Hydrochemical characteristics and genetic analysis of the Xianju basin in southern Zhejiang Province
-
摘要: 仙居盆地是浙南诸河流域主要盆地和社会经济活动区域。为揭示盆地内地表水和地下水的水化学特征,综合利用数理统计、Piper三线图、主成分分析和离子比等方法对盆地内地表水及浅层地下水进行水化学统计分析及成因判别。结果表明,仙居盆地水化学类型主要为HCO3-Ca·Na型,阳离子以Ca2+、Na+为主,阴离子HCO$_3^{-}$为主。${\rm{NO}}_3^{-}$、Cl−变异系数较大;地下水溶解性总固体为45.50~288.00 mg·L−1,地表水为20.10~95.80 mg·L−1。盆地内水化学特征主要受岩石风化及人类活动影响,Ca2+、Mg2+、HCO$_3^{-}$主要来源于硅酸盐岩溶解,其次为碳酸盐岩;K+、Na+、Cl−主要来源硅酸盐岩溶解,部分来自于人类活动输入;NO$_3^{-}$则主要来源于人类活动,其中地表水质量主要受工矿业的影响,地下水质量受工矿活动及农业、生活污水等多种因素影响。研究成果可为区域水资源合理开发利用及保护提供依据。Abstract:
The Xianju basin is a typical hydrogeological unit and the main basin in the watershed of southern Zhejiang in which socio-economic activities are concentrated. Therefore, studying the hydrochemical characteristics of this basin is important for the development and utilization of groundwater resources and for the water environmental protection in southern Zhejiang. To reveal the hydrochemical characteristics of surface water and groundwater in the basin, we comprehensively analyzed the hydrochemical characteristics and origins of surface water and shallow groundwater in the Xianju basin with mathematical methods, Piper trilinear diagrams, principal component analysis, and ion ratios. The results show that HCO3-Ca·Na dominates the hydrochemical type of the Xianju basin, with Ca2+ and Na+ as the dominant cations, and HCO$_3^{-}$ as the dominant anion. The pH values range from 6.48 to 7.81, indicating an overall hydrochemical characteristic of being slightly alkaline to neutral. The values of Total Dissolved Solids (TDS) of groundwater range from 45.5 mg·L−1 to 288 mg·L−1, while TDS values of surface water range from 20.1 mg·L−1 to 95.8 mg·L−1. The variation coefficients of major ions in groundwater are generally higher than those in surface water, with K+, Na+, Cl−, and NO$_3^{-}$ showing larger variations, especially NO$_3^{-}$ with a maximum coefficient of 36.80 mg·L−1 and a minimum of 0.13 mg·L−1. TDS values range from 45.50 mg·L−1 to 288.00 mg·L−1 in groundwater, and from 20.10 mg·L−1 to 95.80 mg·L−1 water. Principal component analysis indicates that the hydrochemical characteristics in the Xianju basin are mainly influenced by rock weathering and human activities. Rock weathering accounts for 67.89% of the influence, while human activities contribute 12.74%. Silicate weathering plays a predominant role in rock weathering processes, followed by carbonate weathering, with negligible influence from evaporite dissolution. In terms of correlation analysis of hydrochemical parameters, strong correlations are observed among values of TDS, K+, Na+, Ca2+, Mg2+, Cl−, SO$_4^{2-} $, and HCO$_3^{-}$ in surface water, while NO$_3^{-}$ values show weaker correlations with those of other hydrochemical components. In groundwater, values of TDS correlate significantly with those of Na+, Ca2+, Mg2+, Cl−, and HCO$_3^{-}$, whereas values of HCO$_3^{-}$ show strong correlations with those of TDS, Na+ , Ca2+, and Mg2+. Values of NO$_3^{-}$ show weak correlation with those of other chemical components. Ca2+, Mg2+, and HCO$_3^{-}$ primarily originated from silicate rock dissolution, and secondarily from calcite dissolution in carbonate rocks. K+, Na+, Cl− mainly originated from silicate rock dissolution, and partially from anthropogenic sources. The reverse exchange of Na+ with Ca2+ or Mg2+ contributes to an increase of Na+ contents in hydrochemical compositions, and groundwater exhibits stronger ion exchange capacity compared to surface water. NO$_3^{-}$ primarily originated from anthropogenic activities. Surface water quality is mainly influenced by industrial and mining activities, possibly related to fluorite mining in Jiaoshan township and central Bulu township in the upstream basin. Groundwater, on the other hand, is affected by a complex array of factors including industrial and mining activities, agriculture, and domestic sewage. Spatially, there is a distinct zonation of major ion contents in groundwater and surface water in the basin. From the upper reaches to the lower reaches of Yong'an Creek, the transition occurs from the phenomenon that major ion contents are influenced by natural dissolution to phenomenon that the contents are jointly influenced by natural dissolution and human activities. From the edge to the center of basin, natural dissolution processes in groundwater gradually intensify. The areas with a dense population and with intensive agricultural activities are more susceptible to human activity. In conclusion, the findings provide a scientific basis for the rational exploitation and protection of regional water resources. Understanding the hydrochemical characteristics and spatial distribution of water bodies in the Xianju basin is crucial for the sustainable utilization of water resources and environmental conservation in southern Zhejiang. -
表 1 水化学参数统计
Table 1. Statistics of hydrochemical parameters of groundwater and river water
单位为 mg·L−1 Unit: mg·L−1 分类 项目 pH TDS K+ Na+ Ca2+ Mg2+ Cl− SO$_4^{2-} $ HCO$_3^{-}$ NO$_3^{-}$ 地下水 最小值 6.48 45.50 1.79 1.74 3.44 0.60 1.45 1.42 20.30 0.25 最大值 7.81 288.00 51.60 37.70 52.00 6.96 27.40 25.90 287.00 36.80 平均值 7.13 155.53 10.58 12.48 23.19 3.54 8.53 12.17 107.65 10.85 标准差 0.34 82.64 12.45 10.14 15.56 2.34 7.15 7.05 80.66 11.45 变异系数 0.05 0.53 1.18 0.81 0.67 0.66 0.84 0.58 0.75 1.06 地表水 最小值 6.33 20.10 0.89 2.52 0.10 0.01 0.67 3.23 15.00 0.13 最大值 7.10 95.80 4.49 10.50 15.30 2.05 6.25 11.20 58.80 7.31 平均值 6.82 54.11 2.36 5.08 7.44 0.94 2.25 6.07 32.47 2.61 标准差 0.19 18.04 0.96 2.01 3.50 0.46 1.41 2.01 10.81 2.03 变异系数 0.03 0.33 0.41 0.39 0.47 0.49 0.63 0.33 0.33 0.78 表 2 水样品中主离子成分分析及方差累积量
Table 2. Principal component analysis of major ions and cumulative variance of water samples
变量 pH TDS K+ Na+ Ca2+ Mg2+ Cl− SO$_4^{2-} $ HCO$_3^{-}$ NO$_3^{-}$ 特征值 方差百分比/% 累积百分比/% 第1因子 0.66 0.99 0.61 0.90 0.95 0.97 0.85 0.77 0.92 0.42 6.79 67.89 67.89 第2因子 −0.29 −0.06 0.12 −0.38 −0.12 0.12 0.14 0.50 −0.35 0.78 1.27 12.74 80.63 提取方法:主成分分析法 -
[1] 浙江省区调大队. 仙居幅1∶20万区域地质调查报告[R]. 杭州:浙江省国土资源厅, 1978. [2] 浙江省水文地质工程地质大队. 仙居幅、临海幅1∶20万区域水文地质普查报告[R]. 1984 [3] 雷明, 柳永胜, 马勤威, 珠正,张水军. 基于同位素技术的金衢盆地水循环研究[J]. 人民黄河, 2020, 42(8):88-92, 99. doi: 10.3969/j.issn.1000-1379.2020.08.018LEI Ming, LIU Yongsheng, MA Qinwei, ZHU Zheng, ZHANG Shuijun. Water cycle analysis of the Jinqu basin based on isotope techniques[J]. Yellow River, 2020, 42(8): 88-92, 99. doi: 10.3969/j.issn.1000-1379.2020.08.018 [4] 周丽玲, 张达政, 黎伟, 沈慧珍. 台州城市规划区地下水应急供水研究[J]. 水资源与水工程学报, 2017, 28(6):158-162. doi: 10.11705/j.issn.1672-643X.2017.06.27ZHOU Liling, ZHANG Dazheng, LI Wei, SHEN Huizhen. Reserch on emergency groundwater supply in Taizhou urban planning area[J]. Journal of Water Resources and Water Engineering, 2017, 28(6): 158-162. doi: 10.11705/j.issn.1672-643X.2017.06.27 [5] 黎伟, 陈远法, 沈慧珍, 吴孟杰, 诸烨. 浙江温黄平原地下水控采后地面沉降效应分析[J]. 资源调查与环境, 2015, 36(4):306-310. doi: 10.3969/j.issn.1671-4814.2015.04.010LI Wei, CHEN Yuanfa, SHEN Huizhen, WU Mengjie, ZHU Ye. Ground subsidence effects since groundwater exploitation restriction in Wenhuang plain[J]. Resources Survey and Environment, 2015, 36(4): 306-310. doi: 10.3969/j.issn.1671-4814.2015.04.010 [6] 江露露, 隋海波, 康凤新, 李常锁, 魏善明,于令芹, 李越. 鲁中隆起北缘地热区岩溶热储水化学特征及形成机理[J]. 中国岩溶, 2023, 42(5):1005-1026, 1036.JIANG Lulu, SUI Haibo, KANG Fengxin, LI Changsuo, WEI Shanming, YU Lingqin, LI Yue. Hydrogeochemical characteristics and formation mechanism of the karst thermal reservoir at the northern edge of the Luzhong uplift[J]. Carsologica Sinica, 2023, 42(5): 1005-1026, 1036. [7] 张子燕, 伏永朋, 王宁涛, 谭建民, 刘亚磊. 丹江流域山区地表水-地下水水化学特征及其影响因素[J]. 环境科学, 2024, 45(4):2107-2117.ZHANG Ziyan, FU Yongpeng, WANG Ningtao, TAN Jianmin, LIU Yalei. Hydrochemical characteristics and influencing factors of surface water and groundwater in the mountainous area of Danjiang river basin[J]. Environmental Science, 2024, 45(4): 2107-2117. [8] 韩朝辉, 王郅睿, 田辉, 牛秋生, 刘林, 朱一龙, 丁廉超, 赵立磊, 赵浩, 赵超, 王凡, 李新斌, 龚文强. 汉中盆地地下水水化学特征及其成因研究[J]. 西北地质, 2023, 56(4):263-273. doi: 10.12401/j.nwg.2022024HAN Chaohui, WANG Zhirui, TIAN Hui, NIU Qiusheng, LIU Lin, ZHU Yilong, DING Lianchao, ZHAO Lilei, ZHAO Hao, ZHAO Chao, WANG Fan, LI Xinbin, GONG Wenqiang. Hydrochemical characteristics and genesis of groundwater in the Hanzhong basin[J]. Northwestern Geology, 2023, 56(4): 263-273. doi: 10.12401/j.nwg.2022024 [9] Piper A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Transactions-American Geophysical Union, 1944, 25(6): 914-928 doi: 10.1029/TR025i006p00914 [10] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [11] 马冰洁, 张全发, 李思悦. 中国跨境河流水化学特征及其控制因素[J]. 第四纪研究, 2023, 43(2):425-438. doi: 10.11928/j.issn.1001-7410.2023.02.11MA Bingjie, ZHANG Quanfa, LI Siyue. Hydrochemical characteristics and controlling factors of trans-boundary rivers in China[J]. Quaternary Sciences, 2023, 43(2): 425-438. doi: 10.11928/j.issn.1001-7410.2023.02.11 [12] 张文强, 滕跃, 唐飞, 王金晓, 许庆宇, 张海林. 山东省肥城断块岩溶水系统地下水水化学特征及演化分析[J]. 中国岩溶, 2023, 42(5):1047-1060, 1084. doi: 10.11932/karst20230515ZHANG Wenqiang, TENG Yue, TANG Fei, WANG Jinxiao, XU Qingyu, ZHANG Hailin. Groundwater hydrochemical characteristics and evolution of the karst water system in the Feicheng fault block in Shandong Province[J]. Carsologica Sinica, 2023, 42(5): 1047-1060, 1084. doi: 10.11932/karst20230515 [13] 刘海, 宋阳, 李迎春, 魏伟, 赵国红, 王旭东, 黄健敏. 长江流域安庆段浅层地下水水化学特征及控制因素[J]. 环境科学, 2024, 45(3):1525-1538.LIU Hai, SONG Yang, LI Yingchun, WEI Wei, ZHAO Guohong, WANG Xudong, HUANG Jianmin. Hydrochemical characteristics and control factors of shallow groundwater in Anqing section of the Yangtze River Basin[J]. Environmental Science, 2024, 45(3): 1525-1538. [14] 廖驾, 朱振华, 彭毅, 韦珊瑚, 罗朝晖, 刘状, 徐强强, 谢亘. 湘西北地区岩溶地下水水化学与氘氧同位素特征分析[J]. 中国岩溶, 2023, 42(3):425-435, 481. doi: 10.11932/karst2023y003LIAO Jia, ZHU Zhenhua, PENG Yi, WEI Shanhu, LUO Zhaohui, LIU Zhuang, XU Qiangqiang, XIE Gen. Analysis on D/18O and hydrochemical characteristics of karst groundwater in northwestern Hunan Province[J]. Carsologica Sinica, 2023, 42(3): 425-435, 481. doi: 10.11932/karst2023y003 [15] 黄江浔, 李清光, 安丽, 杜双雪, 郭兴强. 喀斯特小流域地表水碳酸盐系统化学平衡对酸性矿山废水的缓冲作用[J]. 中国岩溶, 2022, 42(1):19-28. doi: 10.11932/karst2022y20HUANG Jiangxun, LI Qingguang, AN Li, DU Shuangxue, GUO Xingqiang. Buffering effect of chemical equilibrium of surface water carbonate system on acid mine drainage in small karst watershed[J]. Carsologica Sinica, 2023, 42(1): 19-28. doi: 10.11932/karst2022y20 [16] 黄金瓯, 鲜阳, 黎伟, 张达政, 庄晓明. 典型滨海平原区地下水流系统水化学场演化及成因:以杭嘉湖平原为例[J]. 地球科学, 2021, 46(7):2565-2582.HUANG Jin'ou, XIAN Yang, LI Wei, ZHANG Dazheng, ZHUANG Xiaoming. Hydrogeochemical evolution of groundwater flow system in the typical coastal plain: A case study of Hangjiahu plain[J]. Earth Science, 2021, 46(7): 2565-2582. [17] DZ/T 0064.2-2021. 地下水质分析方法 第2部分:水样的采集和保存[S].DZ/T 0064.2-2021. Methods for analysis of groundwater quality. Part 2: Collection and preservation of water samples[S]. [18] DZ/T 0064.9-2021. 地下水质分析方法 第9部分:溶解性固体总量的测定 重量法[S].DZ/T 0064.9-2021. Methods for analysis of groundwater quality. Part 9: Determination of total dissolved solids. Gravimetric method[S]. [19] DZ/T 0064.13-2021. 地下水质分析方法 第13部分:钙量的测定 乙二胺四乙酸二钠滴定法[S].DZ/T 0064.13-2021. Methods for analysis of groundwater quality. Part 13: Determination of calcium content. EDTA disodium titrimetric method[S]. [20] DZ/T 0064.14-2021. 地下水质分析方法 第14部分:镁量的测定 乙二胺四乙酸二钠滴定法[S].DZ/T 0064.14-2021. Methods for analysis of groundwater quality. Part14: Determination of magnesium content.EDTA disodium titrimetric method[S]. [21] DZ/T 0064.51-2021. 地下水质分析方法 第51部分:氯化物、氟化物、溴化物、硝酸盐和硫酸盐的测定 离子色谱法[S].DZ/T 0064.51-2021. Methods for analysis of groundwater quality. Part 51: Determination of chloride, fluoride, bromide, nitrate and sulfate. Ion chromatography[S]. [22] 陈磊磊, 陶宗涛, 袁锡泰, 李文英, 余长合. 电感耦合等离子体原子发射光谱法测定地热水中钾、钠、钙、镁的含量[J]. 理化检验(化学分册), 2018, 54(8):911-915.CHEN Leilei, TAO Zongtao, YUAN Xitai, LI Wenying, YU Changhe. ICP-AES determination of potassium, sodium, calcium and magnesium in geothermal water[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(8): 911-915. [23] 胡春华, 周文斌, 夏思奇. 鄱阳湖流域水化学主离子特征及其来源分析[J]. 环境化学, 2011, 30(9):1620-1626HU Chunhua, ZHOU Wenbin, XIA Siqi. Characteristics of major ions and the influence factors in Poyang lake catchment[J]. Environmental Chemistry, 2011, 30(9): 1620-1626. [24] Lasaga A C, Soler J M, Ganor J, Burch T E, Nagy K L. Chemical weathering rate laws and global geochemical cycles[J]. Geochimica et Cosmnochimica Acta, 1994, 58(10): 2361-2386. [25] 刘鑫, 向伟, 司炳成. 渭河和泾河流域浅层地下水水化学特征和控制因素[J]. 环境科学, 2021, 42(6):2817-2825. doi: 10.13227/j.hjkx.202011068LIU Xin, XIANG Wei, SI Bingcheng. Hydrochemistry and its controlling factors and water quality assessment of shallow groundwater in the Weihe and Jinghe river catchments[J]. Environmental Science, 2021, 42(6): 2817-2825. doi: 10.13227/j.hjkx.202011068 [26] Zhou Li, Jun Xiao, Jaivime Evaristo, Zhi Li. Spatiotemporal variations in the hydrochemical characteristics and controlling factors of streamflow and groundwater in the Wei river of China [J] Environmental Pollution, 2019, 254: 113006. [27] Zhu B Q, Wang X M, Rioual P. Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in Northwestern China[J]. Journal of Hydrology, 2017, 549(2): 92-113. https://doiorg/10.1016/j.jhydrol.2017.03.058 [28] 王慧玮, 郭小娇, 张千千, 李兵岩. 滹沱河流域地下水水化学特征演化及成因分析[J]. 环境化学, 2021, 40(12):3838-3845. doi: 10.7524/j.issn.0254-6108.2020080301WANG Huiwei, GUO Xiaojiao, ZHANG Qianqian, LI Bingyan. Evolution of groundwater hydrochemical characteristics and origin analysis in Hutuo river basin[J]. Environmental Chemistry, 2021, 40(12): 3838-3845. doi: 10.7524/j.issn.0254-6108.2020080301 [29] Basak B, Alagha O. The chemical composition of rainwater over Büyükekmece Lake, Istanbul[J]. Atmospheric Research, 2004, 71(4): 275-288. [30] 郭小娇, 王慧玮, 石建省, 王伟. 白洋淀湿地地下水系统水化学变化特征及演化模式[J]. 地质学报, 2022, 96(2):656-672. doi: 10.3969/j.issn.0001-5717.2022.02.020GUO Xiaojiao, WANG Huiwei, SHI Jiansheng, WANG Wei. Hydrochemical characteristics and evolution pattern of groundwater system in Baiyangdian wetland, North China Plain[J]. Acta Geologica Sinica, 2022, 96(2): 656-672. doi: 10.3969/j.issn.0001-5717.2022.02.020 [31] 吕婕梅, 安艳玲, 吴起鑫, 罗进, 蒋浩. 贵州清水江流域丰水期水化学特征及离子来源分析[J]. 环境科学, 2015, 36(5):1565-1572. doi: 10.13227/j.hjkx.2015.05.008LÜ Jiemei, AN Yanling, WU Qixin, LUO Jin, JIANG Hao. Hydrochemical characteristics and sources of Qingshuijiang river basin at wet season in Guizhou Province[J]. Environmental Science, 2015, 36(5): 1565-1572. doi: 10.13227/j.hjkx.2015.05.008 [32] 刘景涛. 珠江三角洲地区地下水化学演化机制及水质监测网络优化研究[D]. 西安:西北大学, 2020. DOI: 10.27405/d.cnki.gxbdu.2020.002275.LIU Jingtao. Hydrochemical evolution mechanism and optimization of monitoring network for groundwater in Pearl River Delta[D]. Xi'an: Northwest University, 2020. DOI: 10.27405/d.cnki.gxbdu.2020.002275.