• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同时间序列模型在岩溶山区矿井涌水量预测中的应用

邹银先 褚学伟 段先前 刘埔 王中美 王益伟

邹银先,褚学伟,段先前,等. 不同时间序列模型在岩溶山区矿井涌水量预测中的应用[J]. 中国岩溶,2023,42(6):1237-1246 doi: 10.11932/karst2023y031
引用本文: 邹银先,褚学伟,段先前,等. 不同时间序列模型在岩溶山区矿井涌水量预测中的应用[J]. 中国岩溶,2023,42(6):1237-1246 doi: 10.11932/karst2023y031
ZOU Yinxian, CHU Xuewei, DUAN Xianqian, LIU Pu, WANG Zhongmei, WANG Yiwei. Application of different time series models to the prediction for mine water inflow in karst mountainous areas[J]. CARSOLOGICA SINICA, 2023, 42(6): 1237-1246. doi: 10.11932/karst2023y031
Citation: ZOU Yinxian, CHU Xuewei, DUAN Xianqian, LIU Pu, WANG Zhongmei, WANG Yiwei. Application of different time series models to the prediction for mine water inflow in karst mountainous areas[J]. CARSOLOGICA SINICA, 2023, 42(6): 1237-1246. doi: 10.11932/karst2023y031

不同时间序列模型在岩溶山区矿井涌水量预测中的应用

doi: 10.11932/karst2023y031
基金项目: 贵州省科技支撑计划(黔科合支撑[2017]2858);贵大人基合字(2019)36号
详细信息
    作者简介:

    邹银先(1985-),男,高级工程师,主要从事水文地质、环境地质研究工作。E-mail:812526840@qq.com

    通讯作者:

    褚学伟(1979-),男,博士,讲师,主要研究方向岩溶水文地质、环境地质。E-mail:28409807@qq.com

  • 中图分类号: U453.6

Application of different time series models to the prediction for mine water inflow in karst mountainous areas

  • 摘要: 矿井涌水量预测的精度对于煤矿开采安全有着至关重要的作用。文章以老鹰山煤矿为例,分析降雨与矿井涌水量的相关关系,结果表明:同期月及前第1个月降雨量与涌水量相关性具有逐渐减弱的趋势,而与前第2个月至第5个月的相关性有逐渐升高的趋势;基于矿井涌水量及降雨量,建立了单因素季节性时间序列SARIMA模型及多元季节性时间序列SARIMAX模型对矿井涌水量进行预测,预测结果表明:两种模型91.7%的预测值达到B级探明的矿井涌水量,预测精度均较高,SARIMAX模型预测结果的MAPE为18.57%,小于SARIMA模型的25.27%,预测精度更优。

     

  • 图  1  研究区环境地质简图

    Figure  1.  Environmental geology of the study area

    图  2  研究区剖面图

    Figure  2.  Section of the study area

    图  3  月平均降雨量及月平均涌水量时序图

    Figure  3.  Time sequence diagram of average monthly rainfall and average monthly water inflow

    图  4  同期月及前4月月平均降雨量与月平均涌水量相关关系图

    Figure  4.  Correlation between average monthly rainfall and average monthly water inflow in the same month and the first 4 months

    图  5  不同时段同期月及前4月月平均降雨量与月平均涌水量相关关系变化趋势图

    注:横坐标1代表1994—2015年降雨量与涌水量之间的相关关系,2代表1995—2015年降雨量与涌水量之间的相关关系,依次类推,19代表2012—2015年降雨量与涌水量之间的相关关系

    Figure  5.  Change trend of the correlation between the average monthly rainfall and the average monthly water inflow in the same period and the first 4 months in different periods

    Note: Abscissa 1 represents the correlation between precipitation and water inflow from 1994 to 2015. Abscissa 2 represents the correlation between precipitation and water inflow from 1995 to 2015. Successively, abscissa 19 represents the correlation between precipitation and water inflow from 2012 to 2015.

    图  6  涌水量自相关及偏自相关函数图

    Figure  6.  Auto-correlation and partial auto-correlation function of water inflow

    图  7  SARIMA模型及SARIMAX模型拟合结果图

    Figure  7.  Fitting result of the SARIMA model and the SARIMAX model

    图  8  残差序列相关函数图

    Figure  8.  Correlation function chart of residual sequence

    表  1  序列ADF检验结果表

    Table  1.   Results of sequence ADF test

    ADF检验统计量原始涌水量Q序列
    t-StatisticProb.
    −9.3247610.0000
    检验界值1% level−3.456408
    5% level−2.872904
    10% level−2.572900
    下载: 导出CSV

    表  2  不同模型下的标准 BIC 、AIC 、NSE及 MAPE 值

    Table  2.   Standard BIC, AIC, NSE and MAPE values under different models

    Model(p,d,q)(P,D,Q)SBICAICNSEMAPE/%
    SARIMA(3,0,0)(1,0,1)122.88052.85930.829116.74
    SARIMA(3,0,0)(1,0,0)122.96142.94380.759118.74
    SARIMA(2,0,0)(1,0,1)122.88022.86260.825517.29
    SARIMA(2,0,0)(1,0,0)122.96252.94840.752818.90
    SARIMAX(3,0,0)(1,0,1)122.67472.64350.862717.85
    SARIMAX(3,0,0)(1,0,0)122.66932.64160.862617.88
    SARIMAX(2,0,0)(1,0,1)122.68142.65370.855518.42
    SARIMAX(2,0,0)(1,0,0)122.67682.65260.854918.55
    下载: 导出CSV

    表  3  模型参数估计

    Table  3.   Estimation of model parameters

    模型参数参数估计值标准误差T显著性
    SARIMA(3, 0, 0)(1, 0, 1)12AR{1}0.85040.045218.83020
    AR{2}−0.36280.0676−5.36860
    AR{3}0.14560.06252.32850.02
    SAR{1}0.96550.0070137.34140
    SMA{1}−0.74920.0367−20.41540
    SARIMAX(3, 0, 0)(1, 0, 0)12AR{1}0.73890.049814.82600
    AR{2}−0.09040.0382−2.36980.02
    AR{3}0.22060.03895.66500
    SAR{1}0.44380.04629.59860
    Beta(P)0.41310.05377.68680
    Beta(P1)−0.20440.0617−3.31200
    Beta(P2)0.73890.049814.82600
    下载: 导出CSV

    表  4  2015年涌水量预测值

    Table  4.   Prediction value of water inflow in 2015

    预测时段实测及预测流量/m3·h−1MAPE/%
    实测SARIMA模型SARIMAX模型SARIMA模型SARIMAX模型
    2015年1月 143.0 150.9 156.2 5.51 9.22
    2015年2月 137.6 119.5 125.0 13.15 9.16
    2015年3月 125.8 100.0 131.6 20.53 4.59
    2015年4月 119.9 98.5 148.3 17.86 23.72
    2015年5月 150.3 103.0 139.3 31.46 7.30
    2015年6月 185.3 161.5 240.3 12.82 29.68
    2015年7月 251.4 339.7 387.4 35.14 54.10
    2015年8月 292.4 398.8 384.5 36.38 31.50
    2015年9月 362.2 318.2 379.5 12.14 4.78
    2015年10月 382.0 247.8 365.5 35.14 4.32
    2015年11月 347.2 180.9 258.1 47.90 25.65
    2015年12月 219.0 141.9 177.7 35.22 18.85
    下载: 导出CSV
  • [1] Bukowski P. Water hazard assessment in active shafts in Upper Silesian coal basin mines[J]. Mine Water and the Environment, 2011, 30(4):302-311. doi: 10.1007/s10230-011-0148-2
    [2] K Polak, K Ro Kowski, P Czaja. Causes and effects of uncontrolled water inrush into a decommissioned mine shaft[J]. Mine Water and the Environment, 2016, 35(2):128-135.
    [3] Wu Qiang, Xu Ke, Zhang Wei. Roof aquifer water abundance evaluation: A case study in Taigemiao, China[J]. Arabian Journal of Geoences, 2017, 10(11):254. doi: 10.1007/s12517-017-3048-3
    [4] Wu Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society, 2014, 39(5):795-805.
    [5] Sun Wenjie, Wu Qiang, Dong Donglin. Avoiding coal–water conflicts during the development of China's large coal-producing regions[J]. Mine Water and the Environment, 2012, 31(1):74-78. doi: 10.1007/s10230-012-0173-9
    [6] Wu Qiang, Zhou Wanfang. Prediction of inflow from overlying aquifers into coalmines: A case study in Jinggezhuang coalmine, Kailuan, China[J]. Environmental Geology, 2008, 55(4):775-780. doi: 10.1007/s00254-007-1030-1
    [7] 吴金刚, 毛俊睿, 柴沛. 2000—2017年我国煤矿重特大水灾事故规律分析[J]. 煤矿安全, 2019, 50(10):239-242, 247.

    WU Jingang, MAO Junrui, CHAI Pei. Law of major & particular major coal mine flooding accidents in China from 2000 to 2017[J]. Safety in Coal Mines, 2019, 50(10):239-242, 247.
    [8] Yang Yongguo, Han Baoping, Xie Kejun, Xie Xiande. To forecast the water yield of coal mine applying the time series interrelated model with multivariation[J]. Coal Geology & Exploration, 1995(6):38-42.
    [9] 左文喆, 王斌海, 程紫华, 张耀斌. 矿井涌水量预测方法综述[J]. 化工矿物与加工, 2016, 45(9):71-74.

    ZUO Wenzhe, WANG Binhai, CHENG Zihua, ZHANG Yaobin. Review of methodology in predicting mine discharge[J]. Industrial Minerals and Processing, 2016, 45(9):71-74.
    [10] Zhang Kai, Cao Bin, Lin Gang, Zhao Mingdong. Using multiple methods to predict mine water inflow in the Pingdingshan No. 10 coal mine, China[J]. Mine Water and the Environment, 2017, 36(1):154-160. doi: 10.1007/s10230-015-0381-1
    [11] 李燕, 畅俊斌, 白孝斌, 刘慧, 田国林. 矿井涌水量数值模拟研究:以锦东煤矿为例[J]. 地下水, 2019, 41(1):25-27.

    LI Yan, CHANG Junbin, BAI Xiaobin, LIU Hui, TIAN Guolin. The numerical simulation of mine water inflow: A case study of the Jindong Coal Mine[J]. Ground Water, 2019, 41(1):25-27.
    [12] 褚学伟, 许模, 王中美, 李博. 基于 SARIMA模型的岩溶山区泉流量动态预测[J]. 工程地质学报, 2017, 25(3):867-872.

    CHU Xuewei, XU Mo, WANG Zhongmei, LI Bo. Dynamic prediction of spring flow in karst mountain area based on SARIMA model[J]. Journal of Engineering Geology, 2017, 25(3):867-872.
    [13] 赵凌, 张健, 陈涛. 基于ARIMA的乘积季节模型在城市供水量预测中的应用[J]. 水资源与水工程学报, 2011, 22(1):58-62.

    ZHAO Ling, ZHANG Jian, CHEN Tao. Application of product seasonal ARIMA model to the forecast of urban water supply[J]. Journal of Water Resources and Water Engineering, 2011, 22(1):58-62.
    [14] 刘北战, 梁冰. 基于SVM降雨充水矿井涌水量预测[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(Suppl.1):72-74.

    LIU Beizhan, LIANG Bing. Prediction of water inflow of mine with rainfall yield based on SVM[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(Suppl.1):72-74.
    [15] An Xin, Jia Jinzhang. Time serier prediction of mine water inflow of ARIMA model[J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(7):785-790.
    [16] Huang Chuhan, Feng Tao, Wang Weijun, Liu Hui. Mine water inrush prediction based on fractal and support vector machines[J]. Journal of the China Coal Society, 2010, 35(5):806-810.
    [17] Khalil B, Broda S, Adamowski J. Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models[J]. Hydrogeology Journal, 2015, 23(1):121-141. doi: 10.1007/s10040-014-1204-3
    [18] Liang Bing, Li Gang, Wang Zonglin, Liu Yongwei. Prediction of water inflow of mine with rainfall yield based on BP artificial neural network[J]. The Chinese Journal of Geological Hazard and Control, 2009, 21(1):122-125.
    [19] Wang Hao, Luo Ankun, Chai Rui, Liu Qisheng. Application of GM Model in coal mine water inflow prediction[C]//Seventh International Conference on Measuring Technology & Mechatronics Automation, 2015: 192-195.
    [20] Shi Longqi, Zhao Yunping, Wang Ying, Cong Peizhang, Ji Liangjun. Prediction of mine water inflow based on gray theory[J]. Coal Technology, 2016, 35(9):115-118.
    [21] 蒙彦, 雷明堂. 岩溶隧道涌水研究现状及建议[J]. 中国岩溶, 2003, 22(4):287-292.

    MENG Yan, LEI Mingtang. Research status and suggestion of water gushing in karst tunnel[J]. Carsologica Sinica, 2003, 22(4):287-292.
    [22] 邓忠, 廖培涛, 秦平亮, 唐勇臣, 康志强. 大藤峡水库对广西盘龙铅锌矿矿坑涌水量影响预测[J]. 中国岩溶, 2021, 40(2):198-204.

    DENG Zhong, LIAO Peitao, QIN Pingliang, TANG Yongchen, KANG Zhiqiang. Influence of the Datengxia reservoir on water inrusch amount of the Panlong lead-zinc mine in Guangxi[J]. Carsologica Sinica, 2021, 40(2):198-204.
    [23] 郑克勋, 裴熊伟, 朱代强, 吴述彧, 郭维祥. 岩溶地区地下水位变动带隧道涌水问题的思考[J]. 中国岩溶, 2019, 38(4):473-478.

    ZHENG Kexun, PEI Xiongwei, ZHU Daiqiang, WU Shuyu, GUO Weixiang. Thoughts on tunnel water inrush in changing zones of groundwater level in karst areas[J]. Carsologica Sinica, 2019, 38(4):473-478.
    [24] 李铎, 魏爱华, 贾磊, 陈康. 山东福山铜矿岩溶裂隙水充水矿井涌水量预测[J]. 中国岩溶, 2017, 36(3): 319-326.

    LI Duo, WEI Aihua, JIA Lei, CHEN Kang. Prediction of water inflow in karst-fracture of Fushan copper mine, Shandong Province, China[J]. Carsologica Sinica, 2017, 36(3): 319-326.
    [25] A J Adeloye, M Montaseri. Preliminary streamflow data analyses prior to water resources planning study[J]. Hydrological Sciences Journal, 2002, 47(5): 679-692.
    [26] Adhikari R, Agrawal R K. An introductory study on time series modeling and forecasting[M]. LAP LAMBERT Academic Publishing, 2013.
    [27] Box G E P, Jenkins G M, Gregory C Reinsel, Greta M Ljung. Time series analysis: Forecasting and control[J]. Journal of Time Series Analysis , 2016, 37(5): 709-711.
    [28] Liu L M, Gregory B H. Forecasting and time series analysis using the SCA statistical system, Volume 1 and 2[M]. Chicago, USA: Scientific Computing Associates Corporation, 2004.
    [29] Chen Zhaorong, Wu Yang. Statistics[M]. Hefei: Anhui University Press, 2019.
    [30] Shi Moli. Practical course of time series prediction[M]. Beijing: Tsinghua University Press, 2012.
    [31] Krause P, Boyle D P, F Bäse. Comparison of different efficiency criteria for hydrological model assessment[J]. Advances in Geosciences, 2005, 5: 89-97.
    [32] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I-a discussion of principles[J]. Journal of Hydrology, 1970, 10(3):282-290. doi: 10.1016/0022-1694(70)90255-6
    [33] Legates D R, Mccabe G J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation[J]. Water Resources Research, 1999, 35(1): 233-241.
    [34] Akaike H T. A new look at the statistical model identification[J]. Automatic Control, IEEE Transactions on, 1974, 19(6):716-723. doi: 10.1109/TAC.1974.1100705
    [35] Schwarz G E. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2): 461-464.
    [36] Qian Xuepu. Estimation rating and precision comment on mine inflow prediction[J]. Coal Geology of China, 2007, 19(5):48-50, 67.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  63
  • HTML浏览量:  21
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回