• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Sentinel-2影像的喀斯特地区土地利用信息提取

龙紫微 汪泓 贾煜 吴永俊 彭俊杰

龙紫微,汪 泓,贾 煜,等. 基于Sentinel-2影像的喀斯特地区土地利用信息提取[J]. 中国岩溶,2024,43(3):672-683 doi: 10.11932/karst20240308
引用本文: 龙紫微,汪 泓,贾 煜,等. 基于Sentinel-2影像的喀斯特地区土地利用信息提取[J]. 中国岩溶,2024,43(3):672-683 doi: 10.11932/karst20240308
LONG Ziwei, WANG Hong, JIA Yu, WU Yongjun, PENG Junjie. Extraction of land use information in karst areas based on Sentinel-2 images[J]. CARSOLOGICA SINICA, 2024, 43(3): 672-683. doi: 10.11932/karst20240308
Citation: LONG Ziwei, WANG Hong, JIA Yu, WU Yongjun, PENG Junjie. Extraction of land use information in karst areas based on Sentinel-2 images[J]. CARSOLOGICA SINICA, 2024, 43(3): 672-683. doi: 10.11932/karst20240308

基于Sentinel-2影像的喀斯特地区土地利用信息提取

doi: 10.11932/karst20240308
基金项目: 国家自然科学基金项目(41901225):河流水质对岩溶山地坡面景观变化响应的时空模拟
详细信息
    作者简介:

    龙紫微(1999-),男,硕士研究生,从事喀斯特地区遥感科学技术及应用研究。E-mail:1475700232@qq.com

    通讯作者:

    汪泓(1979-),男,副教授,从事喀斯特地区遥感应用、数字摄影测量等方面研究。E-mail:7653606@qq.com

  • 中图分类号: TP751;P237

Extraction of land use information in karst areas based on Sentinel-2 images

  • 摘要: 针对喀斯特地区分类尺度难以确定,特征数量维数过高,分类精度较低的问题,文章提出了通过联合评价确定最优分割尺度、 ReliefF算法对先验特征数据集进行优选,使用分层掩膜的策略,利用随机森林算法完成分类的方法。并以贵阳西南喀斯特地区为研究区,首先使用同质性与Moran's I联合评价的方法确定最优分割尺度为80,通过ReliefF算法优选出重要性较高的15个特征;在此基础上,通过对比试验验证了随机森林算法的优越性;以2020年Sentinel-2影像为实验数据设计3种面向对象分类方案。结果表明,经最优尺度计算、特征优选和分层掩膜的分类方法结果精度最高,分类总体精度、Kappa系数、AD、QD分别达到0.886、0.849、0.092、0.022。最后将该方法应用于2023年影像,分类总体精度、Kappa系数、AD、QD分别达到0.868、0.825、0.106、0.026。证明了该方法在喀斯特地区土地利用信息提取方面的优越性和适用性。

     

  • 图  1  研究区概况

    Figure  1.  Overview of the study area

    图  2  训练/验证样本分布

    Figure  2.  Distribution of training/validation samples

    图  3  技术流程图

    Figure  3.  Technical flowchart

    图  4  Relief F特征选择

    Figure  4.  Relief F feature selection

    图  5  分类结果

    Figure  5.  Classification results

    图  6  部分细节对比图

    Figure  6.  Comparison of partial details

    图  7  土地利用类型混淆情况

    Figure  7.  Confusion of land use types

    表  1  Sentinel-2 MSI数据介绍

    Table  1.   Introduction of Sentinel-2 MSI data

    波段空间分辨率/m波长/μm
    B2100.458~0.523
    B3100.543~0.578
    B4100.650~0.680
    B8100.785~0.900
    下载: 导出CSV

    表  2  初始特征

    Table  2.   Initial characteristics

    特征类别特征名称数量
    自定义特征NDVI、BAI、NDWI、RDNI、RVI、SAVI6
    光谱特征Mean_R、Mean_G、Mean_B、Mean_NIR、Standard_R、Standard_G、Standard_B、
    Standard_NIR、Brigthtness、Max.diff
    10
    形状特征Area、Length/Width、Shape_ index3
    纹理特征GLCM_ Homogeneity、GLCM_ Entropy、GLCM _Correlation、GLCM_Contrast、
    GLCM_Mean、GLCM_StdDev
    6
    下载: 导出CSV

    表  3  影像分割质量评价

    Table  3.   Evaluation of image segmentation quality

    尺度参数 $ G{S_R} $ $ G{S_G} $ $ G{S_B} $ $ G{S_{NIR}} $ 分割质量评价
    20 1 1 1 1 1
    40 0.7068 0.6702 0.6690 0.6569 0.6757
    60 0.6434 0.5955 0.6044 0.6154 0.6147
    70 0.6637 0.6187 0.6273 0.6524 0.6405
    80 0.5639 0.5134 0.5161 0.5345 0.5320
    90 0.6300 0.5815 0.5880 0.5754 0.5937
    100 0.8720 0.8435 0.8489 0.8057 0.8425
    120 1.0196 1.0115 1.0138 0.9124 0.9893
    140 1.0484 1.0484 1.0537 0.9804 1.0327
    160 1.1200 1.1240 1.1266 0.9947 1.0913
    180 0.9249 0.9271 0.9365 0.9718 0.9401
    200 0.9071 0.9094 0.9115 0.9479 0.9190
    220 1.0225 1.0176 1.0109 1.0400 1.0228
    240 1.0684 1.0538 1.0420 1.1715 1.0839
    下载: 导出CSV

    表  4  算法对比

    Table  4.   Comparison of algorithm

    算法OA/%AD/%QD/%Kappa系数
    K-Nearest Neighbor0.5740.2860.1420.432
    Decision Tree0.7180.2220.0600.630
    Random Forest0.8760.0920.0320.836
    下载: 导出CSV

    表  5  模型精度对比

    Table  5.   Comparison of model accuracy

    模型OA/%AD/%QD/%Kappa系数
    模型A0.8240.1360.0400.768
    模型B0.8760.0920.0320.836
    模型C0.8860.0920.0220.849
    模型C20230.8680.1060.0260.825
    下载: 导出CSV
  • [1] Otukei J R, Blaschke T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(Suppl.1): S27-S31.
    [2] Shao Y, Lunetta R S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2012, 70: 78-87.
    [3] Dihkan M, Guneroglu N, Karsli F, Guneroglu A. Remote sensing of tea plantations using an SVM classifier and pattern-based accuracy assessment technique[J]. International Journal of Remote Sensing, 2013, 34(23): 8549-8565.
    [4] 张卫春, 刘洪斌, 武伟. 基于随机森林和Sentinel-2影像数据的低山丘陵区土地利用分类:以重庆市江津区李市镇为例[J]. 长江流域资源与环境, 2019, 28(6):1334-1343.

    ZHANG Weichun, LIU Hongbin, WU Wei. Classification of land use in low mountain and hilly area based on random forest and Sentinel-2 satellite data: A case study of Lishi town, Jiangjin, Chongqing[J]. Resources and Environment in the Yangtze Basin, 2019, 28(6): 1334-1343.
    [5] Yin Leikun, You Nanshan, Zhang Geli, Huang Jianxi, Dong Jinwei. Optimizing feature selection of individual crop types for improved crop mapping[J]. Remote Sensing, 2020, 12(1): 162.
    [6] 刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3):253-261.

    LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
    [7] 姚杰鹏, 杨磊库, 陈探, 宋春桥. 基于Sentinel-1, 2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究[J]. 遥感技术与应用, 2021, 36(4):760-776.

    YAO Jiepeng, YANG Leiku, CHEN Tan, SONG Chunqiao. Consecutive monitoring of the Poyang lake wetland by integrating Sentinel-2 with Sentinel-1 and Landsat 8 data[J]. Remote Sensing Technology and Application, 2021, 36(4): 760-776.
    [8] Rodriguez Galiano V F, Ghimire B, Rogan J, Chica Olmo M, Rigol Sanchez J P. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2012, 67: 93-104.
    [9] Cracknell M J, Reading A M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information[J]. Computers & Geosciences, 2014, 63: 22-33.
    [10] 李明洁, 王明常, 王凤艳, 陈学业, 丁文. 多特征随机森林的城市土地利用分类[J/OL]. 测绘科学: 1-8. http://kns.cnki.net/kcms/detail/11.4415.P.20210923.0819.004.html.

    LI Mingjie, WANG Mingchang, WANG Fengyan, CHEN Xueye, DING Wen. Urban land use classification based on multi-feature random forest[J/OL]. Science of Surveying and Mapping: 1-8.
    [11] 陈彦四, 黄春林, 侯金亮, 韩伟孝, 冯娅娅, 李翔华, 王静. 基于多时相Sentinel-2影像的黑河中游玉米种植面积提取研究[J]. 遥感技术与应用, 2021, 36(2):324-331.

    CHEN Yansi, HUANG Chunlin, HOU Jinliang, HAN Weixiao, FENG Yaya, LI Xianghua, WANG Jing. Extraction of maize planting area based on multi-temporal Sentinel-2 imagery in the middle reaches of Heihe river[J]. Remote Sensing Technology and Application, 2021, 36(2): 324-331
    [12] 刘曙光, 董行, 娄厦, Dorzhievna Radnaeva Larisa, Nikitina Elena. 基于随机森林特征变量优化的湿地植物分类与密度反演[J]. 同济大学学报(自然科学版), 2021, 49(5):695-704. doi: 10.11908/j.issn.0253-374x.20498

    LIU Shuguang, DONG Hang, LOU Sha, Dorzhievna Radnaeva Larisa, Nikitina Elena. Classification and density inversion of wetland vegetation based on the feature variables optimization of random forest model[J]. Journal of Tongji University (Natural Science Edition), 2021, 49(5): 695-704. doi: 10.11908/j.issn.0253-374x.20498
    [13] 何云, 黄翀, 李贺, 刘庆生, 刘高焕, 周振超, 张晨晨. 基于Sentinel-2A影像特征优选的随机森林土地覆盖分类[J]. 资源科学, 2019, 41(5):992-1001.

    HE Yun, HUANG Chong, LI He, LIU Qingsheng, LIU Gaohuan, ZHOU Zhenchao, ZHANG Chenchen. Land-cover classification of random forest based on Sentinel-2A image feature optimization[J]. Resources Science, 2019, 41(5): 992-1001.
    [14] Breiman. Random forests[J]. Mach Learn, 2001, 45(1): 5-32.
    [15] Kira K. The feature selection problem: Traditional methods and a new algorithm[J]. AAAI-92 Proceedings, 1992.
    [16] 张东彦, 杨玉莹, 黄林生, 杨琦, 梁栋, 佘宝, 洪琪, 姜飞. 结合Sentinel-2影像和特征优选模型提取大豆种植区[J]. 农业工程学报, 2021, 37(9):110-119. doi: 10.11975/j.issn.1002-6819.2021.09.013

    ZHANG Dongyan, YANG Yuying, HUANG Linsheng, YANG Qi, LIANG Dong, SHE Bao, HONG Qi, JIANG Fei. Extraction of soybean planting areas combining Sentinel-2 images and optimized feature model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 110-119. doi: 10.11975/j.issn.1002-6819.2021.09.013
    [17] 肖艳, 王斌. 基于面向对象的极化雷达影像分类[J]. 红外与毫米波学报, 2020, 39(4):505-512. doi: 10.11972/j.issn.1001-9014.2020.04.015

    XIAO Yan, WANG Bin. PolSAR image classification based on object-oriented technology[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 505-512. doi: 10.11972/j.issn.1001-9014.2020.04.015
    [18] Hay G J, Blaschke T, Marceau D J, Bouchard A. A comparison of three image-object methods for the multiscale analysis of landscape structure[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57: 327-345.
    [19] 刘兆祎, 李鑫慧, 沈润平, 朱枫, 张凯, 王恬, 王媛媛. 高分辨率遥感图像分割的最优尺度选择[J]. 计算机工程与应用, 2014, 50(6):144-147. doi: 10.3778/j.issn.1002-8331.1206-0094

    LIU Zhaoyi, LI Xinhui, SHEN Runping, ZHU Feng, ZHANG Kai, WANG Tian, WANG Yuanyuan. Selection of the best segmentation scale in high-resolution image segmentation[J]. Computer Engineering and Applications, 2014, 50(6): 144-147. doi: 10.3778/j.issn.1002-8331.1206-0094
    [20] 王宏胜, 李永树, 吴玺, 李政. 结合空间分析的面向对象无人机影像土地利用分类[J]. 测绘工程, 2018, 27(2):57-61.

    WANG Hongsheng, LI Yongshu, WU Xi, LI Zheng. Object-oriented land use classification from UAV imagery with spatial analysis[J]. Engineering of Surveying and Mapping, 2018, 27(2): 57-61.
    [21] Pontius R G, M Millones. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment[J]. International Journal of Remote Sensing, 2011, 32(15): 4407-4429.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  33
  • HTML浏览量:  8
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 录用日期:  2023-07-31
  • 修回日期:  2023-05-23
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-06-25

目录

    /

    返回文章
    返回