.02 0.02 2.52 0.04 0.01 0.01 181.50 6.62 2.74 2.62
    YGS8 泉水 8.28 0.97 0.58 0.19 0.04 3.18 0.17 0.02 0.01 185.00 3.84 3.34 3.55
    YGS9 泉水 7.75 1.10 0.42 0.05 0.02 2.86 0.04 0.01 0.00 149.00 9.22 3.11 2.95
    YGS10 干流 7.86 1.14 0.62 0.40 0.09 3.08 0.22 0.45 0.11 219.00 5.17 4.01 4.09
    YGS11 总出口 8.47 1.37 0.79 0.39 0.09 3.60 0.33 0.42 0.11 336.00 9.32 4.79 4.79
    YGS12 泉水 8.70 1.44 0.81 0.31 0.05 2.93 0.49 0.27 0.07 251.00 39.90 4.86 4.25
    YGS13 支流 8.37 1.58 0.97 0.46 0.15 3.82 0.50 0.54 0.12 341.50 11.45 5.72 5.49
    YGS14 泉水 8.85 0.42 0.50 0.02 0.01 1.47 0.05 0.03 0.00 160.00 1.65 1.86 1.59
    YGS15 支流 8.22 1.17 0.46 0.09 0.03 2.34 0.55 0.03 0.02 207.00 12.55 3.38 3.49
    下载: 导出CSV

    表  2  漾弓江流域碳汇通量估算

    Table  2.   Estimation of carbon flux in the Yanggong river basin

    名称 流量 流域
    面积
    ${\rm{HCO}}_3^{-}$
    通量
    硅酸盐岩风化 碳酸盐岩风化 岩石风
    化速率
    碳通量
    合计
    溶蚀
    速率
    碳酸溶蚀
    硅酸盐岩
    CO2消耗
    溶蚀
    速率
    碳酸溶蚀
    碳酸盐岩
    CO2消耗量
    碳酸和硫酸溶
    蚀碳酸盐岩
    CO2消耗量
    108 m3·a−1 km2 t CO2·km−2·a−1 mm·ka−1 t CO2 ·km−2·a−1 mm·ka−1 t CO2·km−2·a−1 t CO2 ·km−2·a−1 mm·ka−1 t CO2·km−2·a−1 t CO2 ·a−1
    木家桥 1.81 820 37.32 2.30 4.31 19.86 18.38 14.62 22.16 18.93 15 528.92
    金河断面 7.60 1 670 59.49 4.41 1.15 24.40 33.94 24.39 39.26 25.54 42 667.04
    下载: 导出CSV
  • [1] 刘再华, Wolfgang Dreybrodt, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J]. 科学通报, 2007, 52(20):2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013
    [2] Bufe A, Hovius N, Emberson R, et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion[J]. Nature Geoscience, 2021, 14(4): 211-216. doi: 10.1038/s41561-021-00714-3
    [3] Kantzas E P, Val Martin M, Lomas M R, et al. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom[J]. Nature Geoscience, 2022, 15(5): 382-389. doi: 10.1038/s41561-022-00925-2
    [4] 王威, 郭庆军, 杜陈军, 邓义楠. 长江流域水环境碳循环研究进展[J]. 生态学杂志, 2023, 42(3):736-747.

    WANG Wei, GUO Qingjun, DU Chenjun, DENG Yinan. Research advances in water environmental carbon cycle in the Yangtze River Basin[J]. Chinese Journal of Ecology, 2023, 42(3): 736-747.
    [5] 张信宝, 罗景城, 王小国, 唐家良, 彭韬, 朱波. 河流泥沙输移过程中矿物风化的碳汇效应初探:以长江干流为例[J]. 地质学报, 2023, 97(7):2378-2385. doi: 10.3969/j.issn.0001-5717.2023.07.017

    ZHANG Xinbao, LUO Jingcheng, WANG Xiaoguo, TANG Jialiang, PENG Tao, ZHU Bo. A preliminary study on the inorganic carbon sink function of mineral weathering during sediment transport in the Yangtze River mainstream[J]. Acta Geologica Sinica, 2023, 97(7): 2378-2385. doi: 10.3969/j.issn.0001-5717.2023.07.017
    [6] 周忠发, 张结, 潘艳喜, 殷超, 汪炎林, 田衷珲. 双河洞洞穴系统岩溶地表水-地下水主要离子化学特征及其来源分析[J]. 科学技术与工程, 2018, 18(6):5-13. doi: 10.3969/j.issn.1671-1815.2018.06.002

    ZHOU Zhongfa, ZHANG Jie, PAN Yanxi, YIN Chao, WANG Yanlin, TIAN Zhonghui. Chemical characteristics and source analysis of main ions in karst surface water and groundwater in Shuanghe cave system[J]. Science Technology and Engineering, 2018, 18(6): 5-13. doi: 10.3969/j.issn.1671-1815.2018.06.002
    [7] 王琪, 于奭, 蒋萍萍, 孙平安. 长江流域主要干/支流水化学特征及外源酸的影响[J]. 环境科学, 2021, 42(10):4687-4697.

    WANG Qi, YU Shi, JIANG Pingping, SUN Ping'an. Water chemical characteristics and influence of exogenous acids in the Yangtze River Basin[J]. Environmental Science, 2021, 42(10): 4687-4697.
    [8] An Y L, Hou Y L, Wu Q X, Qing L, Li L B. Chemical weathering and CO2 consumption of a high-erosion-rate karstic river: A case study of the Sanchahe river, Southwest China[J]. Chinese Journal of Geochemistry, 2015, 34: 601-609. doi: 10.1007/s11631-015-0074-2
    [9] 张连凯, 覃小群, 刘朋雨, 黄奇波. 硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报, 2016, 90(8):1933-1944. doi: 10.3969/j.issn.0001-5717.2016.08.021

    ZHANG Liankai, QIN Xiaoqun, LIU Pengyu, HUANG Qibo. Chemical denudation rate and atmospheric CO2 consumption by H2CO3 and H2SO4 in the Yangtze River Catchment[J]. Acta Geologica Sinica, 2016, 90(8): 1933-1944. doi: 10.3969/j.issn.0001-5717.2016.08.021
    [10] 李朝君. 全球碳酸盐岩与硅酸盐岩风化碳汇估算[D]. 贵阳:贵州师范大学, 2021.

    LI Chaojun. Estimation of weathering carbon sinks in global carbonate and silicate rocks[D]. Guiyang: Guizhou Normal University, 2021.
    [11] Horan K, Hilton R G, Dellinger M, et al. Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie river basin[J]. American Journal of Science, 2019, 319(6): 473-499. doi: 10.2475/06.2019.02
    [12] 李朝君, 王世杰, 白晓永, 谭秋, 李汇文, 李琴, 邓元红, 杨钰杰, 田诗琪, 胡泽银. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7):1319-1332. doi: 10.11821/dlxb201907004

    LI Chaojun, WANG Shijie, BAI Xiaoyong, TAN Qiu, LI Huiwen, LI Qin, DENG Yuanhong, YANG Yujie, TIAN Shiqi, HU Zeyin. Estimation of carbonate rock weathering-related carbon sink in global major river basins[J]. Acta Geographica Sinica, 2019, 74(7): 1319-1332. doi: 10.11821/dlxb201907004
    [13] 蒋忠诚, 袁道先, 曹建华, 覃小群, 何师意, 章程. 中国岩溶碳汇潜力研究[J]. 地球学报, 2012, 33(2):129-134.

    JIANG Zhongcheng, YUAN Daoxian, CAO Jianhua, QIN Xiaoqun, HE Shiyi, ZHANG Cheng. A study of carbon sink capacity of karst processes in China[J]. Acta Geoscientica Sinica, 2012, 33(2): 129-134.
    [14] 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(Suppl.1):95-102.

    LIU Zaihua. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(Suppl.1): 95-102.
    [15] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10):1081-1090.

    PU Junbing, JIANG Zhongcheng, YUAN Daoxian, ZHANG Cheng. Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report[J]. Advances in Earth Science, 2015, 30(10): 1081-1090.
    [16] 刘旭, 张东, 高爽, 吴婕, 郭建阳, 赵志琦. 青藏高原小流域化学风化过程及其CO2消耗通量:以尼洋河为例[J]. 生态学杂志, 2018, 37(3):688-696.

    LIU Xu, ZHANG Dong, GAO Shuang, WU Jie, GUO Jianyang, ZHAO Zhiqi. Chemical weathering and CO2 consumption flux in Tibetan Plateau: A case of Niyang river catchment[J]. Chinese Journal of Ecology, 2018, 37(3): 688-696.
    [17] 黄奇波, 覃小群, 程瑞瑞, 李腾芳, 刘朋雨. 硫酸型酸雨参与碳酸盐岩溶蚀的研究进展[J]. 中国岩溶, 2019, 38(2): 149-156.

    HUANG Qibo, QIN Xiaoqun, CHENG Ruirui, LI Tengfang, LIU Pengyu. Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks[J]. Carsologica Sinica, 2019, 38(2): 149-156.
    [18] 任梦梦. 漓江流域外源酸(硝酸、硫酸)对岩溶碳汇的影响研究[D]. 北京: 中国地质大学(北京), 2020.

    REN Mengmeng. Study on effects of allogenic acids on karst carbon sink in Lijiang river catchment, Southwest China[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [19] 谢银财, 于奭, 缪雄谊, 李军, 何师意, 孙平安. 青藏高原流域岩石风化机制及其CO2消耗通量:以拉萨河为例[J]. 地学前缘, 2023, 30(5):510-525.

    XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping'an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa river basin[J]. Earth Science Frontiers, 2023, 30(5): 510-525.
    [20] 苏丹, 周忠发, 黄静, 石亮星, 龚晓欢, 张恒, 闫利会. 外源酸对喀斯特流域碳汇效应的影响[J]. 环境化学, 2023, 42(6):1957-1969. doi: 10.7524/j.issn.0254-6108.2021121902

    SU Dan, ZHOU Zhongfa, HUANG Jing, SHI Liangxing, GONG Xiaohuan, ZHANG Heng, YAN Lihui. Influence of exogenous acid on carbon sink effect in a karst watershed[J]. Environmental Chemistry, 2023, 42(6): 1957-1969. doi: 10.7524/j.issn.0254-6108.2021121902
    [21] Xie Y C, Huang F, Yang H, Yu S. Role of anthropogenic sulfuric and nitric acids in carbonate weathering and associated carbon sink budget in a karst catchment (Guohua), Southwestern China[J]. Journal of Hydrology, 2021, 599: 126287. doi: 10.1016/j.jhydrol.2021.126287
    [22] 曹敏, 蒋勇军, 蒲俊兵, 张兴波, 邱述兰, 杨平恒, 汪智军, 李欢欢. 重庆南山老龙洞地下河流域岩溶地下水DIC和δ13CDIC及其流域碳汇变化特征[J]. 中国岩溶, 2012, 31(2):145-153. doi: 10.3969/j.issn.1001-4810.2012.02.006

    CAO Min, JIANG Yongjun, PU Junbing, ZHANG Xingbo, QIU Shulan, YANG Pingheng, WANG Zhijun, LI Huanhuan. Variations in DIC and δ13CDIC of the karst groundwater and in carbon sink of Laolongdong subterranean stream basin at Nanshan, Chongqing[J]. Carsologica Sinica, 2012, 31(2): 145-153. doi: 10.3969/j.issn.1001-4810.2012.02.006
    [23] 张远瞩. 外源酸(硫酸、硝酸)对岩溶碳循环的影响:以重庆南山老龙洞地下河流域为例[D]. 重庆:西南大学, 2017.

    ZHANG Yuanzhu. Effects of exogenous acids (sulfuric acid and nitric acid) on karst carbon cycle: A study from Laolongdong subterranean catchment, Chongqing[D]. Chongqing: Southwest University, 2017.
    [24] Zondervan J R, Hilton R G, Dellinger M, Clubb F J, Roylands T, Ogrič M. Rock organic carbon oxidation CO2 release offsets silicate weathering sink[J]. Nature, 2023, 623(7986): 329-333.
    [25] 陶正华, 赵志琦, 张东, 李晓东, 王宝利, 吴起鑫, 张伟, 刘丛强. 西南三江(金沙江、澜沧江和怒江)流域化学风化过程[J]. 生态学杂志, 2015, 34(8):2297-2308.

    TAO Zhenghua, ZHAO Zhiqi, ZHANG Dong, LI Xiaodong, WANG Baoli, WU Qixin, ZHANG Wei, LIU Congqiang. Chemical weathering in the three rivers (Jingshajiang, Lancangjiang, and Nujiang) watershed, Southwest China[J]. Chinese Journal of Ecology, 2015, 34(8): 2297-2308.
    [26] 李宗省, 何元庆, 温煜华, 庞洪喜, 贾文雄, 和献中, 蒲焘. 我国典型海洋型冰川区高海拔区输出水量变化对气候变暖的响应[J]. 地球科学(中国地质大学学报), 2010, 35(1):43-50.

    LI Zongxing, HE Yuanqing, WEN Yuhua, PANG Hongxi, JIA Wenxiong, HE Xianzhong, PU Tao. Response of runoff in high altitude area over the typical Chinese monsoonal temperate glacial region to climate warming[J]. Earth Science (Journal of China University of Geosciences), 2010, 35(1): 43-50.
    [27] 方金鑫, 蒲焘, 史晓宜, 王世金, 牛贺文. 气候变化背景下玉龙雪山漾弓江流域径流变化及其影响因素分析[J]. 冰川冻土, 2019, 41(2):268-274.

    FANG Jinxin, PU Tao, SHI Xiaoyi, WANG Shijin, NIU Hewen. Runoff variation and its influence factors in the Yanggong river basin of Mt. Yulong region due to climate change[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 268-274.
    [28] Hong Y, Zhang H, Zhu Y, et al. Sulfur isotopes of atmospheric precipitation in China[J]. Progress in Natural Science, 1994, 4: 741-745.
    [29] Galy A, France Lanord C. Weathering process in the Ganges-Brahmaputra basin and the riverine alkalinity budget[J]. Chemical Geology, 1999, 159: 31-60. doi: 10.1016/S0009-2541(99)00033-9
    [30] Ji H B, Jiang Y B. Carbon flux and C, S isotopic characteristics of river waters from a karstic and a granitic terrain in the Yangtze River system[J]. Journal of Asian Earth Sciences, 2012, 57: 38-53.
    [31] Anderson S P, Drever J I, Frost C D, Holden P. Chemical weathering in the foreland of a retreating glacier[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1173-1189.
    [32] Meybeck M. Global occurrence of major elements in rivers[A]//Holland Heinrich D, Turekian Karl K, Holland Heinrich D. Treatise on geochemistry. Amsterdam: Elsevier, 2003: 207-223.
    [33] 韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究:碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4):394-406. doi: 10.3321/j.issn:1001-8166.2005.04.004

    HAN Guilin, LIU Congqiang. Hydrogeochemistry of rivers in Guizhou Province, China: Constraints on crustal weathering in karst terrain[J]. Advances in Earth Science, 2005, 20(4): 394-406. doi: 10.3321/j.issn:1001-8166.2005.04.004
    [34] 刘文景, 孙会国, 李源川, 徐志方. 怒江水化学与碳同位素组成对青藏高原岩石风化碳汇效应的指示[J]. 中国科学:地球科学, 2023, 53(12): 2992-3009.

    LIU Wenjing, SUN Huiguo, LI Yuanchuan, XU Zhifang. Hydrochemistry and carbon isotope characteristics of Nujiang river water: Implications for CO2 budgets of rock weathering in the Tibetan Plateau[J]. Scientia Sinica Terrae, 2023, 53(12): 2992-3009.
    [35] Guo Z F, Wilson M, Dingwell D B, Liu J Q. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic[J]. Nature Communications, 2021, 12(1): 3891. doi: 10.1038/s41467-021-23772-y
    [36] Zhang M L, Zhang L H, Zhao W B, Guo Z F, Xu S, Sano Y, Lang Y C, Liu C Q, Li Y. Metamorphic CO2 emissions from the southern Yadong-Gulu rift, Tibetan Plateau: Insights into deep carbon cycle in the India-Asia continental collision zone[J]. Chemical Geology, 2021, 584: 120534. doi: 10.1016/j.chemgeo.2021.120534
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  159
  • HTML浏览量:  11
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 录用日期:  2024-03-01
  • 修回日期:  2024-03-01
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回