Hydrochemical characteristics and formation mechanism of karst water in Baotu Spring watershed
-
摘要: 趵突泉泉域是中国北方岩溶的典型分布区,近年来面临着水质恶化问题。为系统研究趵突泉泉域岩溶水水化学形成机制,采集60组趵突泉泉域地表水、地下水样品,利用Piper三线图、离子比值、相关性分析、因子分析和聚类分析等多元统计方法,并结合ArcGIS地理统计功能,对趵突泉泉域岩溶水水化学形成机制及空间差异性进行研究。结果表明,研究区地表水水化学类型主要为HCO3·SO4-Ca,地下水以HCO3-Ca、HCO3·SO4-Ca、HCO3-Ca·Mg型水为主,${\rm{SO}}_4^{2-}$占比有升高趋势。研究区地下水水化学组成主要受到碳酸盐、硫酸盐、岩盐等矿物溶解的影响。人类活动的污染导致地下水中Cl−、${\rm{NO}}_3^{-}$含量增加,并对地下水中天然水岩相互作用机制造成了影响。研究区地下水总体受污染程度不大,水化学组成主要受到水岩相互作用的影响,而受到Cl−、${\rm{NO}}_3^{-}$污染的地下水则主要分布在研究区的中部岩溶强渗漏带区域。Abstract:
Karst groundwater is an important water source for human production and livelihood, but it faces the risk of pollution. The study of the hydrochemical formation mechanism of karst groundwater is an important research topic. However, due to the evident control of factors such as local hydrogeological conditions and the intensity and manner of human activities on karst groundwater, it is challenging for us to explore the hydrochemical formation mechanism of karst groundwater. The Baotu Spring watershed is a typical distribution area of karst in Northern China, which has faced water quality deterioration in recent years. However, there is a lack of comprehensive case studies that combine multiple mathematical and statistical methods with hydrochemical analysis in the study of spatial differences in the hydrochemical formation mechanism of groundwater in Baotu Spring watershed. This study collected three surface water samples, six pore water samples, 47 karst groundwater samples, and four fracture water samples from the Baotu Spring watershed. Hydrochemical and multivariate statistical methods, such as Piper diagram, ion ratio, correlation analysis, factor analysis, and cluster analysis, were used. Additionally, ArcGIS geostatistical functionality was applied to investigate the hydrochemical formation mechanism and spatial differences of karst groundwater in the Baotu Spring watershed. The results indicate that the contents of Total Dissolved Solid (TDSs) in surface water samples ranged from 268.65 to 317.86 mg·L−1, with small spatial variations in different chemical parameters. The hydrochemical type was primarily HCO3·SO4-Ca, indicating good connectivity of surface water. The TDS contents in groundwater samples ranged from 191.65 to 948.69 mg·L−1, with large variations in all chemical parameters except for K+, indicating significant influences from local hydrogeological conditions or human activities on karst groundwater. The hydrochemical types of karst groundwater were mainly HCO3-Ca, HCO3·SO4-Ca and HCO3-Ca·Mg, with an increasing proportion of ${\rm{SO}}_4^{2-}$. The dominant cations in karst groundwater were Ca2+ and Mg2+. For anion, in the indirect recharge zone and discharge zone, karst groundwater was mainly dominated by ${\rm{HCO}}_3^{-}$ and ${\rm{SO}}_4^{2-}$, while in the direct recharge zone, the proportions of ${\rm{SO}}_4^{2-}$ and Cl− in karst groundwater significantly increased. Correlation analysis and ion ratio analysis reveal that the hydrochemical composition of karst groundwater in the study area is mainly influenced by the dissolution/precipitation of minerals such as carbonate, sulfate, and halite. With an increase in the flow path, the interaction between water and rock became more thorough, leading to an increase in ion content in groundwater. Pollution caused by human activities increased the concentration of ${\rm{NO}}_3^{-}$ in groundwater, and the nitration process reduced the release of carbonates resulting from carbonate mineral dissolution. Therefore, human activities can directly pollute groundwate and affect the natural water–rock interaction mechanisms in groundwater. Overall, the degree of pollution in groundwater in the study area is not significant, with the hydrochemical composition being mainly influenced by water–rock interactions. However, human activities have also led to the contamination of Cl− and ${\rm{NO}}_3^{-}$ in groundwater, with the polluted groundwater primarily distributed in the central karst zone with strong leakage in the study area. The karst groundwater in the northwest area was polluted in a lower degree, mainly because the thickness of the Quaternary system may reduce the direct pollution of karst groundwater by human activities. This study explores the hydrochemical formation mechanisms of the Baotu Spring watershed and provides preliminary analysis of the spatial differences in the hydrochemical formation mechanism, which can support the protection of local groundwater environment. -
表 1 取样点情况及水温、pH统计表
Table 1. Statistics of situations, water temperatures, and pH of sampling points
编号 深度/m 含水层 类型 水温/℃ pH 编号 深度/m 含水层 类型 水温/℃ pH J1 170 花岗岩 裂隙水 17.2 7.54 J32 — 石灰岩 岩溶水 13.7 7.78 J2 47 闪长岩 裂隙水 15.1 7.38 J33 0.5 — 地表水 17.4 7.42 J3 75 花岗岩 裂隙水 17.1 6.88 J34 215 石灰岩 岩溶水 17.4 7.14 J4 120 石灰岩 岩溶水 16.2 7.23 J35 58 白云岩 岩溶水 15.9 7.91 J5 86 白云岩 岩溶水 17.0 7.22 J36 0.5 — 地表水 17.1 7.56 J6 130 白云岩 岩溶水 18.3 7.83 J37 2 300 石灰岩 岩溶水 16.4 7.26 J7 127 石灰岩 岩溶水 16.8 7.39 J38 100 白云岩 岩溶水 14.5 7.17 J8 148 石灰岩 岩溶水 16.9 7.51 J39 352 白云岩 岩溶水 14.9 7.70 J9 152 石灰岩 岩溶水 16.6 7.69 J40 250 石灰岩 岩溶水 7.91 J10 26 粉砂 孔隙水 17.4 7.46 J41 4 白云岩 岩溶水 14.2 7.82 J11 100 石灰岩 岩溶水 17.6 7.43 J42 50 石灰岩 岩溶水 14.6 7.34 J12 183 石灰岩 岩溶水 18.6 7.58 J43 31 石灰岩 岩溶水 17.6 7.84 J13 130 白云岩 岩溶水 16.2 7.07 J44 200 白云岩 岩溶水 17.7 7.65 J14 137 白云岩 岩溶水 19.1 7.52 J45 300 石灰岩 岩溶水 19.0 7.85 J15 87 石灰岩 岩溶水 15.9 7.38 J46 20 石灰岩 岩溶水 16.2 7.56 J16 60 石灰岩 岩溶水 16.8 7.21 J47 23 石灰岩 岩溶水 16.6 7.49 J17 213 石灰岩 岩溶水 16.0 7.35 J48 36 白云岩 岩溶水 19.2 7.49 J18 158 石灰岩 岩溶水 16.5 7.13 J49 3 石灰岩 岩溶水 17.7 7.72 J19 0.5 — 地表水 15.3 8.02 J50 180 石灰岩 岩溶水 17.3 7.47 J20 186 石灰岩 岩溶水 17.0 7.49 J51 220 石灰岩 岩溶水 17.2 7.54 J21 125 石灰岩 岩溶水 17.2 7.05 J52 350 石灰岩 岩溶水 18.5 7.25 J22 22 砂质黏土 孔隙水 16.8 7.48 J53 260 石灰岩 岩溶水 18.6 7.34 J23 93 石灰岩 岩溶水 18.1 7.51 J54 280 石灰岩 岩溶水 19.7 7.44 J24 146 石灰岩 岩溶水 14.9 8.05 J55 40 砂质黏土 孔隙水 16.5 7.28 J25 33 石灰岩 岩溶水 7.61 J56 183 石灰岩 岩溶水 18.2 7.57 J26 — — 岩溶泉 18.0 7.36 J57 15 粉砂 孔隙水 16.4 7.10 J27 — 白云岩 岩溶水 7.28 J59 5 砂质黏土 孔隙水 16.8 7.80 J29 — 石灰岩 岩溶水 14.1 7.58 J60 30 砂质黏土 孔隙水 17.6 7.54 J30 245 闪长岩 裂隙水 14.5 7.55 J61 — 白云岩 岩溶水 16.9 7.27 J31 50 白云岩 岩溶水 16.1 7.40 J62 — — 岩溶泉 17.6 8.06 表 2 水化学指标数学统计表
Table 2. Statistics of hydrochemical parameters
水样
类型数学
指标Na+
mg·L−1K+
mg·L−1Mg2+
mg·L−1Ca2+
mg·L−1Cl−
mg·L−1${\rm{NO}}_3^{-}$
mg·L−1${\rm{SO}}_4^{2-}$
mg·L−1${\rm{HCO}}_3^{-}$
mg·L−1TDS
mg·L−1地表水 最大值 31.16 3.71 17.41 77.05 32.67 10.96 114.38 180.42 379.75 最小值 10.06 1.76 12.04 64.62 12.07 7.81 67.99 174.69 268.65 平均值 18.91 2.61 14.82 68.93 21.93 9.44 90.61 178.51 317.86 变异系数 0.47 0.31 0.15 0.08 0.38 0.14 0.21 0.02 0.15 孔隙水 最大值 70.75 2.59 49.96 234.58 105.47 93.72 159.12 549.86 948.69 最小值 12.08 0.61 15.98 75.02 23.91 4.35 10.47 226.24 283.85 平均值 32.73 1.47 29.45 142.14 54.77 41.77 82.42 336.98 554.27 变异系数 0.58 0.56 0.44 0.36 0.60 0.85 0.68 0.31 0.37 岩溶水 最大值 98.78 8.91 42.10 216.20 95.05 148.44 187.12 549.86 822.35 最小值 3.98 0.38 7.43 10.12 1.82 1.71 23.62 80.19 191.65 平均值 23.76 1.57 19.73 112.12 40.92 39.51 92.80 276.27 475.44 变异系数 0.69 0.84 0.31 0.36 0.57 0.87 0.40 0.26 0.30 裂隙水 最大值 23.56 4.00 26.26 106.07 37.04 69.50 74.00 340.80 454.51 最小值 10.12 1.32 7.23 41.96 7.85 1.99 30.49 111.69 160.27 平均值 18.23 2.13 14.00 63.82 17.98 31.67 46.05 207.63 298.47 变异系数 0.30 0.51 0.54 0.39 0.65 0.93 0.36 0.45 0.36 表 3 水化学指标Spearman相关系数矩阵
Table 3. Spearman correlation matrices of hydrochemical parameters
Na+ K+ Mg2+ Ca2+ Cl− ${\rm{NO}}_3^{-}$ ${\rm{SO}}_4^{2-}$ ${\rm{HCO}}_3^{-}$ TDS Na+ 1.000 K+ 0.134 1.000 Mg2+ 0.468** −0.021 1.000 Ca2+ 0.401** −0.344** 0.309* 1.000 Cl− 0.658** −0.214 0.451** 0.567** 1.000 ${\rm{NO}}_3^{-}$ 0.150 −0.371** 0.193 0.675** 0.535** 1.000 ${\rm{SO}}_4^{2-}$ 0.606** −0.044 0.200 0.651** 0.553** 0.467** 1.000 ${\rm{HCO}}_3^{-}$ 0.227 −0.337* 0.462** 0.600** 0.384** 0.441** 0.205 1.000 TDS 0.686** −0.234 0.456** 0.850** 0.741** 0.668** 0.815** 0.585** 1.000 **. 相关性在 0.01 层上显著(双尾);*. 相关性在 0.05 层上显著(双尾)。
** The correlation is significant at the level of 0.01 (double-tail). * The correlation is significant at the level of 0.05 (double-tail).表 4 旋转因子载荷矩阵
Table 4. Loading matrix of rotated factor
F1 F2 F3 Na+ 0.203 0.787 −0.238 K+ −0.138 0.123 −0.824 Mg2+ 0.000 0.845 0.251 Ca2+ 0.785 0.155 0.486 Cl− 0.669 0.479 0.086 ${\rm{NO}}_3^{-}$ 0.838 −0.019 0.265 ${\rm{SO}}_4^{2-}$ 0.808 0.297 −0.125 ${\rm{HCO}}_3^{-}$ 0.403 0.352 0.743 TDS 0.845 0.425 0.302 pH −0.463 0.129 −0.185 贡献率(%) 35.712 20.122 18.059 累积贡献率(%) 35.712 55.834 73.893 -
[1] Goldscheider N, Chen Z, Auler A S, Bakalowicz M, Broda S, Drew D, Hartmann J, Jiang G H, Moosdorf N, Stevanovic Z, Veni G. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677. doi: 10.1007/s10040-020-02139-5 [2] Vigni L L, Daskalopoulou K, Calabrese S, Brusca L, Bellomo S, Cardellini C, Kyriakopoulos K, Brugnone F, Parello F, D'Alessandro W. Hellenic karst waters: Geogenic and anthropogenic processes affecting their geochemistry and quality[J]. Scientific Reports, 2023, 13(1): 11191. doi: 10.1038/s41598-023-38349-6 [3] Liu J, Wang H, Jin D W, Xu F, Zhao C H. Hydrochemical characteristics and evolution processes of karst groundwater in Carboniferous Taiyuan Formation in the Pingdingshan coalfield[J]. Environmental Earth Sciences, 2020, 79: 1-14. doi: 10.1007/s12665-019-8746-6 [4] Tang C L, Jin H, Liang Y P. Using isotopic and hydrochemical indicators to identify sources of sulfate in karst groundwater of the Niangziguan spring field, China[J]. Water, 2021, 13(3): 390. doi: 10.3390/w13030390 [5] Wu X C, Li C S, Sun B, Geng F Q, Gao S, Lyu M H, Ma X Y, Li H, Xing L T. Groundwater hydrogeochemical formation and evolution in a karst aquifer system affected by anthropogenic impacts[J]. Environmental Geochemistry and Health, 2020, 42: 2609-2626. doi: 10.1007/s10653-019-00450-z [6] Fang L, Zhou A G, Li X Q, Zhou J W, Pan G F, He N J. Response of antimony and arsenic in karst aquifers and groundwater geochemistry to the influence of mine activities at the world's largest antimony mine, Central China[J]. Journal of Hydrology, 2021, 603: 127131. doi: 10.1016/j.jhydrol.2021.127131 [7] Zhou J X, Wu Q X, Gao S L, Zhang X Y, Wang Z H, Wu P, Zeng J. Coupled controls of the infiltration of rivers, urban activities and carbonate on trace elements in a karst groundwater system from Guiyang, Southwest China[J]. Ecotoxicology and Environmental Safety, 2023, 249: 114424. doi: 10.1016/j.ecoenv.2022.114424 [8] 魏善明, 丁冠涛, 袁国霞, 汪丽芳, 聂玉朋, 杜金亮. 山东省东汶河沂南地区地下水水化学特征及形成机理[J]. 地质学报, 2021, 95(6):1973-1983. doi: 10.3969/j.issn.0001-5717.2021.06.021WEI Shanming, DING Guantao, YUAN Guoxia, WANG Lifang, NIE Yupeng, DU Jinliang. Hydrochemical characteristics and formation mechanism of groundwater in Yi'nan, east Wenhe river basin in Shandong Province[J]. Acta Geologica Sinica, 2021, 95(6): 1973-1983. doi: 10.3969/j.issn.0001-5717.2021.06.021 [9] 张海林, 王重, 林广奇, 徐源, 马雪莹, 关琴. 济南趵突泉泉域岩溶水硝酸盐污染特征及其来源识别[J]. 中国岩溶, 2022, 41(6):998-1006.ZHANG Hailin, WANG Zhong, LIN Guangqi, XU Yuan, MA Xueying, GUAN Qin. Nitrate pollution characteristics and identification of nitratesources in Baotu Spring area of Jinan[J]. Carsologica Sinica, 2022, 41(6): 998-1006. [10] Zhang J, Jin M G, Cao M D, Huang X, Zhang Z X, Zhang L. Sources and behaviors of dissolved sulfate in the Jinan karst spring catchment in Northern China identified by using environmental stable isotopes and a Bayesian isotope-mixing model[J]. Applied Geochemistry, 2021, 134: 105109. doi: 10.1016/j.apgeochem.2021.105109 [11] 彭凯, 刘文, 魏善明, 刘传娥, 陈燕, 董浩, 苏动, 袁炜, 韩琳. 基于水化学、同位素特征的济南岩溶地下水补给来源研究[J]. 中国岩溶, 2020, 39(5):650-657.PENG Kai, LIU Wen, WEI Shanming, LIU Chuane, CHEN Yan, DONG Hao, SU Dong, YUAN Wei, HAN Lin. Study on the recharge source of karst groundwater in Jinan City based on hydrogeochemical and isotopic characteristics[J]. Carsologica Sinica, 2020, 39(5): 650-657. [12] Wang K R, Chen X Q, Wu Z, Wang M S, Wang H B. Traceability and biogeochemical process of nitrate in the Jinan karst spring catchment, North China[J]. Water, 2023, 15(15): 2718. doi: 10.3390/w15152718 [13] 杨丽芝, 刘春华, 祁晓凡. 济南泉水水化学特征变异研究[J]. 水资源与水工程学报, 2016, 27(1):59-64.YANG Lizhi, LIU Chunhua, QI Xiaofan. Study on characteristic variation of hydro-chemistry of Jinan spring[J]. Journal of Water Resources and Water Engineering, 2016, 27(1): 59-64. [14] 薄克庭, 蔡有兄. 济南地区岩溶地下水污染程度评价[J]. 山东国土资源, 2016, 32(3): 51-55.BO Keting, CAI Youxiong. Evaluation on groundwater pollution degree in Jinan karst area[J]. Shandong Land and Resources, 2016, 32(3): 51-55. [15] 李江柏, 邢立亭, 侯玉松, 邢学睿, 邓忠, 张凤娟, 孟庆晗, 武东强. 基于模糊相似优先比法的济南四大泉群补给来源[J]. 科学技术与工程, 2021, 21(3):918-926.LI Jiangbai, XING Liting, HOU Yusong, XING Xuerui, DENG Zhong, ZHANG Fengjuan, MENG Qinghan, WU Dongqiang. Replenishment sources of four great springs in Jinan based on fuzzy similarity priority ratio[J]. Science Technology and Engineering, 2021, 21(3): 918-926. [16] 孟庆晗, 王鑫, 邢立亭, 董亚楠, 朱恒华, 武朝军, 李传磊, 于苗, 侯玉松. 济南四大泉群补给来源差异性研究[J]. 水文地质工程地质, 2020, 47(1):37-45.MENG Qinghan, WANG Xin, XING Liting, DONG Ya'nan, ZHU Henghua, WU Zhaojun, LI Chuanlei, YU Miao, HOU Yusong. A study of the difference in supply sources of the four groups of springs in Jinan[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 37-45. [17] Ledesma Ruiz R, Pasten Zapata E, Parra R, Harter T, Mahlknecht J. Investigation of the geochemical evolution of groundwater under agricultural land: A case study in Northeastern Mexico[J]. Journal of Hydrology, 2015, 521: 410-423. doi: 10.1016/j.jhydrol.2014.12.026 [18] 廖驾, 朱振华, 彭毅, 韦珊瑚, 罗朝晖, 刘状, 徐强强, 谢亘. 湘西北地区岩溶地下水水化学与氘氧同位素特征分析[J]. 中国岩溶, 2023, 42(3):425-435, 481.LIAO Jia, ZHU Zhenhua, PENG Yi, WEI Shanhu, LUO Zhaohui, LIU Zhuang, XU Qiangqiang, XIE Gen. Analysis on D/18O and hydrochemical characteristics of karstgroundwater in northwestern Hunan Province[J]. Carsologica Sinica, 2023, 42(3): 425-435, 481. [19] 王大纯, 张人权, 史毅红, 许绍卓, 于青春, 梁杏. 水文地质学基础[M]. 北京: 地质出版社, 1980. [20] 高帅, 李常锁, 贾超, 孙斌, 张海林, 逄伟. 济南趵突泉泉域岩溶水化学特征时空差异性研究[J]. 地质学报, 2019, 521(Suppl.1):410-423. doi: 10.19762/j.cnki.dizhixuebao.2019211GAO Shuai, LI Changsuo, JIA Chao, SUN Bin, ZHANG Hailin, PANG Wei. Spatiotemporal difference study of karst hydrochemical characteristics in the Baotu Spring area of Jinan[J]. Acta Geologica Sinica, 2019, 521(Suppl.1): 410-423. doi: 10.19762/j.cnki.dizhixuebao.2019211 [21] Li C S, Zhang X Z, Gao X B, Li C C, Jiang C F, Liu W, Lin G Q, Zhang X, Fang J C, Ma L J, Zhang X B. Spatial and temporal evolution of groundwater chemistry of Baotu karst water system at Northern China[J]. Minerals, 2022, 12(3): 348. doi: 10.3390/min12030348