Rock weathering and carbon sink effects under exogenous acid action: A case study of the Yanggong river
-
摘要: 流域岩石风化是重要的碳源/汇过程,也是全球碳循环中的重要环节。外源酸参与流域岩石风化,影响碳元素的地球化学循环和流域碳源/汇效应。漾弓江属长江上游金沙江水系,流域岩石风化过程和碳汇效应尚不清楚。在2023年旱季和雨季分别采集了漾弓江的干流和主要支流的水样品(地表水点9个、地下水点6个),对主要离子浓度进行检测,并利用水化学平衡法和Galy估算模型分析该流域的岩风化类型,估算了碳酸与硫酸共同作用下的岩石风化CO2消耗量。结果表明:(1)漾弓江流域水系离子成分主要源于硅酸盐岩和碳酸盐岩风化,水化学类型为HCO3-Ca型或HCO3-Ca·Mg型。(2)硫酸和碳酸共同参与了漾弓江流域的岩石风化过程。在不考虑硫酸作用时,漾弓江流域岩石风化的大气CO2消耗量为38.35 t CO2 ·km−2·a−1,而当考虑了硫酸参与时,岩石风化碳汇量降至25.54 t CO2 ·km−2·a−1,扣除约33%,大大提高了计算精度。(3)漾弓江流域岩石风化的大气CO2消耗量为4.27×104 t CO2·a−1,是一个碳汇过程。硫酸参与流域岩石的风化改变了区域碳循环,这是全球碳循环模型不可忽略重要环节。Abstract:
Rock weathering in the river basin is not only an essential carbon source and sink mechanism, but also an important link in the global carbon cycle. Rivers are indispensable components of water bodies, and the hydrochemistry of rivers is a representation of the degree to which weathering and denudation occur at the surface of the river basin. Therefore, it is possible for us to collect information on rock weathering in the river basin by conducting an analysis of the chemical compositions of rivers. In turn, the analytical results can be used for the estimation of weathering rates and the amount of carbon dioxide that is consumed by the Earth's atmosphere. The presence of exogenous acids in the process of rock weathering in the river basin has an impact on the geochemical cycling of carbon as well as the carbon source/sink effect. The chemical weathering rate of carbonatite is accelerated by sulfuric acid, but the weathering does not consume atmospheric carbon dioxide. As a result, the effect of sulfuric acid on carbonatite weathering should be taken into consideration when the amount of atmospheric carbon dioxide that is consumed by rock weathering in the basin is calculated. The Yanggong river is a part of the Jinsha river system located in the upper reaches of the Yangtze river. The process of rock weathering and the influence of carbon sinks in the Yanggong river basin are not yet fully understood. As a result of climate warming, the considerable increase in water output from the high-altitude area of this basin has accelerated the water cycle there. This will undoubtedly exert a strong influence on rock weathering rates and geochemical cycling processes that occur within the Yanggong river basin. In addition, a large number of coal layers are distributed in this basin, so the sulfuric acid produced by sulfide oxidation or the dissolution of carbonate rocks by sulfuric acid caused by human activities would also alter rock weathering rates in this basin. For this reason, it is necessary for us to do more research in order to quantify the effect of exogenous acids on rock weathering as well as on the carbon source and sink in the Yanggong river basin. In this study, water samples from main streams and major tributaries of the Yanggong river were collected during the dry and rainy seasons of 2023. The major concentrations of anion and cation, metasilicic acid, and total dissolved solids (TDS) in these water samples were examined. Additionally, different types of rock weathering in the Yanggong river basin were analyzed by the water chemical equilibrium method and the Galy estimation model. Finally, the amount of carbon dioxide that was consumed by rock weathering under the combined effect of carbonic acid and sulfuric acid was estimated. The findings indicated that the ionic compositions of the water system in the Yanggong river basin were mostly derived from the weathering of silicate and carbonate rocks, and the hydrochemical types were either the HCO3-Ca type or the HCO3-Ca·Mg type. Sulfuric acid and carbonic acid worked together to contribute to the process of rock weathering in this basin. The atmospheric CO2 consumption of rock weathering in this basin was 38.35 t CO2·km−2·a−1 when sulfuric acid was not taken into consideration. However, when sulfuric acid participation was taken into consideration, the carbon sink of rock weathering was reduced to 25.54 t CO2·km−2·a−1, with a reduction of approximate 33%, which significantly improved the accuracy of the calculation. The atmospheric CO2 flux consumed by carbonatite weathering contributed 95.5% of the total, which indicated dominance of the atmospheric CO2 flux consumed by carbonatite weathering in the Yanggong river basin. The quantity of atmospheric CO2 consumed by rock weathering in the Yanggong river basin is 4.27×104 t CO2·a−1, suggesting a process of carbon sink. That sulfuric acid participated in the process of rock weathering in the river basin changed the regional carbon cycle is a significant link that cannot be overlooked in the model of the global carbon cycle. Meanwhile, in studies on the carbon source/sink effect of rock weathering in the river basin, it was essential for us to consider the regional geological background, particularly the types of minerals rich in sulfides. -
Key words:
- rock weathering /
- carbon sink effect /
- sulfuric acid /
- carbonic acid
-
图 6 硫酸参与漾弓江流域岩石风化的证据 a:(Ca2++Mg2+)/${\rm{HCO}}_3^{-}$化学当量浓度的变化关系;b:(Ca2++Mg2+)/(${\rm{HCO}}_3^{-}$+${\rm{SO}}_4^{2-}$)化学当量浓度的变化关系
Figure 6. Participation of sulfuric acid in the rock weathering. a: relationship between changes in chemical equivalent concentrations of [(Ca2++Mg2+)/${\rm{HCO}}_3^{-}$]. b: relationship between changes in chemical equivalent concentrations of [(Ca2++Mg2+)/(${\rm{HCO}}_3^{-}$+${\rm{SO}}_4^{2-}$)]
表 1 漾弓江流域水体离子化学组成(雨季和旱季平均值)
Table 1. Ionic chemical compositions of water in the Yanggong river basin (averages of rainy and dry seasons)
名称 性质 pH Ca2+ Mg2+ Na+ K+ ${\rm{HCO}}_3^{-}$ ${\rm{SO}}_4^{2-}$ Cl− ${\rm{NO}}_3^{-}$ TDS H2SiO3 TZ+ TZ− mmol·L−1 mg·L−1 YGS1 支流 8.27 2.27 2.77 3.90 0.45 6.04 0.06 0.03 0.03 980.50 23.55 14.44 7.38 YGS2 支流 8.09 1.17 0.35 0.12 0.01 2.74 0.11 0.03 0.03 148.00 31.10 3.16 3.03 YGS3 干流 7.59 1.61 0.67 1.05 0.19 4.34 0.34 0.97 0.30 319.50 13.65 5.82 6.29 YGS4 支流 8.34 0.95 0.36 0.06 0.03 2.44 0.08 0.10 0.03 150.00 10.70 2.71 2.72 YGS5 支流 8.40 0.86 0.43 0.04 0.01 2.34 0.04 0.02 0.00 264.00 6.66 2.63 2.44 YGS6 泉水 8.81 0.69 0.46 0.05 0.01 2.05 0.04 0.03 0.01 129.00 5.20 2.35 2.18 YGS7 暗河出口 7.85 0.80 0.56 0.02 0.02 2.52 0.04 0.01 0.01 181.50 6.62 2.74 2.62 YGS8 泉水 8.28 0.97 0.58 0.19 0.04 3.18 0.17 0.02 0.01 185.00 3.84 3.34 3.55 YGS9 泉水 7.75 1.10 0.42 0.05 0.02 2.86 0.04 0.01 0.00 149.00 9.22 3.11 2.95 YGS10 干流 7.86 1.14 0.62 0.40 0.09 3.08 0.22 0.45 0.11 219.00 5.17 4.01 4.09 YGS11 总出口 8.47 1.37 0.79 0.39 0.09 3.60 0.33 0.42 0.11 336.00 9.32 4.79 4.79 YGS12 泉水 8.70 1.44 0.81 0.31 0.05 2.93 0.49 0.27 0.07 251.00 39.90 4.86 4.25 YGS13 支流 8.37 1.58 0.97 0.46 0.15 3.82 0.50 0.54 0.12 341.50 11.45 5.72 5.49 YGS14 泉水 8.85 0.42 0.50 0.02 0.01 1.47 0.05 0.03 0.00 160.00 1.65 1.86 1.59 YGS15 支流 8.22 1.17 0.46 0.09 0.03 2.34 0.55 0.03 0.02 207.00 12.55 3.38 3.49 表 2 漾弓江流域碳汇通量估算
Table 2. Estimation of carbon flux in the Yanggong river basin
名称 流量 流域
面积${\rm{HCO}}_3^{-}$
通量硅酸盐岩风化 碳酸盐岩风化 岩石风
化速率碳通量
合计溶蚀
速率碳酸溶蚀
硅酸盐岩
CO2消耗溶蚀
速率碳酸溶蚀
碳酸盐岩
CO2消耗量碳酸和硫酸溶
蚀碳酸盐岩
CO2消耗量108 m3·a−1 km2 t CO2·km−2·a−1 mm·ka−1 t CO2 ·km−2·a−1 mm·ka−1 t CO2·km−2·a−1 t CO2 ·km−2·a−1 mm·ka−1 t CO2·km−2·a−1 t CO2 ·a−1 木家桥 1.81 820 37.32 2.30 4.31 19.86 18.38 14.62 22.16 18.93 15 528.92 金河断面 7.60 1 670 59.49 4.41 1.15 24.40 33.94 24.39 39.26 25.54 42 667.04 -
[1] 刘再华, Wolfgang Dreybrodt, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J]. 科学通报, 2007, 52(20):2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013 [2] Bufe A, Hovius N, Emberson R, et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion[J]. Nature Geoscience, 2021, 14(4): 211-216. doi: 10.1038/s41561-021-00714-3 [3] Kantzas E P, Val Martin M, Lomas M R, et al. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom[J]. Nature Geoscience, 2022, 15(5): 382-389. doi: 10.1038/s41561-022-00925-2 [4] 王威, 郭庆军, 杜陈军, 邓义楠. 长江流域水环境碳循环研究进展[J]. 生态学杂志, 2023, 42(3):736-747.WANG Wei, GUO Qingjun, DU Chenjun, DENG Yinan. Research advances in water environmental carbon cycle in the Yangtze River Basin[J]. Chinese Journal of Ecology, 2023, 42(3): 736-747. [5] 张信宝, 罗景城, 王小国, 唐家良, 彭韬, 朱波. 河流泥沙输移过程中矿物风化的碳汇效应初探:以长江干流为例[J]. 地质学报, 2023, 97(7):2378-2385. doi: 10.3969/j.issn.0001-5717.2023.07.017ZHANG Xinbao, LUO Jingcheng, WANG Xiaoguo, TANG Jialiang, PENG Tao, ZHU Bo. A preliminary study on the inorganic carbon sink function of mineral weathering during sediment transport in the Yangtze River mainstream[J]. Acta Geologica Sinica, 2023, 97(7): 2378-2385. doi: 10.3969/j.issn.0001-5717.2023.07.017 [6] 周忠发, 张结, 潘艳喜, 殷超, 汪炎林, 田衷珲. 双河洞洞穴系统岩溶地表水-地下水主要离子化学特征及其来源分析[J]. 科学技术与工程, 2018, 18(6):5-13. doi: 10.3969/j.issn.1671-1815.2018.06.002ZHOU Zhongfa, ZHANG Jie, PAN Yanxi, YIN Chao, WANG Yanlin, TIAN Zhonghui. Chemical characteristics and source analysis of main ions in karst surface water and groundwater in Shuanghe cave system[J]. Science Technology and Engineering, 2018, 18(6): 5-13. doi: 10.3969/j.issn.1671-1815.2018.06.002 [7] 王琪, 于奭, 蒋萍萍, 孙平安. 长江流域主要干/支流水化学特征及外源酸的影响[J]. 环境科学, 2021, 42(10):4687-4697.WANG Qi, YU Shi, JIANG Pingping, SUN Ping'an. Water chemical characteristics and influence of exogenous acids in the Yangtze River Basin[J]. Environmental Science, 2021, 42(10): 4687-4697. [8] An Y L, Hou Y L, Wu Q X, Qing L, Li L B. Chemical weathering and CO2 consumption of a high-erosion-rate karstic river: A case study of the Sanchahe river, Southwest China[J]. Chinese Journal of Geochemistry, 2015, 34: 601-609. doi: 10.1007/s11631-015-0074-2 [9] 张连凯, 覃小群, 刘朋雨, 黄奇波. 硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报, 2016, 90(8):1933-1944. doi: 10.3969/j.issn.0001-5717.2016.08.021ZHANG Liankai, QIN Xiaoqun, LIU Pengyu, HUANG Qibo. Chemical denudation rate and atmospheric CO2 consumption by H2CO3 and H2SO4 in the Yangtze River Catchment[J]. Acta Geologica Sinica, 2016, 90(8): 1933-1944. doi: 10.3969/j.issn.0001-5717.2016.08.021 [10] 李朝君. 全球碳酸盐岩与硅酸盐岩风化碳汇估算[D]. 贵阳:贵州师范大学, 2021.LI Chaojun. Estimation of weathering carbon sinks in global carbonate and silicate rocks[D]. Guiyang: Guizhou Normal University, 2021. [11] Horan K, Hilton R G, Dellinger M, et al. Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie river basin[J]. American Journal of Science, 2019, 319(6): 473-499. doi: 10.2475/06.2019.02 [12] 李朝君, 王世杰, 白晓永, 谭秋, 李汇文, 李琴, 邓元红, 杨钰杰, 田诗琪, 胡泽银. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7):1319-1332. doi: 10.11821/dlxb201907004LI Chaojun, WANG Shijie, BAI Xiaoyong, TAN Qiu, LI Huiwen, LI Qin, DENG Yuanhong, YANG Yujie, TIAN Shiqi, HU Zeyin. Estimation of carbonate rock weathering-related carbon sink in global major river basins[J]. Acta Geographica Sinica, 2019, 74(7): 1319-1332. doi: 10.11821/dlxb201907004 [13] 蒋忠诚, 袁道先, 曹建华, 覃小群, 何师意, 章程. 中国岩溶碳汇潜力研究[J]. 地球学报, 2012, 33(2):129-134.JIANG Zhongcheng, YUAN Daoxian, CAO Jianhua, QIN Xiaoqun, HE Shiyi, ZHANG Cheng. A study of carbon sink capacity of karst processes in China[J]. Acta Geoscientica Sinica, 2012, 33(2): 129-134. [14] 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(Suppl.1):95-102.LIU Zaihua. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(Suppl.1): 95-102. [15] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10):1081-1090.PU Junbing, JIANG Zhongcheng, YUAN Daoxian, ZHANG Cheng. Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report[J]. Advances in Earth Science, 2015, 30(10): 1081-1090. [16] 刘旭, 张东, 高爽, 吴婕, 郭建阳, 赵志琦. 青藏高原小流域化学风化过程及其CO2消耗通量:以尼洋河为例[J]. 生态学杂志, 2018, 37(3):688-696.LIU Xu, ZHANG Dong, GAO Shuang, WU Jie, GUO Jianyang, ZHAO Zhiqi. Chemical weathering and CO2 consumption flux in Tibetan Plateau: A case of Niyang river catchment[J]. Chinese Journal of Ecology, 2018, 37(3): 688-696. [17] 黄奇波, 覃小群, 程瑞瑞, 李腾芳, 刘朋雨. 硫酸型酸雨参与碳酸盐岩溶蚀的研究进展[J]. 中国岩溶, 2019, 38(2): 149-156.HUANG Qibo, QIN Xiaoqun, CHENG Ruirui, LI Tengfang, LIU Pengyu. Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks[J]. Carsologica Sinica, 2019, 38(2): 149-156. [18] 任梦梦. 漓江流域外源酸(硝酸、硫酸)对岩溶碳汇的影响研究[D]. 北京: 中国地质大学(北京), 2020.REN Mengmeng. Study on effects of allogenic acids on karst carbon sink in Lijiang river catchment, Southwest China[D]. Beijing: China University of Geosciences (Beijing), 2020. [19] 谢银财, 于奭, 缪雄谊, 李军, 何师意, 孙平安. 青藏高原流域岩石风化机制及其CO2消耗通量:以拉萨河为例[J]. 地学前缘, 2023, 30(5):510-525.XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping'an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa river basin[J]. Earth Science Frontiers, 2023, 30(5): 510-525. [20] 苏丹, 周忠发, 黄静, 石亮星, 龚晓欢, 张恒, 闫利会. 外源酸对喀斯特流域碳汇效应的影响[J]. 环境化学, 2023, 42(6):1957-1969. doi: 10.7524/j.issn.0254-6108.2021121902SU Dan, ZHOU Zhongfa, HUANG Jing, SHI Liangxing, GONG Xiaohuan, ZHANG Heng, YAN Lihui. Influence of exogenous acid on carbon sink effect in a karst watershed[J]. Environmental Chemistry, 2023, 42(6): 1957-1969. doi: 10.7524/j.issn.0254-6108.2021121902 [21] Xie Y C, Huang F, Yang H, Yu S. Role of anthropogenic sulfuric and nitric acids in carbonate weathering and associated carbon sink budget in a karst catchment (Guohua), Southwestern China[J]. Journal of Hydrology, 2021, 599: 126287. doi: 10.1016/j.jhydrol.2021.126287 [22] 曹敏, 蒋勇军, 蒲俊兵, 张兴波, 邱述兰, 杨平恒, 汪智军, 李欢欢. 重庆南山老龙洞地下河流域岩溶地下水DIC和δ13CDIC及其流域碳汇变化特征[J]. 中国岩溶, 2012, 31(2):145-153. doi: 10.3969/j.issn.1001-4810.2012.02.006CAO Min, JIANG Yongjun, PU Junbing, ZHANG Xingbo, QIU Shulan, YANG Pingheng, WANG Zhijun, LI Huanhuan. Variations in DIC and δ13CDIC of the karst groundwater and in carbon sink of Laolongdong subterranean stream basin at Nanshan, Chongqing[J]. Carsologica Sinica, 2012, 31(2): 145-153. doi: 10.3969/j.issn.1001-4810.2012.02.006 [23] 张远瞩. 外源酸(硫酸、硝酸)对岩溶碳循环的影响:以重庆南山老龙洞地下河流域为例[D]. 重庆:西南大学, 2017.ZHANG Yuanzhu. Effects of exogenous acids (sulfuric acid and nitric acid) on karst carbon cycle: A study from Laolongdong subterranean catchment, Chongqing[D]. Chongqing: Southwest University, 2017. [24] Zondervan J R, Hilton R G, Dellinger M, Clubb F J, Roylands T, Ogrič M. Rock organic carbon oxidation CO2 release offsets silicate weathering sink[J]. Nature, 2023, 623(7986): 329-333. [25] 陶正华, 赵志琦, 张东, 李晓东, 王宝利, 吴起鑫, 张伟, 刘丛强. 西南三江(金沙江、澜沧江和怒江)流域化学风化过程[J]. 生态学杂志, 2015, 34(8):2297-2308.TAO Zhenghua, ZHAO Zhiqi, ZHANG Dong, LI Xiaodong, WANG Baoli, WU Qixin, ZHANG Wei, LIU Congqiang. Chemical weathering in the three rivers (Jingshajiang, Lancangjiang, and Nujiang) watershed, Southwest China[J]. Chinese Journal of Ecology, 2015, 34(8): 2297-2308. [26] 李宗省, 何元庆, 温煜华, 庞洪喜, 贾文雄, 和献中, 蒲焘. 我国典型海洋型冰川区高海拔区输出水量变化对气候变暖的响应[J]. 地球科学(中国地质大学学报), 2010, 35(1):43-50.LI Zongxing, HE Yuanqing, WEN Yuhua, PANG Hongxi, JIA Wenxiong, HE Xianzhong, PU Tao. Response of runoff in high altitude area over the typical Chinese monsoonal temperate glacial region to climate warming[J]. Earth Science (Journal of China University of Geosciences), 2010, 35(1): 43-50. [27] 方金鑫, 蒲焘, 史晓宜, 王世金, 牛贺文. 气候变化背景下玉龙雪山漾弓江流域径流变化及其影响因素分析[J]. 冰川冻土, 2019, 41(2):268-274.FANG Jinxin, PU Tao, SHI Xiaoyi, WANG Shijin, NIU Hewen. Runoff variation and its influence factors in the Yanggong river basin of Mt. Yulong region due to climate change[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 268-274. [28] Hong Y, Zhang H, Zhu Y, et al. Sulfur isotopes of atmospheric precipitation in China[J]. Progress in Natural Science, 1994, 4: 741-745. [29] Galy A, France Lanord C. Weathering process in the Ganges-Brahmaputra basin and the riverine alkalinity budget[J]. Chemical Geology, 1999, 159: 31-60. doi: 10.1016/S0009-2541(99)00033-9 [30] Ji H B, Jiang Y B. Carbon flux and C, S isotopic characteristics of river waters from a karstic and a granitic terrain in the Yangtze River system[J]. Journal of Asian Earth Sciences, 2012, 57: 38-53. [31] Anderson S P, Drever J I, Frost C D, Holden P. Chemical weathering in the foreland of a retreating glacier[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1173-1189. [32] Meybeck M. Global occurrence of major elements in rivers[A]//Holland Heinrich D, Turekian Karl K, Holland Heinrich D. Treatise on geochemistry. Amsterdam: Elsevier, 2003: 207-223. [33] 韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究:碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4):394-406. doi: 10.3321/j.issn:1001-8166.2005.04.004HAN Guilin, LIU Congqiang. Hydrogeochemistry of rivers in Guizhou Province, China: Constraints on crustal weathering in karst terrain[J]. Advances in Earth Science, 2005, 20(4): 394-406. doi: 10.3321/j.issn:1001-8166.2005.04.004 [34] 刘文景, 孙会国, 李源川, 徐志方. 怒江水化学与碳同位素组成对青藏高原岩石风化碳汇效应的指示[J]. 中国科学:地球科学, 2023, 53(12): 2992-3009.LIU Wenjing, SUN Huiguo, LI Yuanchuan, XU Zhifang. Hydrochemistry and carbon isotope characteristics of Nujiang river water: Implications for CO2 budgets of rock weathering in the Tibetan Plateau[J]. Scientia Sinica Terrae, 2023, 53(12): 2992-3009. [35] Guo Z F, Wilson M, Dingwell D B, Liu J Q. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic[J]. Nature Communications, 2021, 12(1): 3891. doi: 10.1038/s41467-021-23772-y [36] Zhang M L, Zhang L H, Zhao W B, Guo Z F, Xu S, Sano Y, Lang Y C, Liu C Q, Li Y. Metamorphic CO2 emissions from the southern Yadong-Gulu rift, Tibetan Plateau: Insights into deep carbon cycle in the India-Asia continental collision zone[J]. Chemical Geology, 2021, 584: 120534. doi: 10.1016/j.chemgeo.2021.120534