Comprehensive study on characteristics of leakage in the source water area and landscape conservation by artificial leakage reduction of Huanglong Wucai pool
-
摘要: 黄龙世界自然遗产地核心景观之五彩池,其源水区上游转花池泉群地表溢流后,在灌丛林区中形成较为强烈的渗漏,导致五彩池涵养水量下降,出现一定程度退化。通过野外调查、长期监测、取样测试等手段,查明源水区水体径流渗漏特征及原因,分析人工降渗手段对五彩池钙华景观演化影响。结果表明:(1)五彩池源水区河道发生了极为强烈的入渗,造成五彩池涵养水量下降,平均径流渗漏占比达51%,月动态变化较小,造成渗漏增强的原因主要为高山柳灌丛根劈、冻融等增加钙华有效孔隙度形成强渗透层;(2)源水区强渗漏造成五彩池下游边缘出现失水黑化,后沟地表水替换了彩池群内原有景观水体(水体置换)引发“灰化”现象;(3)通过人工保育降低源水区强渗漏,五彩池内涵养水量出现明显增加,北边缘彩池群黑化消失,东侧灰化现象减弱,五彩池钙华水域景观范围扩大16.3%,径流渗漏量比前期减少34%,主要景观涵养期内,进入五彩池的涵养水量占比由保育前的49%增加至83%,月平均涵养水量由4 892 m3·d−1增加至8 674 m3·d−1,涵养水量增加77%;(4)降低源水区渗漏,增加下游彩池群涵养水量,对钙华水域景观范围扩大、恢复起到了明显的促进作用,为黄龙世界自然遗产地核心价值的保护提供了重要的依据。Abstract:
The study area is Huanglong Wucai pool in China. In recent years, due to the influence of Salix cupularis thicket in Zhuanhua pond of the upstream source water area, there has been strong surface water leakage, resulting in a decrease of water conservation and shrinkage of water landscape, which in turn has caused the degradation of pools such as blackening and podzolization. Through analyzing the characteristics of water conservation in Wucai pool and their influence on the evolution of travertine landscape, this study discusses the effect on landscape restoration by artificial intervention in the reduction of surface water leakage, so as to provide systematic results and technical reference for subsequent landscape conservation and serve the protection of the core value of Huanglong World Natural Heritage Site. By means of field investigation, flow monitoring, water quality monitoring, particle analysis, SEM characterization, and experiment on water quantity regulation and conservation, the characteristics and causes of water runoff leakage in the source water area of Wucai pool were identified, and the effects of artificial leakage reduction on the evolution of travertine landscape in the study area were analyzed. Five monitoring stations were set up to monitor the total flow in Zhuanhua pond, the water flow entering Wucai pool and the corresponding changes in hydrochemical characteristics. Meanwhile, pH, temperature and conductivity were measured by a handheld WTW 3310 pH meter, and Ca2+ and HCO$_3^{−}$ were measured by titration on-site. The monitoring period was from April to November, 2019. Collected from loose travertine at the forest area of Zhuanhua pond and from the newly formed loose travertine at the bottom of landscape pool, the particle analysis samples and SEM samples were used to analyze the transformation and destruction of travertine body by the root system of Salix cupularis thicket. Thin-walled rectangular weir and triangular weir were used for flow measurement. After water flow regulation of Zhuanhua pond, isolation of channel with strong leakage, and conservation of Wucai pool, the impact of the increased water flow on the improvement of local degradation of Wucai pool was assessed on June 5, 2020. The research findings show, (1) The quality of spring water from Zhuanhua pond in the source water area is stable, with high partial pressure of carbon dioxide and high calcium. Degassing reaction occurs along the river, and calcite is oversaturated at a low level to the southern edge of Wucai pool. (2) Due to activities of thicket root and influences of freeze-thawing, strong runoff leakage occurs in the source water area, and only 49% of the total water flow can enter Wucai pool to form a landscape conservation water source. The main site of strong leakage is located at the west branch channel composed of loose calcareous gravel and sand in Zhuanhua pond. (3) The leakage in the source water area caused a relative decline in the water conservation capacity of Wucai pool. The northern edge of Wucai pool became blackened and water in the east part was displaced by surface water of Huanglonghou Ditch to form podzolization. The scale of the landscape pools shrank to about half of its early size. The maximum natural landscape water conservation of Wucai pool, with the capacity of 5,115 m3·d−1, generally occurs in September. (4) Through artificial conservation, the impact of surface water leakage in the source water area of Wucai pool landscape is reduced. During the main conservation period (July–October), the proportion of the water conservation into Wucai pool increased to 83%, up from 49% before artificial conservation, and the average monthly water flow increased from 4,892 m3·d−1 to 8,674 m3·d−1, with an increase of water conservation capacity of 77%. Before and after the conservation of Wucai pool, the concentration of calcium and bicarbonate ions in water changed little; SIc changed from oversaturation to equilibrium; carbon dioxide degassing in the middle and lower reaches increased; the deposition capacity of travertine generally increased. (5) During the main conservation period, the average monthly water flow after conservation increased by 3,559m3·d−1. 2,544 m3·d−1 of water was consumed to restore the blackened pool in the north and alleviate podzolization in the east, accounting for 29% of the total capacity of water conservation in Wucai pool. The landscape water area of Wucai pool increased by 16.3% and remained at the same level after the four-month landscape restoration and conservation. The degradation such as blackening and podzolization of Wucai pool caused by increasing surface water leakage in the source water area by activities of root system of Salix cupularis contributed to the decrease of water conservation capacity in the landscape area. However, through the artificial leakage reduction and conservation experiment, the water conservation capacity increased, and thus the degradation was contained and the travertine landscape was restored to a certain extent in the study area, which indicates that appropriate artificial intervention is beneficial to landscape protection. -
Key words:
- Zhuanhua pond /
- leakage /
- thicket /
- artificial conservation /
- Wucai pool
-
图 4 五彩池水域景观区收缩及次生退化现象(据2019年8月无人机航测影像)
(蓝色线为现今范围,红色为早期范围 a. 失水黑化区 b. 水体置换灰化区界线附近)
Figure 4. Shrinkage and secondary degradation of Wucai pool in the landscape area (based on UAV aerial survey images in August, 2019)
(blue line: the present range. red line: the range in the early time a. water loss and blackening area b. the podzolization area near the boundary line of water displacement)
图 5 灌丛充分破坏后的钙华颗分样品SEM图片
G01. 转花池样品 G02.映月彩池样品 (a. 粒径0.147~0.250 cm b. 粒径0.075~0.147 mm c. 粒径<0.075 mm)
Figure 5. SEM images of travertine samples after full destruction of thicket
G01: sample of Zhuanhua pond G02: sample of Yingyue pool ( a. particle size 0.147–0.250 cm b. particle size 0.075–0.147 mm c. particle size <0.075 mm)
表 1 监测站和监测对象对应关系
Table 1. Corresponding relationship between monitoring stations and monitoring objects
序号 监测站编号 作用 监测泉点 堰类型 监测站位置 1 A1 监测转花池总水量
(五彩池断面)转花池1号泉(S1) 矩形堰 泉口下游河道 2 A2 转花池2号泉(S2) 三角堰 泉口 3 A3 转花池3号和5号泉(S3、S5) 矩形堰 泉口下游河道 4 A4 转花池4号泉(S4) 三角堰 泉口 5 B 监测五彩池进池水量 转花池出口,五彩池进口(S9) 矩形堰 泉水汇流河道出口 表 2 转花池泉群及林区出口水化学特征表
Table 2. Hydrochemical characteristics of Zhuanghuachi spring group and the outlet of forest area
监测日期 监测站 pH 水温t/
℃电导率/
μs·cm−1游离二氧化
碳/mg·L−1[Ca2+]/
mg·L−1[${\rm{HCO}}_3^{-}$]/
mg·L−1PCO2/
kPaSIc 2019/7/20 A1 6.5 7 1 152 166.16 210 857.51 20.22 −0.09 A2 6.4 7.1 1 146 197.69 212 808.15 23.75 −0.20 A4 6.4 7.2 1 139 178.94 211 826.66 24.31 −0.19 B 6.9 6.3 1 068 111.63 194 789.65 7.34 0.24 2019/9/20 A1 6.6 6.7 1 106 129.48 181 748.53 13.99 −0.10 A2 6.5 6.9 1 105 151.63 181 748.53 17.61 −0.19 A4 6.6 6.7 1 096 138.00 181 748.53 13.99 −0.10 B 6.9 6.1 1 038 109.04 173 692.86 6.54 0.15 表 3 全月平均水量动态(单位m3·d−1)
Table 3. Dynamics of monthly average water flow (unit: m3·d−1)
年份 月份 转花池总水量 五彩池进池水量 渗漏水量 渗漏占比 入五彩池占比 2019年 7月 10 333 4 631 5 703 55% 45% 8月 9 952 4 707 5 244 53% 47% 9月 10 736 5 115 5 621 52% 48% 10月 9 965 5 114 4 851 49% 51% 11月 7 462 4 054 3 408 46% 54% 2020年 4月 3 933 1 559 2 374 60% 40% 5月 5 912 2 939 2 973 50% 50% 表 4 灌丛根系完全改造后的钙华颗分布特征
Table 4. Distribution characteristics of travertine particles in thicket root system after transformation
位置 类别 粒径 /mm 重量 /g 占比 /% 颗粒名称* 转花池 灌木根系完全破坏后的钙华 >2 142.32 36.7 砾 0.25~2 138.04 35.6 中粗砂 0.075~0.25 82.88 21.4 细砂 <0.075 24.35 6.3 粉粒 映月彩池 彩池底初成未固结钙华 >2 158.47 34.7 砾 0.25~2 112.15 24.6 中粗砂 0.075~0.25 155.59 34.1 细砂 <0.075 30.07 6.6 粉粒 *:据土的工程分类标准(GB/T 50145-2007)确定。
*: based on the engineering classification standard of soil (GB/T 50145-2007)。表 5 钙华松散过程主要水动力参数变化*
Table 5. Main hydrodynamic parameters of travertine loosening process
类型 松散颗粒特征 渗透系数 /m·d−1 有效孔隙度 /% 钙华砾 2~20 mm 9.09 14.2 钙华砂 0.075~2 mm 5.41 12.5 钙华粉粒土 <0.075 mm 2.81 10.6 正常弱溶蚀钙华 胶结 1.53 8.1 *:数据来源为2019年成都理工大学生态环境学院水力学实验室完成的达西土柱渗流试验。
*: The data source is derived from the Darcy seepage test of soil column completed by the hydraulic laboratory of College of Ecological Environment, Chengdu University of Technology in 2019.表 6 五彩池南部入口水质动态(2019年)
Table 6. Dynamics of water quality at the southern inlet of Wucai pool (2019)
日期 流量/m3·d−1 pH 水温t/
℃电导率/
μs·cm−1[Ca2+]/
mg·L−1[${\rm{HCO}}_3^{-}$]/
mg·L−1PCO2/
kPaSIc 2019-7-20 5 149 6.9 6.3 1 068 194 790 7.34 0.24 2019-8-20 4 243 7 6.4 1 052 190 718 5.32 0.30 2019-9-20 5 113 6.9 6.1 1 038 173 693 6.54 0.15 2019-10-10 5 292 6.9 6.2 1 033 177 708 6.7 0.17 2019-11-10 4 414 7 5.9 1 083 196 789 5.83 0.34 -
[1] 郭建强, 彭东, 杨俊义. 松潘黄龙水循环及钙华景观成因研究[J]. 四川地质学报, 2002, 22(1):21-26.GUO Jianqiang, PENG Dong, YANG Junyi. A study of water circulationg and genesis of travertine landscape in Huanglong[J]. Acta Geologica Sichuan, 2002, 22(1): 21-26. [2] 刘再华, 袁道先, W Dreybrodt, U Svesson. 四川黄龙钙华的形成[J]. 中国岩溶, 1993, 12(3):185-191.LIU Zaihua, YUAN Daoxian, W Dreybrodt, U Svesson. The formation of tufa in Huanglong, Sichuan[J]. Carsologica Sinica, 1993, 12(3): 185-191. [3] 万新南, 杨菊, 程温莹, 罗丽, 安德军, 唐淑, 台永东. 四川黄龙景区“源水”成因浅析[J]. 成都理工大学学报(自然科学版), 2010, 37(1):91-95.WAN Xinnan, YANG Ju, CHENG Wenying, LUO Li, AN Dejun, TANG Shu, TAI Yongdong. Headwater origin analysis in the Huanglong Scenic Spot, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(1): 91-95. [4] 刘再华, K Yoshimura, Y Inokura, M Noto, 曹云. 四川黄龙沟天然水中的深源CO2与大规模的钙华沉积[J]. 地球与环境, 2005, 33(2):1-10.LIU Zaihua, K Yoshimura, Y Inokura, M Noto, CAO Yun. Deep-source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China[J]. Earth and Environment, 2005, 33(2): 1-10. [5] 刘再华, 袁道先, 何师意, 曹建华, 游省易, W Dreybrodt, U Svensson, K Yoshimura, R Drysdale. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003, 32(1):1-10.LIU Zaihua, YUAN Daoxian, HE Shiyi, CAO Jianhua, YOU Shengyi, W Dreybrodt, U Svensson, K Yoshimura, R Drysdale. Origin and forming mechanisms of travertine at Huanglong Ravine of Sichuan[J]. Geochimica, 2003, 32(1): 1-10. [6] 刘再华, 袁道先, 何师意, 张美良, 张加桂. 地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源:以四川黄龙沟、康定和云南中甸下给为例[J]. 中国科学(D辑), 2000, 30(2):209-214. [7] 王海静, 刘再华, 曾成, 刘香玲, 孙海龙, 安德军, 唐淑, 张清明. 四川黄龙沟源头黄龙泉泉水及其下游溪水的水化学变化研究[J]. 地球化学, 2009, 38(3):307-314. doi: 10.3321/j.issn:0379-1726.2009.03.010WANG Haijing, LIU Zaihua, ZENG Cheng, LIU Xiangling, SHUN Hailong, AN Dejun, TANG Shu, ZHANG Qingming. Hydrochemical variations of Huanglong spring and the steam in Huanglong Ravine, Sichuan Province[J]. Geochimica, 2009, 38(3): 307-314. doi: 10.3321/j.issn:0379-1726.2009.03.010 [8] 王海静, 张金流, 刘再华, 台永东. 基于水化学和同位素特征的四川黄龙沟泉群分类研究[J]. 地球学报, 2011, 32(3):367-372. doi: 10.3975/cagsb.2011.03.12WANG Haijing, ZHANG Jinliu, LIU Zaihua, TAI Yongdong. Classification of spring groups based on hydrochemical and isotopic features of Huanglong Ravine[J]. Acta Geoscientica Sinica, 2011, 32(3): 367-372. doi: 10.3975/cagsb.2011.03.12 [9] 李前银, 范崇荣. 黄龙景区水循环系统与景观演化研究[J]. 水文地质工程地质, 2009, 36(1):108-112.LI Qianyin, FAN Chongrong. A study of water circulation system and landscape evolution of Huanglong Scenic Spot[J]. Hydrogeology & Engineering Geology, 2009, 36(1): 108-112. [10] 刘馨泽, 孙东, 曹楠, 袁楠楠, 黄何平, 田长宝, 张清明, 唐淑, 李大猛, 周大吉, 董发勤. 黄龙核心景区多层级水循环系统结构研究[J]. 中国岩溶, 2021, 40(1):19-33.LIU Xinze, SUN Dong, CAO Nan, YUAN Nannan, HUANG Heping, TIAN Changbao, ZHANG Qingming, TANG Shu, LI Dameng, ZHOU Daji, DONG Faqin. Study on the structure of multi-layer water circulation system in the core scenic spot of Huanglong[J]. Carsologica Sinica, 2021, 40(1): 19-33. [11] 何佳, 胡玉福, 舒向阳, 王琴, 贾安都, 严星. 川西北高寒沙地不同年限高山柳土壤生态化学计量及储量变化特征[J]. 草业学报, 2018, 27(4):27-33.HE Jia, HU Yufu, SHU Xiangyang, WANG Qin, JIA Andu, YAN Xing. Effect of Salix cupularis plantatons on soil stoichiometry and stocks in the alpine-cold desert of northwestern Sichuan[J]. Acta Prataculturae Sinica, 2018, 27(4): 27-33. [12] 何露露, 庞学勇. 川西亚高山4种典型灌丛岛土壤持水能力及其影响因素[J]. 应用与环境生物学报, 2021, 27(3):632-638.HE Lulu, PANG Xueyong. Soil water holding capacity of four typical shrub islands and its influencing factors in subalpine western Sichuan[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 632-638. [13] 代群威, 党政, 彭启轩, 董发勤, 李琼芳, 罗尧东, 王富东, 赵学钦, 安德军, 张清明. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J]. 矿物学报, 2019, 39(2):219-225.DAI Qunwei, DANG Zheng, PENG Qixuan, DONG Faqin, LI Qiongfang, LUO Yaodong, WANG Fudong, ZHAO Xueqin, AN Dejun, ZHANG Qingming. Porosity of travertine natural sponge geological bodies and its significance in regulating water circulation: A case study of travertine at Huanglong Ravine, Sichuan Province, China[J]. Acta Mineralogica Sinica, 2019, 39(2): 219-225. [14] Liu Xinze, Gao Wenhao, Zhang Weizhen, Zeng Ying, Zhao Songjiang. XR, XRD, FT-IR and SEM analysis the blackened travertine research in Huanglong: A world natural heritage Sichuan China[J]. Fresenius Environmental Bulletin, 2022, 31(10): 10279-10286. [15] 陈博, 李建平. 近50年来中国季节性冻土与短时冻土的时空变化特征[J]. 大气科学, 2008, 32(3):432-443. doi: 10.3878/j.issn.1006-9895.2008.03.02CHEN Bo, LI Jianping. Characteristics of spatial and temporal variation of seasonal and short-term frozen soil in China in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(3): 432-443. doi: 10.3878/j.issn.1006-9895.2008.03.02 [16] 王冰泉, 冉有华. 中国西北、西藏和周边地区1961−2020年每十年1 km季节冻土最大冻结深度数据集[J]. 地球科学进展, 2021, 36(11):1137-1145. doi: 10.11867/j.issn.1001-8166.2021.11.dqkxjz202111004WANG Bingquan, RAN Youhua. Decadal dataset of the seasonal maximum freezing depth with 1 km resolution from 1961 to 2020 in Northwest China, Tibet and surrounding area[J]. Advances in Earth Science, 2021, 36(11): 1137-1145. doi: 10.11867/j.issn.1001-8166.2021.11.dqkxjz202111004 [17] 陈四利, 史建军, 于涛, 黄杰. 冻融循环对水泥土力学特性的影响[J]. 应用基础与工程科学学报, 2014, 22(2):343-349.CHEN Sili, SHI Jianjun, YU Tao, HUANG Jie. Effect of freezing-thawing cycle on the mechanical behaviors of cemented soil[J]. Journal of Basic Science and Engineering, 2014, 22(2): 343-349. [18] 谢欢欢. 高山柳(Salix paraqplesia)修复对高寒沙化草甸土壤理化性质和植被的影响[D]. 绵阳: 绵阳师范学院, 2018.XIE Huanhuan. Effects of Salix paraqplesia restoration on soil properties and vegetation in Alpine desertified meadow[D]. Mianyang: Mianyang Teachers' College, 2018 [19] 梁向锋, 赵世伟, 张扬, 华娟. 子午岭植被恢复对土壤饱和导水率的影响[J]. 生态学报, 2009, 29(2):636-642.LIANG Xiangfeng, ZHAO Shiwei, ZHANG Yang, HUA Juan. Effects of vegetation rehabilitation on soil saturated hydraulic conductivity in Ziwuling forest area[J]. Acta Ecologica Sinica, 2009, 29(2): 636-642. [20] 费良军, 谭奇林, 王文焰, 张建丰. 充分供水条件下点源入渗特性及其影响因素[J]. 土壤侵蚀与水土保持学报, 1999, 5(2):71-75.FEI Liangjun, TAN Qilin, WANG Wenyan, ZHANG Jianfeng. Infiltration character and influential factor of point source under adequate water supply[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(2): 71-75. [21] 李孝良, 陈效民, 周炼川, 方堃. 西南喀斯特地区土壤饱和导水率及其影响因素研究[J]. 灌溉排水学报, 2008, 27(5):74-76, 86. doi: 10.13522/j.cnki.ggps.2008.05.020LI Xiaoliang, CHEN Xiaomin, ZHOU Lianchuan, FANG Kun. Soil saturated hydraulic conductivity and its influential factors in southwest karst region of China[J]. Journal of Irrigation and Drainage, 2008, 27(5): 74-76, 86. doi: 10.13522/j.cnki.ggps.2008.05.020 [22] 何苗苗, 刘芝芹, 王克勤, 雷祖团. 滇池流域不同植被覆盖土壤的入渗特征及其影响因素[J]. 水土保持学报, 2022, 36(3):181-187.HE Miaomiao, LIU Zhiqin, WANG Keqin, LEI Zutuan. Soil infiltration characteristics and influencing factors under different vegatation cover types in Dianchi lake basin[J]. Journal of Soil and Water Conservation, 2022, 36(3): 181-187. [23] 李青林, 杨静, 王琨, 王彪, 严令斌. 不同植被类型人工绿地土壤饱和导水能力、持水特征的比较[J]. 土壤通报, 2021, 52(4):828-835.LI Qinglin, YANG Jing, WANG Kun, WANG Biao, YAN Lingbin. Comparison of saturated water carrying capacity and water holding capacity of artificial green land with different vegetation types[J]. Chinese Journal of Soil Science, 2021, 52(4): 828-835. [24] 印家旺, 阿拉木萨, 苏宇航, 蒋绍妍. 科尔沁沙地不同土地利用类型土壤入渗特征比较研究[J]. 水土保持通报, 2022, 42(4):90-98. doi: 10.13961/j.cnki.stbctb.2022.04.012YIN Jiawang, ALA Musa, SU Yuhang, JIANG Shaoyan. Comparative study on soil infiltration characteristics of different land use types in Horqin sandy land[J]. Bulletin of Soil and Water Conservation, 2022, 42(4): 90-98. doi: 10.13961/j.cnki.stbctb.2022.04.012 [25] 吕刚, 吴祥云. 土壤入渗特性影响因素研究综述[J]. 中国农学通报, 2008, 24(7):494-499.LV Gang, WU Xiangyun. Review on influential factors of soil infiltration characteristics[J]. Chinese Agricultural Science Bulletin, 2008, 24(7): 494-499. [26] 吴发启, 赵西宁, 佘雕. 坡耕地土壤水分入渗影响因素分析[J]. 水土保持通报, 2003, 23(1):16-18, 78.WU Faqi, ZHAO Xining, SHE Diao. Analysis on affecting factors of soil infiltration in slope farmland[J]. Bulletin of Soil and Water Conservation, 2003, 23(1): 16-18, 78. [27] Helalia A M. The relation between soil infiltration and effective porosity in different soils[J]. Agricultural Water Management, 1993, 24(1): 39-47. doi: 10.1016/0378-3774(93)90060-N [28] 张永涛, 杨吉华, 夏江宝, 李红云, 王贵霞. 石质山地不同条件的土壤入渗特性研究[J]. 水土保持学报, 2002, 16(4):123-126. doi: 10.3321/j.issn:1009-2242.2002.04.032ZHANG Yongtao, YANG Jihua, XIA Jiangbao, LI Hongyun, WANG Guixia. Study on soil promotion character under different condition in stone hilly region[J]. Journal of Soil and Water Conservation, 2002, 16(4): 123-126. doi: 10.3321/j.issn:1009-2242.2002.04.032 [29] 蒋定生, 黄国俊, 谢永生. 黄土高原土壤入渗能力野外测试[J]. 水土保持通报, 1984(4):7-9. doi: 10.13961/j.cnki.stbctb.1984.04.002 [30] 孙艳红, 张洪江, 程金花, 王玉杰, 石健, 程云. 缙云山不同林地类型土壤特性及其水源涵养功能[J]. 水土保持学报, 2006, 20(2):106-109.SUN Yanhong, ZHANG Hongjiang, CHENG Jinhua, WANG Yujie, SHI Jian, CHENG Yun. Soil characteristics and water conservation of different forest types in Jinyun mountain[J]. Journal of Soil and Water Conservation, 2006, 20(2): 106-109. [31] 王力, 邵明安, 王全九. 林地土壤水分运动研究述评[J]. 林业科学, 2005, 41(2):147-153.WANG Li, SHAO Ming'an, WANG Quanjiu. Review on soil water movement in forestland[J]. Scientia Silvae Sinicae, 2005, 41(2): 147-153. [32] 汪璇, 杜树汉, 邓利梅, 朱万泽, 刘刚才. 土壤不同孔隙度对川西典型植被系统水源涵养的影响[J]. 中国水土保持科学(中英文), 2023, 21(1):19-28.WANG Xuan, DU Shuhan, DENG Limei, ZHU Wanzhe, LIU Gangcai. Effects of different soil porosity on the water conservation of typical vegetation system in western Sichuan[J]. Science of Soil and Water Conservation, 2023, 21(1): 19-28. [33] 林代杰, 郑子成, 张锡洲, 李廷轩, 何淑勤, 文毅, 干晨兵. 不同土地利用方式下土壤入渗特征及其影响因素[J]. 水土保持学报, 2010, 24(1):33-36. doi: 10.13870/j.cnki.stbcxb.2010.01.016LIN Daijie, ZHENG Zicheng, ZHANG Xizhou, LI Tingxuan, HE Shuqin, WEN Yi, GAN Chenbing. Characteristic and influencing factors of soil infiltration of different land use patterns[J]. Journal of Soil and Water Conservation, 2010, 24(1): 33-36. doi: 10.13870/j.cnki.stbcxb.2010.01.016 [34] 何常清. 岷江上游两种典型森林群落生态水文特征研究[D]. 南京: 南京林业大学, 2009.HE Changqing. The ecohydrological characteristics of two typical forests in the upper reaches of Minjiang river[D]. Nanjing: Nanjing Forestry University, 2009. [35] 陈风琴, 石辉. 缙云山常绿阔叶林土壤大孔隙与入渗性能关系初探[J]. 西南师范大学学报(自然科学版), 2005, 30(2):350-353. doi: 10.13718/j.cnki.xsxb.2005.02.039CHEN Fengqin, SHI Hui. A primary study on the relation of soil macropore and water infiltration in evergreen broad-leaved forest of Jinyun mountain[J]. Journal of Southwest China Normal University (Natural Science Edition), 2005, 30(2): 350-353. doi: 10.13718/j.cnki.xsxb.2005.02.039 [36] 徐文兵, 赵敏, 瓦勒塔, 施颖, 胡廷花, 于应文. 青藏高原东北缘3种灌木数量性状、龄级结构及自疏特征[J]. 草业科学, 2019, 36(5):1207-1214.XU Wenbing, ZHAO Min, Waleta, SHI Ying, HU Tinghua, YU Yingwen. Quantitative traits, age structure and self-thining rule of three shrubs on northest edge of Qinghai-Tibet Plateau[J]. Pratacultural Science, 2019, 36(5): 1207-1214.