Zoning of early warning for karst collapses in the Jingquan area of Shandong Province
-
摘要: 以荆泉断块岩溶水系统为研究对象,通过建立地下水流模型和数学模型,旨在实现不同环境条件下岩溶塌陷预警分区,指导岩溶水资源开发利用。结果显示:在其它条件保持不变的情况下,随着降雨量的不断减小,研究区红色预警区面积不断增大,抽水井越密集的地方,越容易产生岩溶塌陷,岩溶水开采量的增加和降雨量的变化都是诱发岩溶塌陷的主要原因。建议以岩溶塌陷为约束条件,加强区内地下水开采优化控制与布局,在保证生产生活用水的前提下,降低岩溶塌陷发生概率。Abstract:
As one of the most common geological disasters in the Jingquan area, covered karst collapses mostly occurred in the dry seasons from 2015 to 2017. With the frequent occurrence of karst collapses, the sustainable development of economy and the safety of people's lives and property are threatened. Therefore, it is urgent for us to find out the current situation of karst collapses, analyze their influencing factors and distribution rules, and carry out the research on the zoning of early warning for karst collapses under different environmental conditions, in order to provide a decision-making basis for carrying out targeted prevention and control. In view of the frequent occurrence of covered karst collapses in the Jingquan area, based on the exploration data of karst collapses in this area, this study analyzes and studies the background conditions and influencing factors of collapse formation with methods such as mathematical statistics, numerical simulation and comprehensive evaluation model. Through numerical simulation and fuzzy mathematical methods, the zoning of early warning for karst collapses under different environmental conditions (rainfall frequency of 20%, 50%, 80% and 95%, and the increase of mining volume of 30%, 50% and 70%) is studied, and targeted prevention and control measures are put forward. The research conclusions mainly include the following four aspects: (1) The aquifer system in the Jingquan area can be generalized into three aquifer groups as a whole. The first layer—the shallow aquifer group—includes pore water in the Quaternary coverage area and shallow water in the exposed bedrock area. The second layer—the weakly permeable aquifer group—includes the Quaternary clay layer and the fractured deep aquifers of Cambrian and Ordovician in a certain depth range. The third layer—the deep aquifer group—includes Ordovician aquifers of carbonate fissure karst water and Cambrian aquifers of carbonate karst water. (2) In this study, the lower boundary of the water flow system has been set at the buried depth of 200 m in the Jingquan area. The atmospheric precipitation infiltration and the lateral runoff supply of groundwater are the main supply sources of groundwater in the study area. The main discharge of groundwater in the area is the exploitation of groundwater. The exploitation amount of the water source has been obtained through monitoring data, and the scattered exploitation amount has been obtained through investigation and statistics. (3) Given that other environmental conditions remain unchanged, the area of the red-early-warning area gradually increases with the continuous reduction of precipitation, and the degree of early warning gradually decreases from southwest to northeast. The denser the pumping wells are, the likelier karst collapses occur. The increase of karst water exploitation and the change of rainfall are the main causes of karst collapses. (4) In order to prevent karst collapses in this area, we should strengthen the management of water resources and make rational use of groundwater resources. We should also strengthen the monitoring of karst collapses in the red-warning area, and adopt a variety of engineering measures to change the geological background conditions of karst collapses to the greatest extent. -
Key words:
- karst collapse /
- early warning /
- different environments /
- numerical simulation
-
表 1 岩溶塌陷综合评判等级和赋值表
Table 1. Grade and assignment of comprehensive evaluation for karst collapses
因子 分级和取值 条件层(B) 因子层(C) 代号 不易发区 低易发区 中易发区 高易发区 岩溶
条件
(B1)岩溶地层
岩性C1 寒武系馒头组、
崮山组
碎屑岩夹灰岩寒武系炒米店组
薄层-中厚层
灰岩、奥陶系
马家沟组东黄山段
薄层白云岩奥陶系马家沟组
五阳山段中厚层
灰岩、土峪段薄层
-中厚白云岩寒武系三山子组中厚层白云岩、张夏组厚层灰岩、奥陶系北庵庄段中厚层灰岩 浅部岩溶
发育程度C2 较差 中等 较发育 强烈发育 覆盖层
条件(B2)土层厚度/m C3 >15 0~5 5~10 10~15 土层岩性 C4 残积黏土 冲积黏土 含砾粉质黏土 中粗砂和细砂等 地下水
条件(B3)地下水面与
基岩面距离/mC6 10~15 5~10 2.5~5 <2.5 地下水水位
变幅/mC7 0.5~1 1~1.5 1.5~2 >2 地下水
径流强度C8 弱 一般 较强 强 表 2 预测因子权重分配表
Table 2. Weight allocation of prediction factors
目的层 条 件 层 因 子 层 条件(B) 权重(WB) 因 子 一级权重 二级权重(WC) 岩溶塌陷
预 测岩溶条件(B1) 0.4 岩溶塌陷埋深C1 0.271 0.108 4 浅部岩溶发育程度C2 0.729 0.291 6 覆盖层条件(B2) 0.3 土层厚度C3 0.687 0.206 1 土层岩性C4 0.313 0.093 9 地下水条件(B3) 0.3 地下水面与基岩面距离C5 0.438 0.131 4 地下水水位变幅C6 0.243 0.072 9 地下水径流强度C7 0.319 0.095 7 表 3 不同降雨频率下,岩溶塌陷预警结果一览表
Table 3. Early warning results of karst collapses under different rainfall frequency
不同降雨频率条件下 降雨频率/% 20 50 80 95 降雨量/mm 1 081.5 918.18 823.02 480.1 红色预警区/% — — 20.43 25.74 橙色预警区/% — 11.52 58.79 58.39 黄色预警区/% — 55.25 20.79 15.86 不同预警区已发生岩
溶塌陷数量占比/%红色预警区 — — 74.14 86.21 橙色预警区 — 20.69 15.52 13.79 黄色预警区 86.2 65.52 10.34 — 不同预警区岩溶塌陷隐患
点数量占比/%红色预警区 — — 100 100 橙色预警区 — 26.47 — — 黄色预警区 100 73.53 — — -
[1] 李清春, 冯克印, 郑庭明, 董强. 临沂市城区岩溶塌陷特征及成因分析[J]. 山东国土资源, 2005, 21(9):61-63.LI Qingchun, FENG Keyin, ZHENG Tingming, DONG Qiang. Characteristics and origin analysis of karst collapse in Linyi City[J]. Shandong Land and Resources, 2005, 21(9): 61-63. [2] 万志博, 武雄, 徐晟, 李元仲, 杨蕊英, 陈鸿汉, 高明显, 张顺风. 枣庄市十里泉岩溶塌陷机理分析[J]. 水文地质工程地质, 2006, 33(3):109-111. doi: 10.3969/j.issn.1000-3665.2006.03.027WAN Zhibo, WU Xiong, XU Sheng, LI Yuanzhong, YANG Ruiying, CHEN Honghan, GAO Mingxian, ZHANG Shunfeng. Mechanism of karst collapse in Shiliquan area in Zaozhuang City[J]. Hydrogeology & Engineering Geology, 2006, 33(3): 109-111. doi: 10.3969/j.issn.1000-3665.2006.03.027 [3] 王延岭, 陈伟清, 蒋小珍, 管振德. 山东省泰莱盆地岩溶塌陷发育特征及形成机理[J]. 中国岩溶, 2015, 34(5):495-506.WANG Yanling, CHEN Weiqing, JIANG Xiaozhen, GUAN Zhende. Development features and formation mechanisms of karst collapses in the Tailai basin, Shandong Province[J]. Carsologica Sinica, 2015, 34(5): 495-506. [4] 高峰, 王振涛, 靳丰山, 张宪尧, 刘善军. 山东省莱芜盆地岩溶塌陷风险性评价[J]. 中国人口 · 资源与环境, 2016, 26(11):359-362.GAO Feng, WANG Zhentao, JIN Fengshan, ZHANG Xianyao, LIU Shanjun. Risk assessment of karst collapse in the Laiwu of Shandong Province[J]. China Population, Resources and Environment, 2016, 26(11): 359-362. [5] 冯亚伟, 陈洪年,卜华, 贾德旺. 羊庄岩溶水系统水化学成因及同位素特征[J]. 中国岩溶, 2019, 38(3):394-403.FENG Yawei, CHEN Hongnian, BU Hua, JIA Dewang. Hydrochemical genesis and isotope characteristics of Yangzhuang karst water system[J]. Carsologica Sinica, 2019, 38(3): 394-403. [6] 马燕华, 苏春利, 刘伟江, 朱亚鹏, 李俊霞. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学, 2016, 37(12):4690-4699.MA Yanhua, SU Chunli, LIU Weijiang, ZHU Yapeng, LI Junxia. Identification of sulfate sources in the groundwater system of Zaozhuang: Evidences from isotopic and hydrochemical characteristics[J]. Environmental Science, 2016, 37(12): 4690-4699. [7] 张秋霞, 周建伟, 林尚华, 魏东, 张黎明, 袁磊. 淄博洪山、寨里煤矿区闭坑后地下水污染特征及成因分析[J]. 安全与环境工程, 2015, 22(6):23-28.ZHANG Qiuxia, ZHOU Jianwei, LIN Shanghua, WEI Dong, ZHANG Liming, YUAN Lei. Characteristics and causes of groundwater pollution after Hongshan-Zhaili mine closure in Zibo[J]. Safety and Environmental Engineering, 2015, 22(6): 23-28. [8] 王珺瑜, 王家乐, 靳孟贵. 济南泉域岩溶水水化学特征及其成因[J]. 地球科学, 2017, 42(5):821-831.WANG Junyu, WANG Jiale, JIN Menggui. Hydrochemical characteristics and formation causes of karst water in Jinan spring catchment[J]. Earth Science, 2017, 42(5): 821-831. [9] 王茂枚, 束龙仓, 季叶飞, 陶玉飞, 董贵明, 刘丽红. 济南岩溶泉水流量衰减原因分析及动态模拟[J]. 中国岩溶, 2008, 27(1):19-23. doi: 10.3969/j.issn.1001-4810.2008.01.004WANG Maomei, SHU Longcang, JI Yefei, TAO Yufei, DONG Guiming, LIU Lihong. Influences of SO4 2− on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2008, 27(1): 19-23. doi: 10.3969/j.issn.1001-4810.2008.01.004 [10] 冯亚伟, 李志峰, 仝路, 曾斌. 山东荆泉断块区覆盖型岩溶塌陷控制因素和影响因素分析[J]. 中国地质灾害与防治学报, 2020, 31(3):73-82.FENG Yawei, LI Zhifeng, TONG Lu, ZENG Bin. Analysis on factors controlling and influencing overburden karst collapse in Jingquan fault block, Shandong Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 73-82. [11] Sophie Messerklinger. Formation mechanism of large subsidence sinkholes in the Lar valley in Iran[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2014(47): 237-250. [12] 王延岭. 山东省泰莱盆地岩溶地面塌陷影响因素分析[J]. 中国岩溶, 2016, 35(1):60-66.WANG Yanling. Research on influential factors of karst collapse in the Tailai basin of Shandong Province[J]. Carsologica Sinica, 2016, 35(1): 60-66. [13] Jiang X Z, Lei M T, Zhao H Q. Review of the advanced monitoring technology of groundwater-air pressure (enclosed potentiometric) for karst collapse studies[J]. Environmental Earth Sciences, 2019, 78(24): 701. doi: 10.1007/s12665-019-8716-z [14] 王晓玮, 赵志伟, 陈伟清, 周绍智. 泰安市覆盖型岩溶分布地区岩溶塌陷地下水位预警研究[J]. 中国岩溶, 2017, 36(6):795-800 .WANG Xiaowei, ZHAO Zhiwei, CHEN Weiqing, ZHOU Shaozhi. Research on groundwater level warning for karst collapse of covered karst areas in Tai'an City[J]. Carsologica Sinica, 2017, 36(6): 795-800. [15] 高宗军, 鲁统民, 王敏, 冯建国, 刘书江, 王姝. 基于岩溶水动态的岩溶地面塌陷预测预报方法[J]. 中国岩溶, 2019, 38(5):739-745.GAO Zongjun, LU Tongmin, WANG Min, FENG Jianguo, LIU Shujiang, WANG Shu. Prediction of karst ground collapse based on karst water regime[J]. Carsologica Sinica, 2019, 38(5): 739-745. [16] Liang Donghui, Gan Fuping, Zhang Wei, Jia Long. The application of HVSR method in detecting sediment thickness in karst collapse area of Pearl River Delta, China[J]. Environmental Earth Sciences, 2018, 77: 259. doi: 10.1007/s12665-018-7439-x [17] Djabir Foudili, Abderrezak Bouzid, Mohamed Chérif Berguig, Said Sofiane Bougchiche, Abdeslam Abtout, Mehdi A Guemache. Investigating karst collapse geohazards using magnetotellurics: A case study of M'rara basin, Algerian Sahara[J]. Journal of Applied Geophysics, 2019, 160: 144-156. doi: 10.1016/j.jappgeo.2018.11.011 [18] Liu Honglei, Li Lianchong, Li Zhichao, Yu Guofeng. Numerical modelling of mining-induced inrushes from subjacent water conducting karst collapse columns in Northern China[J]. Mine Water and the Environment, 2018, 37(4): 652-662. [19] Shi Hai, Li Quanming, Zhang Qinglong, Yu Yuzhen, Xing Yujian, Yu Kun. Mechanism of shallow soil cave–type karst collapse induced by water inrush in underground engineering construction[J]. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019091. doi: 10.1061/(ASCE)CF.1943-5509.0001353 [20] Wei Yongyao, Sun Shulin. Comprehensive critical mechanical model of covered karst collapse under the effects of positive and negative pressure[J]. Bulletin of Engineering Geology & the Environment, 2018, 77(1): 177-190. doi: 10.1007/s10064-016-0995-y [21] Li Hao, Bai Haibo, Wu Jianjun, Ma Zhanguo, Ma Kai, Wu Guangming, Du Yabo, He Shixin. A cascade disaster caused by geological and coupled hydro-mechanical factors—Water inrush mechanism from karst collapse column under confining pressure[J]. Energies, 2017, 10: 1938. [22] Wu Yuanbin, Jiang Xiaozhen, Guan Zhende, Luo Weiquan, Wang Yanling. AHP-based evaluation of the karst collapse susceptibility in Tailai basin, Shandong Province, China[J]. Environmental Earth Sciences, 2018, 77: 436. doi: 10.1007/s12665-018-7609-x [23] Wei Aihua, Li Duo, Zhou Yahong, Deng Qinghai, Yan Liangdong. A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model[J]. Natural Hazards, 2020, 105(1): 405-430. [24] 黄健民, 郑小战, 胡让全, 陈建新, 吕镁娜, 陈小月, 郭宇, 刁群. 广州金沙洲岩溶地面塌陷灾害预警预报研究[J]. 现代地质, 2017, 31(2):421-432.HUANG Jianmin, ZHENG Xiaozhan, HU Rangquan, CHEN Jianxin, LYU Meina, CHEN Xiaoyue, GUO Yu, DIAO Qun. A study of warning and forecasting of karst collapse geological disaster in Jinshazhou of Guangzhou[J]. Geoscience, 2017, 31(2): 421-432. [25] 曹锋, 吴春寅. 枣庄地区岩溶地面塌陷成因与防治[J]. 中国岩溶, 1998, 17(2):104-110 .CAO Feng, WU Chunyin. Genesis, prevention and control of surface collapse in Zaozhuang[J]. Carsologica Sinica, 1998, 17(2): 104-110. [26] 张俊华, 于福荣, 李志萍. FEFLOW在黄龙工业园地下水数值模拟中的应用[J]. 人民黄河, 2011, 33(6):69-70.