Estimation of the carbon sink of rock weathering by remote sensing and analysis of its spatiotemporal variations
-
摘要: 岩石风化过程吸收的 CO2 是全球碳循环“遗漏汇”中的一部分, 岩石风化碳汇估算对掌握区域与全球碳汇效应及与全球气候变化的关系具有重要意义。文章选取贵州省作为实验区域,以20年作为时间跨度,收集了气象、岩性等数据,首先借助动态时间规整方法选取了岩石风化碳汇的影响因子,然后利用GEM-CO2模型进行岩溶碳汇量的估算,最后运用Mann-Kendall趋势法和统计法揭示实验区域的2001-2020年岩溶碳汇时空演变规律。结果表明:(1) 影响岩石风化速度、消耗CO2量的主要因素为岩石类别,其次为年均降水量,温度对于CO2消耗的响应具有滞后性;(2) 贵州省岩石风化消耗CO2量较多的地区主要在黔东北、黔西南、黔南以及黔东南部分地区,消耗CO2较少的地区主要分布在黔西北地区;(3) 20年间,贵州省年均岩溶碳汇量大约在0~1.04×103 t C·km−2·a−1之间,呈波动上升的趋势。基于遥感数据的全球或区域尺度碳汇估算为碳源/汇时空变化分析提供了基础数据,为当地碳汇交易、环境政策的制定提供参考。
-
关键词:
- 岩溶碳汇 /
- DTW /
- GEM-CO2模型 /
- Mann-Kendall趋势检验
Abstract:As a type of natural carbon sink, rock weathering plays a critical role in the global carbon cycle by storing atmospheric carbon dioxide (CO2). This process is particularly significant in mitigating climate change, although its contributions are often underestimated or overlooked in broader carbon calculation practices. The present study focuses on Guizhou Province, China, a region that is characterized by extensive karst landforms. These landforms are of particular interest because they are highly effective in capturing atmospheric CO2 through rock weathering. This study aims to explore the spatiotemporal dynamics of the carbon sink of rock weathering from 2001 to 2020. This study integrates various data sources, including remote sensing data, meteorological records, and lithological information, to estimate the carbon sink capacity with the GEM-CO2 model. This study also employs advanced analytical techniques such as Dynamic Time Warping (DTW) and statistical methods to analyze the spatiotemporal evolution of carbon sink. The findings of this study reveal that the rock type is a primary factor influencing the rate of rock weathering and CO2 consumption, followed closely by annual precipitation. The temperature also plays a significant role, although the responses of its effects are observed to be lagged. This indicates that changes in temperature may affect CO2 absorption rates several years after the initial temperature fluctuation occurred. This study identifies that the regions with the highest CO2 consumption through rock weathering are predominantly concentrated in the northeastern, southwestern, southern, and southeastern parts of Guizhou Province. These areas are characterized by widespread formations of carbonate rocks and higher precipitation levels, which can jointly enhance the weathering process and increase carbon sequestration. In contrast, the northwestern regions, which are dominated by silicate rocks and receive lower levels of precipitation, exhibit the lowest levels of CO2 consumption. This discrepancy underscores the importance of both lithological composition and climatic conditions in determining the effectiveness of natural carbon sink. From 2001 to 2020, the annual average karst carbon sink in Guizhou Province ranged from 0 to 1.04×103 t C·km−2·a−1. Although there was a general trend of fluctuation, the overall pattern showed an increase in carbon sequestration capacity. However, the analysis did not reveal any significant single trend over the two decades. This lack of a clear trend suggests a complex interplay between geological and climatic factors that influence carbon sequestration in karst landforms. The variability in carbon sink capacity observed in this study highlights the sensitivity of natural carbon sink to the changes in environmental conditions, particularly in precipitation and temperature. The spatial distribution of carbon sink closely mirrors the distribution of carbonate rocks in Guizhou Province. This correlation emphasizes the critical role that carbonate rocks play in the global carbon cycle due to their high solubility, which can accelerate the process of CO2 absorption. Areas with more annual precipitation were found to have a greater capacity for carbon sequestration, and this result reinforces the importance of hydrological factors in the weathering process. This finding is particularly relevant for the regions that are expected to experience changes in precipitation patterns due to climate change, as it suggests that shifts in hydrological conditions could have a significant impact on the efficacy of natural carbon sink. In addition to these findings, this study also highlights the importance of both geological formations and climatic conditions when the carbon sequestration potential of different regions are estimated. The application of the GEM-CO2 model in this study provides a robust framework for estimating the carbon sink at a regional scale. The effectiveness of this model in this context offers critical data that can be used to guide the development of carbon trading mechanisms and environmental policies aimed at enhancing the natural carbon sink. By integrating geological and climatic data, this model allows a more nuanced understanding of the factors that contribute to the carbon sequestration in karst landforms. The insights gained from this study are invaluable for informing carbon management strategies, particularly in regions with similar geological and climatic conditions. The findings of this study suggest that the carbon sequestration through rock weathering could be a viable component of mitigation efforts for climate change in a wider range. However, the fluctuating nature of carbon sink over the study period indicates that the natural carbon sink is highly sensitive to changes in environmental conditions. This sensitivity underscores the need for adaptive management strategies that can respond to changes in climate and ensure the continued effectiveness of natural carbon sink. Furthermore, this study lays the groundwork for future research to explore the further implications of rock weathering in global carbon cycles. It advocates a more integrated approach that considers both natural and human factors of mitigating climate change. As the climate change continues altering global weather patterns, understanding the role of natural processes like rock weathering in the carbon cycle will be increasingly important for us to develop effective strategies to manage and mitigate the impacts of climate change. -
Key words:
- karst carbon sink /
- GEM-CO2 model /
- Mann-Kendall trend test /
- DTW
-
岩石类型 经验系数a 变质岩及深成岩类 0.095 酸性火山岩 0.222 玄武岩 0.479 砂层与砂岩类 0.152 页岩类 0.627 碳酸盐岩类 1.586 蒸发岩类 0.293 表 2 2001-2010年贵州省岩溶碳汇类型
Table 2. Types of karst carbon sink in Guizhou Province from 2001 to 2010
类型 面积占比/% 描述 波动减少 5.43 20年中相邻年份碳汇量表现为减少形式的次数与面积显著大于增加形式,方差波动较大,碳汇总量减少。 稳定减少 3.90 20年中相邻年份碳汇量表现为减少形式的次数与面积显著大于增加形式,方差波动较小,碳汇总量减少。 波动稳定 33.86 20年中相邻年份碳汇量表现为减少的次数与面积同增加形式持平或相近,方差波动较大,碳汇总量几乎不变。 稳定 19.47 20年中相邻年份碳汇量表现为减少的次数与面积同增加形式持平或相近,方差波动较小,碳汇总量几乎不变。 波动增加 29.01 20年中相邻年份碳汇量表现为减少形式的次数与面积显著小于增加形式,方差波动较大,碳汇总量增加。 稳定增加 8.33 20年中相邻年份碳汇量表现为减少形式的次数与面积显著小于增加形式,方差波动较小,碳汇总量增加。 表 3 2001-2020年贵州省不同类型岩石碳汇量贡献度
Table 3. Contribution rates of carbon sink of different types of rocks in Guizhou Province from 2001 to 2020
岩石类型 统计面积/km2 碳汇量占比/% 酸性火山岩 1413 0.26 砂岩、页岩、碳酸盐岩 59329 30.46 砂岩、碳酸盐岩 25648 14.59 碳酸盐岩 35566 34.10 砂岩、页岩 2215 0.64 页岩、碳酸盐岩 23654 14.62 深成岩及变质岩 2 010 0.22 砂岩 12095 1.66 砂岩、页岩、碳酸盐岩、玄武岩 5107 2.27 页岩 655 0.27 砂岩、碳酸盐岩、玄武岩 680 0.28 砂岩、页岩、玄武岩 1188 0.42 砂岩、玄武岩 297 0.07 蒸发岩类 / / 表 4 2001-2020年不同地物类型面积与碳汇的Pearson相关系数
Table 4. Pearson correlation coefficient between the area of different object types and the carbon sink from 2001 to 2020
土地利用类型 相关系数 森林 0.29 草地 −0.22 耕地 −0.12 建筑 0.19 其它 0.18 -
[1] 白文广, 张兴赢, 张鹏. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析[J]. 科学通报, 2010, 55(30):2955-2962. [2] 张强. 岩溶地质碳汇的稳定性:以贵州草海地质碳汇为例[J]. 地球学报, 2012, 33(6):947-952.ZHANG Qiang. The stability of carbon sink effect related to carbonate rock dissolution: A case study of the Caohai lake geological carbon sink[J]. Acta Geoscientica Sinica, 2012, 33(6): 947-952. [3] Hese S, Lucht W, Schmullius C, et al. Global biomass mapping for an improved understanding of the CO2 balance—the Earth observation mission Carbon-3D[J]. Remote Sensing of Environment, 2005, 94(1):94-104. doi: 10.1016/j.rse.2004.09.006 [4] Zhang Cheng. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin, 2011, 56(35): 3759-3765. [5] Tans P P, Fung I Y, Takahashi T. Observational contrains on the global atmospheric CO2 budget[J]. Science, 1990, 247(4949): 1431-1438. doi: 10.1126/science.247.4949.1431 [6] Walker J, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9776-9782. [7] Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683. [8] Berner R A. A model for atmospheric CO2 over phanerozoic time[J]. American Journal of Science, 1991, 291(4): 339-376. [9] Zeng Siboa, Jiang Yongjuna, Liu Zaihua. Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS[J]. Global and Planetary Change, 2016, 144: 171-181. [10] Zeng S, Liu Z, Kaufmann G. Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes[J]. Nature Communications, 2019, 10(1): 5749. [11] 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2-3):95-102.LIU Zaihua. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(2-3): 95-102. [12] Blum J D, Gazis C A, Jacobson A D, Chamberlain C P. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series[J]. Geology, 1998, 26(5): 411-414. doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2 [13] 蒋忠诚, 覃小群, 曹建华, 何师意, 章程, 张强. 论岩溶作用对全球碳循环的意义与碳汇效应:兼对《对〈中国岩溶作用产生的大气CO2碳汇分区估算 〉一文的商榷》的答复[J]. 中国岩溶, 2013, 32(1):1-6. doi: 10.3969/j.issn.1001-4810.2013.01.001JIANG Zhongcheng, QIN Xiaoqun, CAO Jianhua, HE Shiyi, ZHANG Cheng, ZHANG Qiang. Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to "Discussion on article 'Calculation of atmospheric CO2 sink formed in karst processes of karst divided regions in China' "[J]. Carsologica Sinica, 2013, 32(1): 1-6. doi: 10.3969/j.issn.1001-4810.2013.01.001 [14] 熊练, 白晓永, 李阳兵, 赵翠薇, 罗光杰, 吴路华, 陈飞, 李朝君, 冉晨, 张思蕊. 高分辨率长时间序列的中国岩石化学风化碳汇数据及其变化趋势[J]. 矿物岩石地球化学通报, 2022, 41(5):956-964. doi: 10.19658/j.issn.1007-2802.2022.41.069XIONG Lian, BAI Xiaoyong, LI Yangbing, ZHAO Cuiwei, LUO Guangjie, WU Luhua, CHEN Fei, LI Chaojun, RAN Chen, ZHANG Sirui. High-resolution long-term data of China's rock weathering carbon sink and its spatial-temporal pattern[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(5): 956-964. doi: 10.19658/j.issn.1007-2802.2022.41.069 [15] 邱冬生, 庄大方, 胡云锋, 姚锐. 中国岩石风化作用所致的碳汇能力估算[J]. 地球科学——中国地质大学学报, 2004, 29(2):177-182, 190.QIU Dongsheng, ZHUANG Dafang, HU Yunfeng, YAO Rui. Estimation of carbon sink capacity caused by rock weathering in China[J]. Earth Science—Journal of China University of Geosciences, 2004, 29(2): 177-182, 190. [16] 李矩章, 林钧枢, 房金福. 喀斯特溶蚀强度分析与估算[J]. 地理研究, 1994, 13(3):90-97. doi: 10.3321/j.issn:1000-0585.1994.03.011LI Juzhang, LIN Junshu, FANG Jinfu. Analysis and estimation of the karst solutional intensity[J]. Geographical Research, 1994, 13(3): 90-97. doi: 10.3321/j.issn:1000-0585.1994.03.011 [17] Suchet P A, Probst J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2)[J]. Tellus B: Chemical and Physical Meteorology, 1995, 47(1-2): 273-280. [18] 林云, 梁家乐, 武亚遵, 贾方建, 任华鑫. 许家沟泉域岩溶地下水δ13CDIC特征及碳汇效应[J]. 干旱区资源与环境, 2021, 35(1):146-153. doi: 10.13448/j.cnki.jalre.2021.022LIN Yun, LIANG Jiale, WU Yazun, JIA Fangjian, REN Huaxin. Characteristics of δ13CDIC of karst groundwater and carbon sink effect in Xujiagou spring area[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 146-153. doi: 10.13448/j.cnki.jalre.2021.022 [19] Zhou Guoqing, Jia Bin, Tao Xiaodong, Yan Hongbo. Estimation of karst carbon sink and its contribution to CO2 emissions over a decade using remote sensing imagery[J]. Applied Geochemistry, 2020, 121: 104689. [20] 于奭, 蒲俊兵, 刘凡, 杨慧. 岩溶碳汇效应对植被的响应研究进展[J]. 地学前缘, 2023, 30(4):418-428.YU Shi, PU Junbing, LIU Fan, YANG Hui. Effect of vegetation on carbon sequestration in karst systems: A critical review[J]. Earth Science Frontiers, 2023, 30(4): 418-428. [21] 邰治钦, 曾成, 肖时珍, 肖华, 代林玉, 闫伟. 近27a来典型白云岩流域岩溶碳汇变化及其调控机制:以贵州施秉黄洲河流域为例[J]. 中国岩溶, 2021, 40(4):625-635.TAI Zhiqin, ZENG Cheng, XIAO Shizhen, XIAO Hua, DAI Linyu, YAN Wei. Variation and rgulation mechanism of karst carbon sink in typical dolomite basin in recent 27 years: A case study of the Huangzhouhe basin in Shibing, Guizhou[J]. Carsologica Sinica, 2021, 40(4): 625-635. [22] 张春来, 黄芬, 蒲俊兵, 曹建华. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4):40-52. doi: 10.19388/j.zgdzdc.2021.04.05ZHANG Chunlai, HUANG Fen, PU Junbing, CAO Jianhua. Estimation of karst carbon sink fluxes and manual intervention to increase carbon sinks in China[J]. Geological Survey of China, 2021, 8(4): 40-52. doi: 10.19388/j.zgdzdc.2021.04.05 [23] 章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4):368-371. doi: 10.3969/j.issn.1001-4810.2011.04.003ZHANG Cheng. Time-scale of karst processes and the carbon sink stability[J]. Carsologica Sinica, 2011, 30(4): 368-371. doi: 10.3969/j.issn.1001-4810.2011.04.003 [24] Peng S Z, Ding Y X, Wen Z M, Chen Y M, Cao Y, Ren J Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100[J]. Agricultural and Forest Meteorology, 2017, 233: 183-194. [25] 彭守璋. 中国1km分辨率逐月降水量数据集(1901—2021)[EB/OL]. 国家青藏高原科学数据中心, 2020. https://doi.org/10.5281/zenodo.3114194.PENG Shouzhang. 1-km monthly precipitation dataset for China (1901–2021)[EB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, 2020. https://doi.org/10.5281/zenodo.3114194. [26] 庞健峰, 丁孝忠, 韩坤英, 曾勇, 陈安蜀, 张艳玲, 张庆合, 姚冬生. 1∶100万中华人民共和国数字地质图空间数据库[J]. 中国地质, 2017(Suppl.1):8-18, 125-138.PANG Jianfeng, DING Xiaozhong, HAN Kunying, ZENG Yong, CHEN Anshu, ZHANG Yanling, ZHANG Qinghe, YAO Dongshen. The national 1∶1,000,000 geological map spatial database[J]. Geology in China, 2017(Suppl.1): 8-18, 125-138. [27] 叶天竺, 黄崇轲, 邓志奇. 1∶250万中华人民共和国数字地质图空间数据库[J]. 中国地质, 2017, 44(Suppl.1):19-24.YE Tianzhu, HUANG Chongke, DENG Zhiqi. Spatial database of 1∶2,500,000 digital geologic map of People's Republic of China[J]. Geology in China, 2017, 44(Suppl.1): 19-24. [28] 廖顺宝, 岳艳琳. 基于时序NDVI图谱库提高土地覆盖分类精度的方法[J]. 农业工程学报, 2018, 34(7):241-248. doi: 10.11975/j.issn.1002-6819.2018.07.031LIAO Shunbao, YUE Yanlin. Method of improving classification accuracy of land cover based on time series NDVI database[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 241-248. doi: 10.11975/j.issn.1002-6819.2018.07.031 [29] Liu H M, Zhan Q M, Yang C, Wang J. Characterizing the spatio-temporal pattern of land surface temperature through time series clustering: Based on the latent pattern and morphology[J]. Remote sensing, 2018, 10(4): 654. doi: 10.3390/rs10040654 [30] Zhang Z, Tavenard R, Bailly A, Tang X, Tang P, Corpetti T. Dynamic time warping under limited warping path length[J]. Information Sciences, 2017, 393: 91-107. [31] Suchet P A, Probst J L. Flux de CO2 consommépar altération chimique continentale: Influences du drainage et de la lithologie[J]. Comptes Rendus De Lacadémie Des Sciences De Paris, 1993, 317: 615-622. [32] Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1998, 287: 401-428. [33] Suchet P A, Probst J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2)[J]. Tellus B, 1995, 47(1-2): 273-280. doi: 10.3402/tellusb.v47i1-2.16047 [34] 王玉雪, 李波, 王槿妍, 赵小伟, 张欣, 王阳, 范庆莲. 基于Mann-Kendall检验法的北运河流域降水和径流变化趋势分析[J]. 北京水务, 2022(1):24-28. doi: 10.19671/j.1673-4637.2022.01.005WANG Yuxue, LI Bo, WANG Jinyan, ZHAO Xiaowei, ZHANG Xin, WANG Yang, FAN Qinglian. Analysis on variation trend of precipitation and runoff in the North Canal basin based on Mann-Kendall test[J]. Beijing Water, 2022(1): 24-28. doi: 10.19671/j.1673-4637.2022.01.005 [35] 王念, 田庆春. 基于Mann-Kendall方法的1954—2015年临汾市气候变化特征分析[J]. 现代农业科技, 2019(13):175-178. doi: 10.3969/j.issn.1007-5739.2019.13.100WANG Nian, TIAN Qingchun. Analysis on climate change characteristics in Linfen City from 1954 to 2015 based on Mann-Kendall method[J]. Modern Agricultural Science and Technology, 2019(13): 175-178. doi: 10.3969/j.issn.1007-5739.2019.13.100 [36] 张兴波, 蒋勇军, 邱述兰, 曹敏, 胡毅军. 农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4):466-476.ZHANG Xingbo, JIANG Yongjun, QIU Shulan, CAO Min, HU Yijun. Agricultural activities and carbon cycling in karst areas in Southwest China: Dissolving carbonate rocks and CO2 sink[J]. Advances in Earth Science, 2012, 27(4): 466-476. [37] Zeng C, Liu Z H, Zhao M, Yang R. Hydrologically-driven variations in the karst-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Journal of Hydrology, 2016, 533: 74-90. doi: 10.1016/j.jhydrol.2015.11.049 [38] Schwartzman D W, Volk T. Biotic enhancement of weathering and the habitability of Earth[J]. Nature, 1989, 340(6233): 457-460. doi: 10.1038/340457a0 [39] 蓝家程, 肖时珍, 杨龙, 敖向红, 肖华. 石漠化治理对岩溶作用强度的影响及其碳汇效应[J]. 水土保持学报, 2016, 30(3):244-249. doi: 10.13870/j.cnki.stbcxb.2016.03.042LAN Jiacheng, XIAO Shizhen, YANG Long, AO Xianghong, XIAO Hua. Impact of rocky desertification treatment on kast carbonate rock dissolution rates and its carbon sink effect[J]. Journal of Soil and Water Conservation, 2016, 30(3): 244-249. doi: 10.13870/j.cnki.stbcxb.2016.03.042 [40] 姜光辉, 张强. 峰丛洼地自然封育过程岩溶水溶解无机碳的变化:以桂林丫吉试验场为例[J]. 中国岩溶, 2011, 30(4):397-402. doi: 10.3969/j.issn.1001-4810.2011.04.008JIANG Guanghui, ZHANG Qiang. Change of dissolved inorganic carbon (DIC) in karst peak cluster during natural restoration: A case study in Yaji station[J]. Carsologica Sinica, 2011, 30(4): 397-402. doi: 10.3969/j.issn.1001-4810.2011.04.008