• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深埋隧道精细地应力场反演研究

李红明 孙炜锋 张红日 秦向辉 冯坚 魏见海 兰素恋 张重远 孙东生

李红明,孙炜锋,张红日,等. 深埋隧道精细地应力场反演研究−以滇西南双江至沧源高速姜染山隧道为例[J]. 中国岩溶,2023,42(6):1247-1257 doi: 10.11932/karst2023y029
引用本文: 李红明,孙炜锋,张红日,等. 深埋隧道精细地应力场反演研究−以滇西南双江至沧源高速姜染山隧道为例[J]. 中国岩溶,2023,42(6):1247-1257 doi: 10.11932/karst2023y029
LI Hongming, SUN Weifeng, ZHANG Hongri, QIN Xianghui, FENG Jian, WEI Jianhai, LAN Sulian, ZHANG Chongyuan, SUN Dongsheng. Inversion of the fine in-situ stress field for deep-buried tunnel: A case study on the Jiangranshan tunnel of the Shuangjiang-Cangyuan express way in southwest Yunnan[J]. CARSOLOGICA SINICA, 2023, 42(6): 1247-1257. doi: 10.11932/karst2023y029
Citation: LI Hongming, SUN Weifeng, ZHANG Hongri, QIN Xianghui, FENG Jian, WEI Jianhai, LAN Sulian, ZHANG Chongyuan, SUN Dongsheng. Inversion of the fine in-situ stress field for deep-buried tunnel: A case study on the Jiangranshan tunnel of the Shuangjiang-Cangyuan express way in southwest Yunnan[J]. CARSOLOGICA SINICA, 2023, 42(6): 1247-1257. doi: 10.11932/karst2023y029

深埋隧道精细地应力场反演研究——以滇西南双江至沧源高速姜染山隧道为例

doi: 10.11932/karst2023y029
基金项目: 国家重点研发计划项目“膨胀土边坡水敏性以及生态护坡研究(2022KY1136) ”;交通运输部重点科技项目“公路高边坡多点约束型锚索加固理论、技术与监测预警”;中铁十七局集团科技项目“花岗岩隧道洞渣特性以及路用技术研究”;广西高等学校千名中青年骨干教师培育计划资助项目
详细信息
    作者简介:

    李红明(1982-),男,博士研究生,高级工程师,主要从事道路材料运用和岩土工程勘察设计、地质灾害处治技术研究等工作。E-mail:1109705105@qq.com

  • 中图分类号: U452.1

Inversion of the fine in-situ stress field for deep-buried tunnel: A case study on the Jiangranshan tunnel of the Shuangjiang-Cangyuan express way in southwest Yunnan

  • 摘要: 针对复杂地质条件下深埋隧道精细应力场准确反演以及主要地质条件对地应力场影响问题,以滇西南双江至沧源高速姜染山隧道为例开展研究。采用精细DEM数据、实测地质资料建立隧址区精细地质模型,以地应力实测数据和GPS速度场数据作为联合约束条件,开展姜染山隧道工程区精细地应力场反演计算,揭示了隧址区精细应力场特征及主要地质条件影响作用。结果表明:隧道区模拟变形速度场与GPS观测结果基本一致,模型能够较好反映工程区现今构造应力环境;隧址区地应力场存在应力水平西高东低、主应力方向局部偏转的特征,近E-W向的小黑江断裂对研究区地应力场的影响主要表现为造成主应力方向小幅偏转,未造成应力量值急剧变化,局部次级断裂和地形叠加影响作用有限;隧道沿线最大主应力在7.47~27.23 MPa之间,中间主应力在1.59~15.12 MPa之间,最小主应力在0.01~6.71 MPa之间,隧道沿线应力水平总体上未表现出明显异常特征;基于反演精细应力场数据的岩石应力强度比方法计算结果显示,现今地应力条件下,隧道岩石强度应力比结果总体在0.20~0.48之间,表明隧道围岩整体为无岩爆和轻微岩爆情况。本研究实例表明,复杂地质条件下,利用精细DEM和实际断层资料等,可以建立适合工程区尺度的精细地质模型,有效揭示工程区应力场特征和主要地质条件影响作用,支撑隧道围岩工程稳定性评价。

     

  • 图  1  研究区地形地质与姜染山隧道布置平面图

    Figure  1.  Topography and geology of the study area and layout of the Jiangranshan tunnel

    图  2  姜染山隧道地质剖面图

    Figure  2.  Profile of the geological conditions of the Jiangranshan tunnel

    图  3  研究区三维地质体及模型边界

    Figure  3.  Three-dimensional geological units and model boundary of the study area

    图  4  研究区GPS速度场插值结果

    Figure  4.  Interpolation results of GPS velocity field in the study area

    图  5  模型施加的位移边界条件

    Figure  5.  Displacement boundary conditions imposed on the model

    图  6  研究区位移场分布图(图中白色箭头为本次数值计算速度场,紫色短线为实测位移场插值结果)

    Figure  6.  Map of displacement field distribution in the study area (The white arrow represents the numerical calculation velocity field; the short purple lines represent the interpolation results of the measured velocity field.)

    图  7  研究区隧道沿线地应力特征图

    图中(a)为钻孔实测数据与模拟数据对比图(b)为研究区隧道轨面平均深度最大主应力图,灰色短线表示最大主应力矢量方向(c)为隧道沿线主压应力分布图(d)为隧道沿线岩爆指数分布图

    Figure  7.  Characteristics of the in-situ stress along the tunnel

    (a) Comparison of the measured stress data and the simulated stress data (b) Diagram of the maximum principal stresses at the average depth of the tunnel rail surface (The short gray line represents the direction of the maximum principal stresses.) (c) Distribution of the main compressive stress along the tunnel (d) Distribution of the rockburst index along the tunnel

    表  1  水压致裂地应力测量结果

    Table  1.   Results of the hydraulic fracturing measurements

    测段
    序号
    测段中心
    深度/m
    压裂参数/MPa主应力值/MPaSH
    方向
    PHP0PbPrPsTSHShSv
    1 231.50 2.31 0 4.72 3.19 2.82 1.53 9.90 5.14 6.11
    2 307.00 3.07 0 10.33 6.38 5.85 3.95 17.31 8.92 8.10
    3 367.00 3.67 0 11.23 7.53 6.78 3.70 20.15 10.45 9.69 N12°W
    4 393.00 3.93 0 13.90 7.64 7.32 6.26 22.18 11.25 10.38 N10°W
    5 414.00 4.14 0.14 10.42 4.50 6.12 5.92 22.00 10.26 10.93
    下载: 导出CSV

    表  2  模型材料物理力学参数表

    Table  2.   Physical and mechanical parameters of the materials used in the model

    体序号地层名称岩性密度/g·cm−3E/GPa泊松比
    1P1dm灰岩2.65200.4
    2P2n粉砂岩2.40180.35
    3C3y灰岩2.30180.3
    4f断层破碎带2.10100.35
    下载: 导出CSV
  • [1] Scholz C H. The mechanics of earthquake and faulting[M]. Cambridge, UK: Cambridge University Press, 2002.
    [2] Diederichs M S, Kaiser P K, Eberhardt E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812.
    [3] 秦向辉, 张鹏, 丰成君, 孙炜锋, 谭成轩, 陈群策, 彭有如. 北京地区地应力测量与主要断裂稳定性分析[J]. 地球物理学报, 2014, 57(7):2165-2180.

    QIN Xianghui, ZHANG Peng, FENG Chengjun, SUN Weifeng, TAN Chengxuan, CHEN Qunce, PENG Youru. In-situ stress measurements and slip stability of major faults in Beijing region[J]. Chinese Journal of Geophysics, 2014, 57(7):2165-2180.
    [4] Hettema M. Analysis of mechanics of fault reactivation in depleting reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104290.
    [5] 谭成轩, 孙炜锋, 孙叶, 王连捷. 地应力测量及其地下工程应用的思考[J]. 地质学报, 2006, 80(10):1627-1632. doi: 10.3321/j.issn:0001-5717.2006.10.018

    TAN Chengxuan, SUN Weifeng, SUN Ye, WANG Lianjie. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 2006, 80(10):1627-1632. doi: 10.3321/j.issn:0001-5717.2006.10.018
    [6] 王成虎, 刘立鹏, 郭啓良, 侯砚和. 地应力测量数据分析对工程稳定性控制设计的意义[J]. 工程地质学报, 2008, 16(Suppl.1):377-383.

    WANG Chenghu, LIU Lipeng, GUO Qiliang, HOU Yanhe. One method to analyze the measured in-situ stress data and its significance to the project stability design[J]. Journal of Engineering Geology, 2008, 16(Suppl.1):377-383.
    [7] 黄艺丹, 潘前, 姚令侃, 陈诺. 川藏铁路拉林段地应力特征及高地应力风险调控选线策略[J]. 工程地质学报, 2021, 29(2):375-382.

    HUANG Yidan, PAN Qian, YAO Lingkan, CHEN Nuo. Characteristics of measured stress and route selection strategy under high in-situ stress risk control along Lalin section of Sichuan-Tibet Railway[J]. Journal of Engineering Geology, 2021, 29(2):375-382.
    [8] 黄小龙, 吴忠海, 吴坤罡. 滇西北弥渡地区主要断裂晚新生代发育特征及其动力学机制[J]. 地质力学学报, 2021, 27(6):913-927.

    HUANG Xiaolong, WU Zhonghai, WU Kungang. Late Cenozoic development characteristics and dynamic mechanism of the main faults in the Midu area, northwestern Yunnan[J]. Journal of Geomechanics, 2021, 27(6):913-927.
    [9] Zang A, Stephansson O. Stress field of the earth's crust[M]. New York, USA: Springer, 2010.
    [10] 陈群策, 毛吉震, 侯砚和. 利用地应力实测数据谈论地形对地应力的影响[J]. 岩石力学与工程学报, 2004, 23(12):3990-3995.

    CHEN Qunce, MAO Jizhen, HOU Yanhe. Study on influence of topography on in-situ stress by interpretation of measurement data of in-situ stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(12):3990-3995.
    [11] 谭成轩, 孙炜锋, 张春山, 吴树仁, 彭华, 孙叶. 深切峡谷地壳浅表层地应力状态变化分析[J]. 地球物理学进展, 2007, 22(4):1353-1359.

    TAN Chengxuan, SUN Weifeng, ZHANG Chunshan, WU Shuren, PENG Hua, SUN Ye. An analysis on variation of crustal stress at the shallow part of upper crust in deep cut valley region[J]. Progress in Geophysics, 2007, 22(4):1353-1359.
    [12] 苏生瑞, 黄润秋, 王士天. 断裂构造对地应力场的影响及工程应用[M]. 北京: 科学出版社, 2002.
    [13] 苏生瑞, 朱合华, 王士天, STEPHANSSON O. 岩石物理力学性质对断裂附近地应力场的影响[J]. 岩石力学与工程学报, 2003, 22(3):370-377. doi: 10.3321/j.issn:1000-6915.2003.03.006

    SU Shengrui, ZHU Hehua, WANG Shitian, STEPHASSON O. Effect of physical and mechanical properties of rocks on stress field in the vicinity of fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3):370-377. doi: 10.3321/j.issn:1000-6915.2003.03.006
    [14] Heidbach O, Rajabi M, Cui Xiaofeng, Fuchs K, Müller B, Reinecker J, Reiter K, Tingay M, Wenzel F, Xie Furen, Ziegler M O, Zoback M L, Zoback M. The word stress map database release 2016: Crustal stress pattern across scales[J]. Tectonophysics, 2020, 74:484-498.
    [15] 杨文采, 侯遵泽, 于常青. 滇西地壳三维密度结构及其大地构造含义[J]. 地球物理学报, 2015, 58(11):3902-3916. doi: 10.6038/cjg20151102

    YANG Wencai, HOU Zunze, YU Changqing. 3D crustal density of west Yunnan and its tectonic implications[J]. Chinese Journal of Geophysics, 2015, 58(11):3902-3916. doi: 10.6038/cjg20151102
    [16] Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between Indian and Asia[J]. Geological Society of London Special Publications, 1986, 19(1):113-157. doi: 10.1144/GSL.SP.1986.019.01.07
    [17] 武永彩, 李昂, 唐红涛. 滇西北地区近年来应力场的数值模拟研究[J]. 大地测量与地球动力学, 2018, 38(12):1238-1240, 1279.

    WU Yongcai, LI Ang, TANG Hongtao. The numerical simulation of stress field in northwest Yunnan in recent years[J]. Journal of Geodesy and Geodynamics, 2018, 38(12):1238-1240, 1279.
    [18] 洪敏, 张勇, 邵德盛, 王伶俐, 王岩. 云南地区近期地壳活动特征[J]. 地震研究, 2014, 37(10):367-372.

    HONG Min, ZHANG Yong, SHAO Desheng, WANG Lingli, WANG Yan. Recent tectonic activity features of Yunnan region[J]. Journal of Seismological Research, 2014, 37(10):367-372.
    [19] 谢富仁, 陈群策, 崔效锋. 中国大陆地壳应力环境研究[M]. 北京: 地质出版社, 2003.

    XIE Furen, CHEN Qunce, CUI Xiaofeng. Crustal stress in China[M]. Beijing: Geology Press, 2003.
    [20] Herger T, Heidbach O, Reiter K, Giger S B, Marschall P. Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, Northern Switzerland[J]. Solid Earth, 2015, 6(2):533-552. doi: 10.5194/se-6-533-2015
    [21] 张重远, 杜世回, 何满朝, 秦向辉, 李彬, 陈兴强, 陈群策, 孟文, 黄勇. 喜马拉雅东构造节西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报, 2022, 41(5):954-968.

    ZHANG Chongyuan, DU Shihui, HE Manchao, QIN Xianghui, LI Bin, CHEN Xingqiang, CHEN Qunce, MENG Weng, HUANG Yong. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5):954-968.
    [22] 徐正宣, 孟文, 郭长宝, 张鹏, 张广泽, 孙明乾, 陈群策, 陈宇. 川西折多山某深埋隧道地应力测量及其应用研究[J]. 现代地质, 2021, 36(1):114-125.

    XU Zhengxuan, MENG Weng, GUO Changbao, ZHANG Peng, ZHANG Guangze, SUN Mingqian, CHEN Qunce, CHEN Yu. In-situ stress measurement and its application of a deep-buried tunnel in Zheduo mountain, west Sichuan[J]. Geoscience, 2021, 36(1):114-125.
    [23] 田朝阳, 兰恒星, 张宁, 许博闻. 某交通线路色季拉山隧道高地应力区岩爆风险定量预测研究[J]. 工程地质学报, 2022, 30(3):621-634.

    TIAN Chaoyang, LAN Hengxing, ZHANG Ning, XU Bowen. Quantitative prediction of rockburst risk in Sejila tunnel of one railway[J]. Journal of Engineering Geology, 2022, 30(3):621-634.
    [24] 蒙伟, 何川, 张钧博, 周子寒, 汪波. 高地温高地应力下岩体初始地应力场反演分析[J]. 岩石力学与工程学报, 2020, 39(4):749-760.

    MENG Wei, HE Chuan, ZHANG Junbo, ZHOU Zihan, WANG Bo. Inverse analyses of the initial geo-stress field of rock masses under high geo-temperature and high geo-stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4):749-760.
    [25] Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geology Research: Solid Earth, 2020, 125:1-22.
    [26] 盛书中, 胡晓辉, 王晓山, 万永革, 李红星, 李振月, 田宵, 王向滕, 张苏祥. 云南及邻区地壳应力场研究[J]. 地球物理学报, 2022, 65(9):3252-3267.

    SHENG Shuzhong, HU Xiaohui, WANG Xiaoshan, WAN Yongge, LI Hongxing, LI Zhenyue, TIAN Xiao, WANG Xiangteng, ZHANG Suxiang. Study on the crustal stress field of Yunnan and its adjacent areas[J]. Chinese Journal of Geophysics, 2022, 65(9):3252-3267.
    [27] Liu L, Zoback M D. The effect of topography on the state of stress in the crust: Application to the site of the Cajon Pass Scientific Drilling Project[J]. Journal of Geophysical Research, 1992, 97:5095-5100. doi: 10.1029/91JB01355
    [28] 蒙伟, 何川, 汪波, 张钧博, 吴枋胤, 夏舞阳. 基于侧压系数的岩爆区初始地应力场二次反演分析[J]. 岩土力学, 2018, 39(11): 4191-4200.

    MENG Wei, HE Chuan, WANG Bo, ZHANG Junbo, WU Fangyin, XIA Wuyang. Two-stage back analysis of initial geostress field in rockburst area on lateral pressure coefficient[J]. Rock and Soil Mechanics, 2018, 39(11): 4191-4200.
    [29] 付玉华, 王兴明, 袁海平. 构造应力场边界荷载反演的有限元逆逼近法[J]. 岩土力学, 2009, 30(6):1850-1855.

    FU Yuhua, WANG Xingming, YUAN Haiping. Finite element inverse analysis of boundary load for tectonic stress field[J]. Rock and Soil Mechanics, 2009, 30(6):1850-1855.
    [30] 秦忠诚, 刘承论, 赵祉业, 李青海. 地形及构造应力影响下初始应力场的3D-FSM反演分析[J]. 岩土力学, 2008, 29(7):1848-1852.

    QIN Zhongcheng, LIU Chenglun, ZHAO Zhiye, LI Qinghai. Back analysis of initial ground stresses by 3D-FSM considering influence of terrain and tectonic stress[J]. Rock and Soil Mechanics, 2008, 29(7):1848-1852.
    [31] 冯夏庭, 肖亚勋, 丰光亮, 姚志宾, 陈炳瑞, 杨成祥, 苏国韶. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 2019, 38(4):649-673.

    FENG Xiating, XIAO Yaxun, FENG Guangliang, YAO Zhibin, CHEN Bingrui, YANG Chengxiang, SU Guoshao. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4):649-673.
    [32] 姚瑞, 杨树新, 谢富仁, 崔效锋, 陆远忠, 许兆义. 青藏高原及周缘地壳浅层构造应力场量值特征分析[J]. 地球物理学报, 2017, 60(6):2147-2158. doi: 10.6038/cjg20170610

    YAO Rui, YANG Shuxin, XIE Furen, CUI Xiaofeng, LU Yuanzhong, XU Zhaoyi. Analysis on magnitude characteristics of the shallow crustal tectonic stress field in Qinghai–Tibet plateau and its adjacent region based on in-situ stress data[J]. Chinese Journal of Geophysics, 2017, 60(6):2147-2158. doi: 10.6038/cjg20170610
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  172
  • HTML浏览量:  100
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-10
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回