Application of different time series models to the prediction for mine water inflow in karst mountainous areas
-
摘要: 矿井涌水量预测的精度对于煤矿开采安全有着至关重要的作用。文章以老鹰山煤矿为例,分析降雨与矿井涌水量的相关关系,结果表明:同期月及前第1个月降雨量与涌水量相关性具有逐渐减弱的趋势,而与前第2个月至第5个月的相关性有逐渐升高的趋势;基于矿井涌水量及降雨量,建立了单因素季节性时间序列SARIMA模型及多元季节性时间序列SARIMAX模型对矿井涌水量进行预测,预测结果表明:两种模型91.7%的预测值达到B级探明的矿井涌水量,预测精度均较高,SARIMAX模型预测结果的MAPE为18.57%,小于SARIMA模型的25.27%,预测精度更优。Abstract:
Coal resources are one of the important mineral resources in China. In the process of coal mining, due to the complex hydrogeological conditions in the mining area, and ineffective water exploration and discharge, accidents of mine water inrush occasionally occur, which may seriously restrict the safe production of coal resources. According to statistics, from 2000 to 2017, there were 1,173 accidents of coal mine flood in China, with 4,760 deaths. Therefore, the prediction reliability of mine water inflow plays a vital role in the safety of coal mining. A time series model is specifically designed to simulate and predict a time-sequential, time-varying, and interrelated data series. Most time series models require that the data must be stationary and the time series must follow a normal distribution. Taking Laoyingshan coal mine as an example, this study establishes a model of Seasonal Auto-Regressive Integrated Moving Average (SARIMAX model) and a model of Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors (SARIMA model), compares the fitting and prediction results of these two models, and evaluates their adaptability in prediction of mine water inflow in karst mountainous areas. Based on the monthly average rainfall and monthly average water inflow from October 1994 to December 2014, a SARIMA model for univariate seasonal time series and a SARIMAX model for multivariate seasonal time series have been established. To establish a corresponding mathematical model, it is necessary to perform a parameter significance test on each model, analyze the model fitting goodness and model fitting accuracy, and determine the optimal model. The test parameters can be selected from the coefficient of determination R2 of the sample, the Nash efficiency coefficient (NSE), the mean absolute percentage error (MAPE), the deviation, the root mean square error (RMSE), the AIC value, the BIC value and other indicators to test. Since NSE, RMSE, R2, and MAPE standards are correlated in some degree, the NSE, AIC and BIC values are selected as the criteria for validating the quality of the model. The above two different models are used to predict the average monthly water inflow of the mine in 2015. The model prediction results show that, except for the SARIMA model in November 2015 and the SARIMAX model in July 2015, the MAPE is greater than 40%. According to Qian Xuepu's classification of the prediction accuracy of mine water inflow, these prediction results can reach the mine water inflow of Level B. According to the relative error of the prediction results, the MAPE errors of the SARIMA model in the first 4 months and those of the SARIMAX model in the first 5 months are both within 25%, and the subsequent errors experience a maximum value or a large fluctuation with the step size, indicating good short-term prediction but poor adaptability for long-term prediction of these two models. Even so their prediction accuracy can still reach the mine water inflow controlled by Level C. In terms of the prediction accuracy, the SARIMAX model is more accurate in prediction than the SARIMA model. The main reason is that the SARIMA model is a univariate prediction model, which predicts the later changes only based on the time series changes of the water inflow itself, but ignores the external factors caused by the water inflow. The SARIMAX model only introduces the influence of rainfall on water inflow, but as one of the important factors affecting water inflow, rainfall plays an obvious role in improving the prediction accuracy. The correlation between rainfall and mine water inflow indicates that atmospheric precipitation is the main source for water recharge, and mining fissures are the main recharges channels in the mining area. The change of water inflow has a certain hysteresis effect relative to rainfall. With the extension of mining level, the increase of the mining area and the backfilling of the water-conducting fissures caused by the goaf collapse, the hysteresis effect of rainfall becomes increasingly obvious. The correlation between rainfall and inflow in the same month and the first previous month radually decreases, while it gradually increases from the second and fifth months. Based on the mine water inflow and rainfall, the SARIMA model for univariate seasonal time series and the SARIMAX model for multivariate seasonal time series have been established to predict the mine water inflow. The prediction results show that 91.7% of the predicted values of the two models reach the mine water inflow of Level B, and the prediction accuracy is high. The MAPE of SARIMAX model is 18.57%, less than that of SARIMA model (25.27%), indicating higher accuracy of SARIMAX model. -
Key words:
- karst mountainous area /
- mine water inflow /
- prediction /
- the SARIMA model /
- the SARIMAX model
-
图 5 不同时段同期月及前4月月平均降雨量与月平均涌水量相关关系变化趋势图
注:横坐标1代表1994—2015年降雨量与涌水量之间的相关关系,2代表1995—2015年降雨量与涌水量之间的相关关系,依次类推,19代表2012—2015年降雨量与涌水量之间的相关关系
Figure 5. Change trend of the correlation between the average monthly rainfall and the average monthly water inflow in the same period and the first 4 months in different periods
Note: Abscissa 1 represents the correlation between precipitation and water inflow from 1994 to 2015. Abscissa 2 represents the correlation between precipitation and water inflow from 1995 to 2015. Successively, abscissa 19 represents the correlation between precipitation and water inflow from 2012 to 2015.
表 1 序列ADF检验结果表
Table 1. Results of sequence ADF test
ADF检验统计量 原始涌水量Q序列 t-Statistic Prob. −9.324761 0.0000 检验界值 1% level −3.456408 5% level −2.872904 10% level −2.572900 表 2 不同模型下的标准 BIC 、AIC 、NSE及 MAPE 值
Table 2. Standard BIC, AIC, NSE and MAPE values under different models
Model(p,d,q)(P,D,Q)S BIC AIC NSE MAPE/% SARIMA(3,0,0)(1,0,1)12 2.8805 2.8593 0.8291 16.74 SARIMA(3,0,0)(1,0,0)12 2.9614 2.9438 0.7591 18.74 SARIMA(2,0,0)(1,0,1)12 2.8802 2.8626 0.8255 17.29 SARIMA(2,0,0)(1,0,0)12 2.9625 2.9484 0.7528 18.90 SARIMAX(3,0,0)(1,0,1)12 2.6747 2.6435 0.8627 17.85 SARIMAX(3,0,0)(1,0,0)12 2.6693 2.6416 0.8626 17.88 SARIMAX(2,0,0)(1,0,1)12 2.6814 2.6537 0.8555 18.42 SARIMAX(2,0,0)(1,0,0)12 2.6768 2.6526 0.8549 18.55 表 3 模型参数估计
Table 3. Estimation of model parameters
模型 参数 参数估计值 标准误差 T 显著性 SARIMA(3, 0, 0)(1, 0, 1)12 AR{1} 0.8504 0.0452 18.8302 0 AR{2} −0.3628 0.0676 −5.3686 0 AR{3} 0.1456 0.0625 2.3285 0.02 SAR{1} 0.9655 0.0070 137.3414 0 SMA{1} −0.7492 0.0367 −20.4154 0 SARIMAX(3, 0, 0)(1, 0, 0)12 AR{1} 0.7389 0.0498 14.8260 0 AR{2} −0.0904 0.0382 −2.3698 0.02 AR{3} 0.2206 0.0389 5.6650 0 SAR{1} 0.4438 0.0462 9.5986 0 Beta(P) 0.4131 0.0537 7.6868 0 Beta(P1) −0.2044 0.0617 −3.3120 0 Beta(P2) 0.7389 0.0498 14.8260 0 表 4 2015年涌水量预测值
Table 4. Prediction value of water inflow in 2015
预测时段 实测及预测流量/m3·h−1 MAPE/% 实测 SARIMA模型 SARIMAX模型 SARIMA模型 SARIMAX模型 2015年1月 143.0 150.9 156.2 5.51 9.22 2015年2月 137.6 119.5 125.0 13.15 9.16 2015年3月 125.8 100.0 131.6 20.53 4.59 2015年4月 119.9 98.5 148.3 17.86 23.72 2015年5月 150.3 103.0 139.3 31.46 7.30 2015年6月 185.3 161.5 240.3 12.82 29.68 2015年7月 251.4 339.7 387.4 35.14 54.10 2015年8月 292.4 398.8 384.5 36.38 31.50 2015年9月 362.2 318.2 379.5 12.14 4.78 2015年10月 382.0 247.8 365.5 35.14 4.32 2015年11月 347.2 180.9 258.1 47.90 25.65 2015年12月 219.0 141.9 177.7 35.22 18.85 -
[1] Bukowski P. Water hazard assessment in active shafts in Upper Silesian coal basin mines[J]. Mine Water and the Environment, 2011, 30(4):302-311. doi: 10.1007/s10230-011-0148-2 [2] K Polak, K Ro Kowski, P Czaja. Causes and effects of uncontrolled water inrush into a decommissioned mine shaft[J]. Mine Water and the Environment, 2016, 35(2):128-135. [3] Wu Qiang, Xu Ke, Zhang Wei. Roof aquifer water abundance evaluation: A case study in Taigemiao, China[J]. Arabian Journal of Geoences, 2017, 10(11):254. doi: 10.1007/s12517-017-3048-3 [4] Wu Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society, 2014, 39(5):795-805. [5] Sun Wenjie, Wu Qiang, Dong Donglin. Avoiding coal–water conflicts during the development of China's large coal-producing regions[J]. Mine Water and the Environment, 2012, 31(1):74-78. doi: 10.1007/s10230-012-0173-9 [6] Wu Qiang, Zhou Wanfang. Prediction of inflow from overlying aquifers into coalmines: A case study in Jinggezhuang coalmine, Kailuan, China[J]. Environmental Geology, 2008, 55(4):775-780. doi: 10.1007/s00254-007-1030-1 [7] 吴金刚, 毛俊睿, 柴沛. 2000—2017年我国煤矿重特大水灾事故规律分析[J]. 煤矿安全, 2019, 50(10):239-242, 247.WU Jingang, MAO Junrui, CHAI Pei. Law of major & particular major coal mine flooding accidents in China from 2000 to 2017[J]. Safety in Coal Mines, 2019, 50(10):239-242, 247. [8] Yang Yongguo, Han Baoping, Xie Kejun, Xie Xiande. To forecast the water yield of coal mine applying the time series interrelated model with multivariation[J]. Coal Geology & Exploration, 1995(6):38-42. [9] 左文喆, 王斌海, 程紫华, 张耀斌. 矿井涌水量预测方法综述[J]. 化工矿物与加工, 2016, 45(9):71-74.ZUO Wenzhe, WANG Binhai, CHENG Zihua, ZHANG Yaobin. Review of methodology in predicting mine discharge[J]. Industrial Minerals and Processing, 2016, 45(9):71-74. [10] Zhang Kai, Cao Bin, Lin Gang, Zhao Mingdong. Using multiple methods to predict mine water inflow in the Pingdingshan No. 10 coal mine, China[J]. Mine Water and the Environment, 2017, 36(1):154-160. doi: 10.1007/s10230-015-0381-1 [11] 李燕, 畅俊斌, 白孝斌, 刘慧, 田国林. 矿井涌水量数值模拟研究:以锦东煤矿为例[J]. 地下水, 2019, 41(1):25-27.LI Yan, CHANG Junbin, BAI Xiaobin, LIU Hui, TIAN Guolin. The numerical simulation of mine water inflow: A case study of the Jindong Coal Mine[J]. Ground Water, 2019, 41(1):25-27. [12] 褚学伟, 许模, 王中美, 李博. 基于 SARIMA模型的岩溶山区泉流量动态预测[J]. 工程地质学报, 2017, 25(3):867-872.CHU Xuewei, XU Mo, WANG Zhongmei, LI Bo. Dynamic prediction of spring flow in karst mountain area based on SARIMA model[J]. Journal of Engineering Geology, 2017, 25(3):867-872. [13] 赵凌, 张健, 陈涛. 基于ARIMA的乘积季节模型在城市供水量预测中的应用[J]. 水资源与水工程学报, 2011, 22(1):58-62.ZHAO Ling, ZHANG Jian, CHEN Tao. Application of product seasonal ARIMA model to the forecast of urban water supply[J]. Journal of Water Resources and Water Engineering, 2011, 22(1):58-62. [14] 刘北战, 梁冰. 基于SVM降雨充水矿井涌水量预测[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(Suppl.1):72-74.LIU Beizhan, LIANG Bing. Prediction of water inflow of mine with rainfall yield based on SVM[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(Suppl.1):72-74. [15] An Xin, Jia Jinzhang. Time serier prediction of mine water inflow of ARIMA model[J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(7):785-790. [16] Huang Chuhan, Feng Tao, Wang Weijun, Liu Hui. Mine water inrush prediction based on fractal and support vector machines[J]. Journal of the China Coal Society, 2010, 35(5):806-810. [17] Khalil B, Broda S, Adamowski J. Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models[J]. Hydrogeology Journal, 2015, 23(1):121-141. doi: 10.1007/s10040-014-1204-3 [18] Liang Bing, Li Gang, Wang Zonglin, Liu Yongwei. Prediction of water inflow of mine with rainfall yield based on BP artificial neural network[J]. The Chinese Journal of Geological Hazard and Control, 2009, 21(1):122-125. [19] Wang Hao, Luo Ankun, Chai Rui, Liu Qisheng. Application of GM Model in coal mine water inflow prediction[C]//Seventh International Conference on Measuring Technology & Mechatronics Automation, 2015: 192-195. [20] Shi Longqi, Zhao Yunping, Wang Ying, Cong Peizhang, Ji Liangjun. Prediction of mine water inflow based on gray theory[J]. Coal Technology, 2016, 35(9):115-118. [21] 蒙彦, 雷明堂. 岩溶隧道涌水研究现状及建议[J]. 中国岩溶, 2003, 22(4):287-292.MENG Yan, LEI Mingtang. Research status and suggestion of water gushing in karst tunnel[J]. Carsologica Sinica, 2003, 22(4):287-292. [22] 邓忠, 廖培涛, 秦平亮, 唐勇臣, 康志强. 大藤峡水库对广西盘龙铅锌矿矿坑涌水量影响预测[J]. 中国岩溶, 2021, 40(2):198-204.DENG Zhong, LIAO Peitao, QIN Pingliang, TANG Yongchen, KANG Zhiqiang. Influence of the Datengxia reservoir on water inrusch amount of the Panlong lead-zinc mine in Guangxi[J]. Carsologica Sinica, 2021, 40(2):198-204. [23] 郑克勋, 裴熊伟, 朱代强, 吴述彧, 郭维祥. 岩溶地区地下水位变动带隧道涌水问题的思考[J]. 中国岩溶, 2019, 38(4):473-478.ZHENG Kexun, PEI Xiongwei, ZHU Daiqiang, WU Shuyu, GUO Weixiang. Thoughts on tunnel water inrush in changing zones of groundwater level in karst areas[J]. Carsologica Sinica, 2019, 38(4):473-478. [24] 李铎, 魏爱华, 贾磊, 陈康. 山东福山铜矿岩溶裂隙水充水矿井涌水量预测[J]. 中国岩溶, 2017, 36(3): 319-326.LI Duo, WEI Aihua, JIA Lei, CHEN Kang. Prediction of water inflow in karst-fracture of Fushan copper mine, Shandong Province, China[J]. Carsologica Sinica, 2017, 36(3): 319-326. [25] A J Adeloye, M Montaseri. Preliminary streamflow data analyses prior to water resources planning study[J]. Hydrological Sciences Journal, 2002, 47(5): 679-692. [26] Adhikari R, Agrawal R K. An introductory study on time series modeling and forecasting[M]. LAP LAMBERT Academic Publishing, 2013. [27] Box G E P, Jenkins G M, Gregory C Reinsel, Greta M Ljung. Time series analysis: Forecasting and control[J]. Journal of Time Series Analysis , 2016, 37(5): 709-711. [28] Liu L M, Gregory B H. Forecasting and time series analysis using the SCA statistical system, Volume 1 and 2[M]. Chicago, USA: Scientific Computing Associates Corporation, 2004. [29] Chen Zhaorong, Wu Yang. Statistics[M]. Hefei: Anhui University Press, 2019. [30] Shi Moli. Practical course of time series prediction[M]. Beijing: Tsinghua University Press, 2012. [31] Krause P, Boyle D P, F Bäse. Comparison of different efficiency criteria for hydrological model assessment[J]. Advances in Geosciences, 2005, 5: 89-97. [32] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I-a discussion of principles[J]. Journal of Hydrology, 1970, 10(3):282-290. doi: 10.1016/0022-1694(70)90255-6 [33] Legates D R, Mccabe G J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation[J]. Water Resources Research, 1999, 35(1): 233-241. [34] Akaike H T. A new look at the statistical model identification[J]. Automatic Control, IEEE Transactions on, 1974, 19(6):716-723. doi: 10.1109/TAC.1974.1100705 [35] Schwarz G E. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2): 461-464. [36] Qian Xuepu. Estimation rating and precision comment on mine inflow prediction[J]. Coal Geology of China, 2007, 19(5):48-50, 67.