Relationship between sedimentation and red karst landform during the Ordovician in Hunan, Chongqing and Guizhou
-
摘要: 文章基于野外露头观测、薄片观察、牙形石研究以及X射线衍射分析,从沉积角度探讨了风化作用与湘渝黔地区奥陶系红色岩溶地貌之间的关系。结果表明:同生成岩阶段,大气氧含量的增加,浅海陆棚水底氧化,陆源碎屑中铁离子被氧化形成Fe2O3进入沉积地层,奠定了地貌颜色;受岩相古地理的影响,早中奥陶世大湾期中上扬子地块自西向东岩相存在分带性,岩溶地貌仅出现在以武汉—松滋—松桃—黄平为中心的浅海陆棚碳酸盐岩弧形相带上;沉积微相决定碳酸盐岩孔隙大小与结构影响风化作用,岩石之间差异风化造就地貌凹凸形;米兰科维奇旋回导致牯牛潭组泥质灰岩与生物碎屑泥晶灰岩相互叠置,环潮坪型米级旋回造就出岩溶地貌的韵律性;灰岩中不溶残余物黏土矿物种类及含量暗示其沉积物源与埋藏史的差异,并影响岩层水化膨胀律和抗风化能力。Abstract:
The Ordovician red karst is a newly discovered geological landscape in Hunan, Chongqing and Guizhou. Its appearances, distributions and rhythms are distinctive. With the development of red stone forest parks in the study area, red karst landforms have attracted great attention in recent years. Researchers have analyzed red karst landforms from their appearance characteristics, geomorphological types, surface corrosion, geological structures, climatic and neo-tectonic movement. However, there is still lack of research on the relationship between formation of red karst landforms and sedimentation. Integrating the field geological survey, observation of thin sections, odontolite analysis and X-ray diffraction analysis, this study tried to discuss the inner connection between weathering and red karst landforms in the view of sedimentation. During the syndiagenetic stage, the increase of oxygen content in the atmosphere caused the oxidation at the bottom of shallow continental shelf. During this process, Fe2O3 that was formed by the oxidation of iron ions in terrigenous debris entered sedimentary strata, which contributed to red-colored landform. Controlled by the distribution of lithofacies in the early-to-mid Ordovician, karst landforms were only developed in the carbonate arc blet of the shallow continental shelf along the area of Wuhan–Songzi–Songtao–Huangping. Pore sizes and structures of carbonate rocks affected by sedimentary microfacies would influence weathering, and hence the differential weathering caused concave and convex terrains. The Milankovitch cycle resulted in the overlapping of argillaceous limestone and bioclastic micritic limestone in the Guniutan Formation, and the meter-scale cycle of circum-tidal flat caused the rhythms of karst landforms. Types and contents of clay minerals within the limestone indicate the differences in sediment sources and burial histories and also affects hydration expansion and weathering resistance of the formation. In summary, the sedimentation process that controls the rock formation and weathering is one controlling factor to the formation and distribution of red karst landforms. -
Key words:
- red karst landform /
- sedimentation /
- sedimentary facies /
- outcrop /
- sedimentary cycle
-
图 3 黄平县谷陇镇红色岩溶岩性特征
注:(a) 大湾组露头;(b)、(c)、(d)为红色岩溶;(a)中钙质粉砂岩(正交偏光)、鲕粒泥晶灰岩(单偏光)、砂质灰岩(单偏光)照片,其中Ca代表方解石,Cal代表棘刺,Co代表珊瑚,Mi代表云母,Os代表介形虫,Ph代表腕足,Po代表球粒,Oo代表鲕粒,Si代表石英,Sp代表海绵。
Figure 3. Lithologic characteristics of red karst in Gulong town, Huangping county
Note:(a): outcrop of the Dawan Formation; (b): photo of calcareous sandstone (cross-polarized light) in (a); (c): photo of oomicrite (plane-polarized light) in (a); (d): photo of sandy limestone (plane-polarized light) in (a); Ca: calcite; Cal: calthrop; Co: coral; Mi: mica; Os: ostracode; Ph: brachiopod; Po: spherulite; Oo: ooid; Si: quartz; Sp: sponge.
图 4 松桃县腊尔山红色岩溶岩性特征
注:(a)大湾组露头;(b)为(a)中单层岩石特征,具有网纹结构,富含三叶虫等生物;(c)为(a)单层泥质灰岩显微照片(正交偏光,×40);(d)牯牛潭组露头;(e)为(d)中凹层显微照片(正交偏光,×40);(f)为(d)中凸出层显微照片(正交偏光,×40),其中Ho代表角石,Ti代表三叶虫,其他符号与图3相同。
Figure 4. Lithologic characteristics of red karst in Laer mountain, Songtao county
Note: (a): outcrop of the Dawan Formation; (b) Single-layer rock with a net-like structure and rich in trilobites and other organisms in (a); (c) microscopic photo of single-layered argillaceous limestone (cross-polarized light, ×40) in (a); (d): outcrop of the Guniutan Formation; (e) microscopic photo of the concave layer (cross-polarized light, ×40) in (d); (f) microscopic photo of the convex layer (cross-polarized light, ×40) in (d); Ho: hornstone; Ti: trilobite; other abbreviations: referring to Fig.3.
表 1 研究区泥质灰岩黏土矿物X射线衍射法检测结果
Table 1. Results of X-ray diffraction of clay minerals in argillaceous limestone in the study area
采样位置 样品编号 黏土矿物含量/% 伊—蒙混层比/% 蒙脱石 伊利石 高岭石 绿泥石 伊—蒙混层 绿—蒙混层 蒙皂石层 伊利石层 S I K C I/S C/S S % I % 黄平县谷陇镇 No2 0 79 0 4 17 0 5 95 No3 0 74 0 0 26 0 5 95 No5 0 65 0 0 35 0 5 95 No8-1 0 82 0 2 16 0 5 95 No9-1 0 67 0 3 30 0 5 95 古丈县红石
林风景区D001 0 80 1 10 9 0 5 95 D002 0 74 0 6 20 0 5 95 D003 0 67 0 17 16 0 5 95 D004 0 60 5 25 10 0 5 95 D005 0 80 0 3 17 0 5 95 松桃县腊尔山 G001 0 75 0 6 19 0 5 95 G002 0 71 1 11 17 0 5 95 G003 0 67 0 17 16 0 5 95 G004 0 70 0 12 18 0 5 95 G005 0 66 0 8 26 0 5 95 -
[1] 陈建平, 马文瀚. 湖南古丈红石林地质遗迹形成条件及发育过程初探[J]. 地质灾害与环境保护, 2006, 17(3):83-86.CHEN Jianping, MA Wenhan. The formation conditions and development of the red rock forest geological relic in Guzhang, Hunan Province[J]. Journal of Geological Hazards and Environment Preservation, 2006, 17(3): 83-86. [2] 姜伏伟, 董颖, 苏孝良, 陈友智, 于宁, 曹晓娟. 试论红色岩溶概念及其科学价值[J]. 中国岩溶, 2020, 39(5):775-780.JIANG Fuwei, DONG Ying, SU Xiaoliang, CHEN Youzhi, YU Ning, CAO Xiaojuan. Preliminary discussion on the concept of red karst and its scientific value[J]. Carsologica Sinica, 2020, 39(5): 775-780. [3] 姜伏伟, 董颖, 陈友智, 于宁, 曹晓娟. 酉水流域贵州段红色岩溶特征及成因[J]. 中国岩溶, 2020, 39(6):937-944.JIANG Fuwei, DONG Ying, CHEN Youzhi, YU Ning, CAO Xiaojuan. Characteristics and genesis of red karst in Guizhou section of Youshui river basin[J]. Carsologica Sinica, 2020, 39(6): 937-944. [4] 曹晓娟, 姜伏伟, 陈友智, 董颖, 杨宏斌. 武陵山地区红色岩溶景观形成地质条件与演化模式研究[J]. 中国岩溶, 2020, 39(6):945-951.CAO Xiaojuan, JIANG Fuwei, CHEN Youzhi, DONG Ying, YANG Hongbin. Geological conditions and evolution model of red karst landscape in the Wulingshan area, China[J]. Carsologica Sinica, 2020, 39(6): 945-951. [5] 陈友智, 姜伏伟, 于宁, 苏孝良, 曹晓娟. 湘渝黔红色岩溶地貌形成的地质条件及成因分析[J]. 地球化学, 2023, 52(1):94-104.CHEN Youzhi, JIANG Fuwei, YU Ning, SU Xiaoliang, CAO Xiaojuan. Analysis on the geological conditions and genesis of red karst landform in Hunan-Chongqing-Guizhou[J]. Geochimica, 2023, 52(1): 94-104. [6] 俞锦标, 潘瑞鸿. 贵州省普定县碳酸盐岩沉积相带成岩作用与岩溶发育的研究[J]. 南京大学学报(自然科学版), 1982, 3: 787-798.YU Jinbiao, PAN Ruihong. Sedimentary facies zones, diagenesis and karst development of carbonate rocks in Puding, west Guizhou[J]. Journal of Nanjing University (Natural Sciences), 1982, 3: 787-798. [7] 赵吉发. 碳酸盐岩相与岩溶地貌发育的初步研究:以贵州三叠系为例[J]. 中国岩溶, 1994, 13(3):261-269.ZHAO Jifa. A preliminary research on carbonate facies and karst geomorphology development[J]. Carsologica Sinica, 1994, 13(3): 261-269. [8] Schulze K H. Mikrofazielle, geochemische und technologische Eigenschaften von Gesteinen der Oberen Heersumer Schichten des Korallenoolith (Mittleresbis Oberes Oxfordium, NW-Deutschland) zwischen Weser und Leine[M]. Stuttgart, Germany: Schweizerbart, 1975. [9] May A. Microfacies controls on weathering of carbonate building stones: Devonian (Northern Sauerland, Germany)[J]. Facies, 1994, 30: 193-208. doi: 10.1007/BF02536897 [10] Andriani G F, Walsh N. Physical properties and textural parameters of calcarenitic rocks: Qualitative and quantitative evaluations[J]. Engineering Geology, 2002, 67(1): 5-15. [11] Erik F. Microfacies of carbonate rocks[M]. Germany: Springer Berlin Heidelberg, 2010. [12] Fitzner B, Heinrichs K. Damage diagnosis of stone monuments-weathering forms, damage categories and damage indices[C]//Prikryl R, Viles H A (eds.): Understanding and managing stone decay. Proceedings of the International Conference "Stone weathering and atmospheric pollution network (Swapnet 2001)", Praha. [13] Fitzner B, Heinrichs K, La Bouchardiere D. Limestone weathering of historical monuments in Cairo, Egypt[A]//Siegesmund S, Weiss T, Vollbrecht A (eds.): Natural stone, weathering phenonema, conservation strategies and case studies. Geological Society London, Special Publication, 2002. [14] 黄福喜. 中上扬子克拉通盆地沉积层序充填过程与演化模式[D]. 成都:成都理工大学, 2011.HUANG Fuxi. Filling process and evolutionary model of sedimentary sequence in middle-upper Yangtze cratonic basin[D]. Chengdu: Chengdu University of Technology, 2011. [15] 邓大飞. 雪峰隆起北缘海相古油气巨量富集的陆内构造研究[D] . 武汉:中国地质大学(武汉), 2014.DENG Dafei. Study on the intracontinental structure of the enrichment of marine paleo-reservoirs in the northern margin of Jiangnan-Xuefeng uplift, Southern China[D]. Wuhan: China University of Geosciences (Wuhan), 2014. [16] 赵俊. 中上扬子地区中奥陶世岩相古地理研究[D]. 武汉:长江大学, 2014.ZHAO Jun. Study on lithofacies paleogeography of Middle Ordovician in middle and upper Yangtze region[D]. Wuhan: Yangtze University, 2014. [17] 贵州省地质调查院. 贵州省区域地质志[M]. 北京: 地质出版社, 2016.Guizhou Geological Survey Institute. Regional geology of Guizhou Province[M]. Beijing: Geological Publishing House, 2016. [18] 湖南省地质局. 1∶20万永顺幅区调报告[R]. 1970. [19] 四川省地质局. 1∶20万酉阳幅区调报告[R]. 1972. [20] 姚根顺, 沈安江, 潘文庆, 郑兴平, 郑剑锋, 陆俊明, 罗宪婴. 碳酸盐岩岩石学:颗粒、结构、孔隙及成岩作用[M]. 北京: 石油工业出版社, 2010.YAO Genshun, SHEN Anjiang, PAN Wenqing, ZHENG Xingping, ZHENG Jianfeng, LU Junming, LUO Xianying. A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis[M]. Beijing: Petroleum Industry Press, 2010. [21] 王冠, 李桂臣, 孙元田, 高凯, 杜乐乐. 伊利石水化机理及膨胀特性的分子模拟研究[J]. 煤炭科技, 2017, 3(3):16-22.WANG Guan, LI Guichen, SUN Yuantian, GAO Kai, DU Lele. Study on molecular simulation of Illite on hydration mechanism and water absorption behavior[J]. Coal Science & Technology magazine, 2017, 3(3): 16-22. [22] 冒海军, 郭印同, 王光进, 杨春和. 黏土矿物组构对水化作用影响评价[J]. 岩土力学, 2010, 31(9):2723-2728.MAO Haijun, GUO Yintong, WANG Guangjin, YANG Chunhe. Evaluation of impact of clay mineral fabrics on hydration process[J]. Rock and Soil Mechanics, 2010, 31(9): 2723-2728. [23] Coimbra R, Rocha F, Immenhauser A, Federico Olóriz, Terroso D, Horikx M. Carbonate-hosted clay minerals: A critical re-evaluation of extraction methods and their possible bias on palaeoenvironmental information[J]. Earth-Science Reviews, 2021, 214: 103502. [24] Hesselbo S P, Deconinck J F, Huggett J M, Morgans Bell H S. Late Jurassic palaeoclimatic change from clay mineralogy and gamma-ray spectrometry of the Kimmeridge Clay, Dorset, UK[J]. Journal of the Geological Society, 2011, 166(6): 1123-1133. [25] Hu Dongping, Zhang Xiaolin, Li Menghan, Xu Yilun, Shen Yanan. Carbon isotope (δ13Ccarb) stratigraphy of the Lower-Upper Ordovician of the Yangtze Platform, South China: Implications for global correlation and the Great Ordovician Biodiversification Event (GOBE)[J]. Global and Planetary Change, 2021, 203: 103546. doi: 10.1016/j.gloplacha.2021.103546 [26] 黄乐清, 刘伟, 柏道远, 李泽泓, 梁恩云, 陈珍宝. 湘西北奥陶系宝塔组灰岩龟裂纹构造特征、成因及其资源意义[J]. 地球科学, 2019, 44(2):1-16.HUANG Leqing, LIU Wei, BAI Daoyuan, LI Zehong, LIANG Enyun, CHEN Zhenbao. Characteristics, petrogenesis and resource significance of the limestone with polygonal reticulate structure of Pagoda Formation, in northwestern Hunan Province[J]. Earth Science, 2019, 44(2): 1-16. [27] 苏文博, 李志明, 陈建强, 龚淑云, 李全国, 高勇群. 海平面变化全球可比性的可靠例证—上扬子地台东南缘奥陶纪层序地层及海平面变化研究[J]. 沉积学报, 1999, 17(3):345-354.SU Wenbo, LI Zhiming, CHEN Jianqiang, GONG Shuyun, LI Quanguo, GAO Yongqun. A reliable example for Eustacy Ordovician sequence stratigraphy on the southeastern margin of the Upper Yangtze Platform[J]. Acta Sedmentologica Sinica, 1999, 17(3): 345-354. [28] 谢环羽, 赵靖舟, 王培玺, 谢武仁, 杨雨. 中—上扬子地区奥陶系层序地层格架[J]. 石油学报, 2019, 40(10):1202-1222.XIE Huanyu, ZHAO Jingzhou, WANG Peixi, XIE Wuren, YANG Yu. Ordovician sequence stratigraphic framework in the middle-upper Yangtze area[J]. Acta Petrolei Sinica, 2019, 40(10): 1202-1222. [29] 梅冥相, 徐德斌, 周洪瑞. 米级旋回层序的成因类型及其相序组构特征[J]. 沉积学报, 2000, 18(1):43-49, 62.MEI Mingxiang, XU Debin, ZHOU Hongrui. Genetic types of meter-scale cyclic sequences and their fabric features of facies-succession[J]. Acta Sedimentologica Sinica, 2000, 18(1): 43-49, 62. [30] Goldhammer R K, Dunn P A, Hardie L A. Depositional cycles, and hierarchy of stratigraphic forcing: Examples from Alpine Triassic platform carbonates[J]. Geological Society of America bulletin, 1990, 102(5): 535-562. doi: 10.1130/0016-7606(1990)102<0535:DCCSLC>2.3.CO;2 [31] 吴兴宁, 赵宗举. 塔中地区奥陶系米级旋回层序分析[J]. 沉积学报, 2005, 23(2):310-315.WU Xingning, ZHAO Zongju. Aanlyses of Ordovician meter-scale cyclic-sequence in Tazhong area[J]. Acta Sedmentologica Sinica, 2005, 23(2): 310-315.