Suitability evaluation on construction of planned urban areas in Guilin based on AHP method and GIS platform
-
摘要: 文章采用AHP方法赋权计算桂林市规划城区工程建设适宜性的评价指标权重,基于地理信息系统平台利用多因素综合法计算其工程建设适宜性指数,使用GIS空间分析技术对桂林规划区工程建设适宜性进行分区可视化评价。结果表明:桂林规划城区的工程建设适宜性整体较好,以适宜、较适宜为主,其中适宜区与较适宜区分别占总面积的3.1%和48.3%,适宜性差区为11.4%,不适宜区为37.2%。建议桂林规划城区建设选址应在适宜区和较适宜区,避免适宜性差区,重大建设选址避开不适宜区;在适宜性差区应注意现有地质灾害和可能诱发的地质灾害、地基不均匀沉降等问题的防治;不适宜区建议规划为生态用地,作为桂林旅游城市的生态屏障。Abstract:
The engineering construction of karst city is often affected by karst geological hazards. Guilin City is a typical representative of karst city; therefore, we should consider the influence of karst hazards when analyzing the suitability for engineering construction in planned urban areas of Guilin. In this study, we established a method for evaluating the construction suitability based on the analytic hierarchy process (AHP) on the geographic information system (GIS) platform. Firstly, the landform of planned urban areas in Guilin is mainly composed of peak-cluster depression, peak-forest valley, peak-forest plain, isolated peak plain, karst-ridge valley, karst-hill plain, low mountain with steep hillslope, hill, hill with gentle slope, and undulating hills. The areas intensely developed with karst are mainly located along the banks of the Lijiang River and in the Lingui district. The areas with karst development at a medium level are located in the middle and southwestern parts of Guilin City and on the periphery of the Lijiang River banks. The areas with weak karst development are mainly located at the Yanshan district, Dingjiang town, and southwestern Lingui district. The groundwater types of the study area are mainly composed of carbonate karst water, impure carbonate cave-fissure water, and clastic bedrock fissure water. For the suitability evaluation of engineering construction in planned urban areas of Guilin, the topographic slope, geomorphic unit, bearing capacity of soil foundation, bearing capacity of rock foundation, special soil distribution, soil thickness, soil structure, groundwater depth, surface water system, karst influence, and fault factors are selected as evaluation indexes, all of which have passed the consistency test of judgment matrix. The weight of these eleven evaluation indexes was calculated by AHP. Then, the engineering construction suitability index (P) was computed from multi hierarchy evaluation with AHP. The P values can be classified as P≥5.00, 2.50≤P<5.00, 1.00≤P<2.50, and P<1.00, which may respectively fall into the category of suitable area, relatively suitable area, poorly suitable area, and unsuitable area for engineering construction. The zoning of planned unban areas in Guilin was visualized based on the suitability for engineering construction on the GIS spatial platform. Finally, in terms of the zoning based on suitability for engineering construction, six sites were chosen and were verified that the zoning by AHP method is consistent with that by field engineering drilling surveys. The consistency may indicate the reliability of APH method with GIS platform. Main conclusions can be drawn as follows,(1) The impact indexes of suitability for engineering construction of the study area include topography (slope degree and geomorphic unit), engineering geological conditions (bearing capacity of soil foundation, bearing capacity of rock foundation, special soil distribution, soil thickness and soil structure), hydrological conditions (groundwater depth and surface water system), and unfavorable geological condition (karst influence and fault factors). (2) Planned urban areas in Guilin are generally suitable for engineering construction, because suitable and relatively suitable areas account for 3.1% and 48.3% of the total area respectively, which can meet the land use needs of recent urban development planning and major infrastructure projects. However, the poorly suitable areas account for 11.4%, which are unsuitable for large-scale engineering construction and require necessary engineering treatment in practical construction. Unsuitable areas account for 37.2%, mostly located at medium-sized mountain, peak-cluster, and isolated peak. The site selection of major construction should be avoided in the unsuitable area. (3) If the major construction site is selected in a poorly suitable area, measures should be taken to prevent and control the existing and induced geological disasters and uneven settlement of foundations. The unsuitable area is proposed to be planned as the ecological land, which can serve as the ecological barrier for Guilin. -
Key words:
- construction suitability /
- AHP /
- planned urban areas of Guilin /
- karst environment /
- GIS
-
图 1 研究区地形地貌图
1.峰丛洼地 2.峰林谷地 3.峰林平原 4.孤峰平原 5.溶岭谷地 6.溶丘平原 7.低山陡坡 8.丘陵 9.缓坡丘陵10.波状丘陵 11.山前坡洪积裙 12.垄岗台地 13.I级阶地 14.II级阶地 15.桂林规划城区界线
Figure 1. Geomorphological map of the study area
1. peak-cluster depression 2. peak-forest valley 3. peak-forest plain 4. isolated-peak plain 5. karst-ridge valley 6. karst-hill plain 7. low mountain with steep hillslope 8. hill 9. hill with gentle slope 10. undulating hill 11. foreslope flood apron 12. ridge platform 13. Class I terrace 14. Class II terrace 15. boundary of planned urban areas in Guilin
图 2 研究区构造地质图
1.背斜 2.向斜 3.主干断裂 4.实测断裂 5.推测断裂 6.地层角度不整合界线 7.构造盆地 8.地质界线 9.古近系 10.上白垩统11.上三叠统 12.下石炭统 13.上泥盆统 14.中−上泥盆统 15.中泥盆统 16.桂林规划城区界线
Figure 2. Tectonic geology of the study area
1.anticline 2. syncline 3. trunk fracture 4. measured fracture 5. presumed fault 6. boundary of stratigraphic angular unconformity 7. tectonic basin 8. geological boundary 9. Palaogene 10. upper Cretaceous Series 11. upper Triassic Series 12. lower Carboniferous Series 13. upper Devonian Series 14. middle-upper Devonian Series 15. middle Devonian Series 16. boundary of the planned urban area in Guilin
图 3 桂林规划城区岩溶分区图
1.强烈岩溶发育区 2.中等岩溶发育区 3.弱岩溶发育区 4.非岩溶区 5.规划区范围
Figure 3. Karst zoning map of planned urban areas in Guilin
1. the area with intense karst development 2. the area with karst development at a medium level 3. the area with weak karst development 4. non-karst area 5. the range of planned areas
表 1 桂林规划城区地貌类型与地层岩性
Table 1. Geomorphic and lithologic features of planned urban areas in Guilin
地貌类型 地貌亚区 分布位置 基岩岩性 地表土体 侵蚀溶蚀地貌区(I) 峰丛洼地(I1)、峰林谷地(I2)、峰林平原(I3)、孤峰平原(I4)、溶岭谷地(I5)、溶丘平原(I6) 整个规划城 上泥盆统、下石炭统的石灰岩、白云岩 主体:堆积红黏土;
局部:残积土、冲积层和洪积层构造剥蚀地貌区(II) 低山陡坡(II1)、丘陵(II2)、缓坡丘陵(II3)、波状丘陵(II4) 规划区西北部及东部偏北部分地区 以泥盆系、白垩系、古近系的砾岩、砂岩、粉砂岩和泥岩为主,其余为不纯的泥灰岩、灰岩 局部有残积土和坡积土 侵蚀堆积地貌区(III) 前坡洪积裙(III1)、垄岗台地(III2)、河流阶地(III3) 分布于漓江、桃花江、良丰江两岸 未见 第四系冲积层、冲洪积层和坡积层 表 2 规划区岩溶发育特征
Table 2. Karst development characteristics of planned urban areas in Guilin
分类 分布 占比 地层岩性 地貌 描述 岩溶强烈发
育区桂林城区中心的漓江两岸和临桂新区 15.4% 融县组(D3r)纯灰岩、
桂林组(D3g)灰岩峰林、孤峰和岩溶平原 洞穴化程度为1 509.0~2 016.2 m·km−2;面岩溶率为0.85~0.87;点岩溶率为3.73~4.50个·km−2;钻孔线岩溶率为7.47%~12.52% 岩溶中等发
育区中部、西南部、北东侧与东南侧的漓江两岸强烈岩溶区的外围地带 29.1% 融县组(D3r)、桂林组(D3g)、东村组(D3d)、唐家湾组(D2t)、东岗岭组(D2d)灰岩、白云岩;尧云岭组(C1y)灰岩夹硅质岩 峰林平原和峰丛
平原洞穴化程度为214.7~773.4 m·km−2;面岩溶率0.37~0.79;点岩溶率为1.52~2.80个·km−2;钻孔线岩溶率为0.93%~4.74% 岩溶弱发育区 东南侧雁山区、北侧定江镇、西南侧临桂新区 25.0% 尧云岭组(C1y)、黄金组(C1h)、英塘组(C1yt)灰岩含燧石灰岩;船头埠组(C1c)燧石灰岩 溶丘平原、丘陵、缓坡丘陵 洞穴化程度为19.92~28.23 m ·km−2,点岩溶率为0.24~0.57个·km−2,钻孔线岩溶率为2.18% 非岩溶区 西部和东部
边缘地带30.5% 泥盆系(D2x、D2d、D3l、D3w、D3r)
砂岩、粉砂岩、硅质岩夹页岩;石炭系(C1lz)泥岩;罗文组(K2l)、邕宁群(EY)砾岩、砂岩、泥岩、页岩丘陵、垄岗台地、河流阶地 无 表 3 桂林规划城区工程建设适宜性评价指标体系及评价因子定量分级表
Table 3. Index of suitability evaluation and quantitative grading of evaluation factors for the construction engineering in planned urban areas of Guilin
一级评价因子 二级评价因子 定量分级标准 边界[10] (7.5,10] (5,7.5] (2.5,5] [0,2.5] 边界[0] 地形地貌(B1) 地形坡度/°(C1) <5 5~10 10~20 20~30 30~45 >45 地貌单元(C2) 峰林平原
孤峰、溶丘平原
山前坡洪积裙
台地与河流阶地峰丛洼地
峰林谷地
溶岭谷地丘陵
缓坡丘陵
波状丘陵
低山陡坡工程地质条件(B2) 土体地基承载力/kPa (C3) >250 200~250 150~200 100~150 50~100 <50 岩石地基承载力/kPa (C4) >4 500 4 000~4 500 3 000~4 000 2 000~3 000 1 500~2 000 <1500 特殊土分布(C5) 不发育 局部发育 发育 土体厚度/m (C6) <2 2~5 5~10 10~30 30~40 >40 土体结构(C7) 单层 双层 多层 水文地质条件(B3) 地下水埋深/m (C8) >20 15~20 10~15 5~10 0~5 0 地表水系(C9) 大型地表水体
周边500 m,塘、
沟200 m以外大型地表水体
周边200~500 m,塘、
沟200 m以内大型地表水体
周边200 m地表水
之下不良地质(B4) 岩溶影响(C10) 非岩溶区 弱发育 弱—中发育 中等发育 强发育 断裂影响(C11) 无断裂 无断裂 有断裂 有断裂 活动断裂 表 4 各层评价因子权重表
Table 4. Weight coefficient of evaluation factors
指标层 B1 B2 B3 B4 指标综合权重(wi) WB1=0.1647 WB2=0.6105 WB3=0.1532 WB4=0.0716 (i=1,2,…,11) C1 WC1=0.6667 0.1098 C2 WC2=0.3333 0.0549 C3 WC3=0.4968 0.3033 C4 WC4=0.0514 0.0314 C5 WC5=0.1193 0.0728 C6 WC6=0.2003 0.1223 C7 WC7=0.1322 0.0807 C8 WC8=.6667 0.1021 C9 WC9=0.3333 0.0511 C10 WC10=0.5000 0.0358 C11 WC11=0.5000 0.0358 表 5 桂林市规划城区工程建设适宜性分区表
Table 5. Table of zoning planned urban areas in Guilin based on suitability evaluation on engineering construction
分区 区段号 分布范围 分区说明 地形
坡度/°
(C1)地貌
单元
(C2)土体地基
承载力
fak/kPa (C3)岩体地基
承载力
fak/kPa (C4)特殊性
土分布
(C5)土体
厚度/m
(C6)土体
结构
(C7)地下水
埋深/m
(C8)地表
水系
(C9)岩溶
影响
(C10)断裂
影响(C11)适宜区
ⅠⅠ1 界头村西北面,奇峰镇西面约1.2 km处 界头村附近<10,奇峰镇西面10~20 孤峰平原、波状丘陵 >200 >4 000为主,其余2 000~4 000 界头村一带发育 <5为主,局部10~30 单层 10~15为主,界头村一带<5 无 非岩溶区、弱发育 无 Ⅰ2 三里店、金鸡岭、乌石街、铁山、茶店村、董家巷一带 <10 孤峰平原、垄岗台地 >200 >4 000为主,三里店一带<2 000 发育 5~30,局部>30 单层 <5为主,局部5~10 局部与漓江距离小于200 m 中等发育 无 较适宜区
ⅡⅡ1 定江镇及定江镇北面 <10,局部灰岩山>30 溶丘平原 150~200 >3 000 不发育 <5为主,局部10~30 m 单层 <5 东部距离漓江<200 m,西南部距离桃花江小于200 m 中等发育 有 Ⅱ2 漓江两岸 <10,局部灰岩山>30 漓江Ⅰ、Ⅱ级阶地 >200 >4 000 局部发育 10~30 m为主,局部<5,或>30 多层 <5 漓江 弱—中发育,中等发育
为主无 Ⅱ3 尧山西面坡洪积扇 <30 山前洪坡
积裙>200 >4 000 不发育 10~30为主,<5次之,局部>30 单层 <5,尧山山脚10~15 无 弱—中等发育,中等发育为主 有 Ⅱ4 雁山区朝阳乡西面至大圩、临桂区庙岭镇至四塘乡南面 <10,局部灰岩山>30 孤峰平原 100~200 >4 000为主,卫家渡一带
2 000~4 000不发育—
发育<30 单层为主,桃花江、良丰河两岸双层 <5 局部与漓江距离<200,桃花江、良
丰河中等发育 有 较差区
ⅢⅢ1 雁山区奇
峰镇<10 孤峰平原 100~200 >4 000 局部发育 <10为主,局部>30 良丰河两岸双层 <5 良丰河 中等发育 无 Ⅲ2 南区瓦窑至大风山一带 <10,局部灰岩山>30 孤峰平原、峰林平原 <100 >4 000 发育 5~30 单层 <5 无 中等—强
发育无 Ⅲ3 新立村、銮塘、临桂县师范学校、扒头岭、车头村 <10 峰林谷地、峰丛洼地 >150 >4 000,扒头岭一带2 000~3 000 不发育—
发育<5,新立村、车头村5~30 单层 <5 桃花江、漓江 弱—强发育,中等发育
为主有 Ⅲ4 定江镇以西、庙岭镇以南、至四塘以北 20~30 孤峰平原、缓坡丘陵 >200 <2 000 不发育 <5 单层 10~15为主,局部<5 桃花江 非岩溶区 有 不适宜区
ⅣⅣ1 尧山及尧山南面 >30 低山陡坡、峰丛洼地 — 2 000~3 000为主 不发育 <5 — 10~15 无 非岩溶区、弱发育—中等发育,中等发育为主 有 Ⅳ2 东南侧翁里村至竹江村一带,临桂县以东与庙岭镇以东一带 >30 溶岭谷地、峰丛洼地、孤峰平原(孤峰) — >4 000 不发育 <5 — <5 白竹境水库 弱—强发育 有 Ⅳ3 庙岭镇以北至上全村一带,水口村、独峰村、大桥村一带 >30 丘陵 — <2 000 不发育 <5,零星10~30 — 10~15,局部<5 金灵水库、石脉水库、焦额底水库、绕江水库等 非岩溶区 有 表 6 桂林规划城区典型场地工程建设适宜性评价验证表
Table 6. Verification of suitability evaluation on engineering construction in representative fields selected from planned urban areas in Guilin
序号 场地 工程地质条件 适宜性指数 评价等级 评价等级区 实际评价 1 长虹新苑经济适用房 孤峰平原地貌区,坡度小于5°;持力层为硬塑状红黏土和石灰岩,其承载力特征值分别为250 kPa和4 500 kPa,建筑地基呈单层土体,厚度约4 m;无地表水,地下水为不纯碳酸盐岩岩溶裂隙水,其埋深大于20 m;场地位于弱岩溶发育区,无断裂 7.93 适宜 I1 场地稳定性好,适宜建筑 2 桂林旅游学院学术交流中
心楼孤峰平原地貌区,坡度小于5°;持力层为硬—可塑状红黏土,承载力特征值为200~250 kPa,下伏灰岩为良好的地基基础下卧层,承载力特征值为3 500 kPa,建筑地基呈单层土体,厚度约5 m;无地表水,地下水为岩溶裂隙水,其埋深约16 m;场地位于弱岩溶发育区,无断裂 6.84 适宜 I2 地稳定性好,为均匀地基,属建筑地基适宜性好 3 桂林水文工程地质勘察院集资商住楼 孤峰平原地貌区,坡度约14°;持力层为硬塑状红黏土,其承载力特征值180 kPa,下伏泥质灰岩可作为良好的持力层,承载力特征值2 000 kPa,特殊土局部发育,建筑地基呈双层土体,厚度约8 m;无地表水,地下水为不纯碳酸盐岩溶洞裂隙水,其埋深约12 m;场地位于弱岩溶发育区,无断裂 4.08 较适宜 Ⅱ1 场地稳定性好,局部地基不均匀,属建筑地基适宜性较好 4 秀峰区漓江西岸某楼盘 孤峰平原地貌区,坡度约12°;持力层为硬—可塑状红黏土,承载力特征值为200 kPa,中等胀缩性土;下伏灰岩为良好持力层,承载力特征值9 192 kPa,建筑地基呈单层土体,厚度约10 m;无地表水,地下水为碳酸盐岩岩溶水,其埋深约12 m;场地位于中等岩溶发育区,有断裂影响,无活动断裂 3.84 较适宜 Ⅱ2 场地稳定性好,有特殊性土分布,属建筑地基适宜性较好 5 桂林市第十八中学体育馆 孤峰平原地貌区,坡度约14°;持力层为硬—可塑红黏土,承载力特征值200 kPa,下伏灰岩可作为良好的持力层,承载力特征值4435 kPa,中等胀缩性土,建筑地基呈单层土体,厚度约9 m;无地表水,地下水为不纯碳酸盐岩溶洞裂隙水,其埋深约13 m;场地位于弱岩溶发育区,有断裂影响,无活动断裂 4.14 较适宜 Ⅱ4 场地稳定性好,有特殊性土分布,属建筑地基适宜性较好 6 春天家园职工住宅楼 漓江Ⅱ级阶地后缘,坡度约23°;基础持力层及压缩层为硬塑状、可塑状、软塑状黏土和硬塑状、可塑状、软塑状含圆砾黏土,持力层硬—可塑状黏性土承载力特征值为140~190 kPa,软塑性黏性土承载力特征值为80~100 kPa,特殊土发育,建筑地基呈多层土体,厚度约14 m;东距离漓江约500 m,地下水为碳酸盐岩岩溶水和第四系松散层孔隙潜水,其埋深约为6 m,;场地位于中等岩溶发育区,无断裂 1.95 较差 Ⅲ2 场地稳定性好,下伏溶沟(槽)发育,属不均匀地基,属建筑地基适宜性较差 -
[1] 田洪水, 陈启辉. 济南市区的地基土层及地基适宜性评价[J]. 水文地质工程地质, 2009, 36(5):49-52.TIAN Hongshui, CHEN Qihui. Characteristics of foundation soil layers and evaluation on foundation suitability in the urban area of Jinan City[J]. Hydrogeology & Engineering Geology, 2009, 36(5): 49-52. [2] 熊彩霞, 梁恒昌, 马金荣, 张鄂芬. 煤矿采空区建筑场地地基适宜性分析[J]. 采矿安全工程学报, 2010, 27(1):100-105.XIONG Caixia, LIANG Hengchang, MA Jinrong, ZHANG Efen. Stability analysis of the building foundation over goaf area[J]. Journal of Mining & Safety Engineering, 2010, 27(1): 100-105. [3] 俞跃平, 唐柏安. 绍兴中心城区工程地质特征及场地工程建设适宜性评价[J]. 水文地质工程地质, 2011, 38(2):84-88.YU Yueping, TANG Baian. Engineering geological characteristics and suitability evaluation of site engineering construction in the central urban area of Shaoxing[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 84-88. [4] 江思义, 吴福, 刘庆超, 李海良, 潘晓丽. 岩溶地区建设用地地质环境适宜性评价:以广西桂林规划中心城区为例[J]. 中国地质灾害与防治学报, 2019, 30(6):84-92.JIANG Siyi, WU Fu, LIU Qingchao, LI Hailiang, PAN Xiaoli. Suitability evaluation of construction land development in karst area: Taking city planning center of Guilin as an example[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6): 84-92. [5] 杨子生. 云南山区城镇建设用地适宜性评价中的特殊因子[J]. 水土保持研究, 2015, 22(4):269-275.YANG Zisheng. Analysis on the special factors for evaluating mountainous urban construction land suitability in Yunnan Province[J]. Research of Soil and Water Conservation, 2015, 22(4): 269-275. [6] 杨子生. 山区城镇建设用地适宜性评价方法及应用:以云南省德宏州为例[J]. 自然资源学报, 2016, 31(1):64-76.YANG Zisheng. Land suitability evaluation for urban construction and its application in mountainous areas: A case study in Dehong Dai-Jinpo Autonomous Prefecture, Yunan Province[J]. Journal of Natural Resources, 2016, 31(1): 64-76. [7] 陈绪钰, 王东辉, 倪化勇, 李明辉, 田凯. 长江经济带上游地区丘陵城市工程建设适宜性评价: 以泸州市规划中心城区为例[J]. 吉林大学学报(地球科学版), 2020, 50(1): 194-207.CHEN Xuyu, WANG Donghui, NI Huayong, LI Minghui, TIAN Kai. Building suitability evaluation of hilly city in upper reaches of Yangtze River economic belt: In case study of urban central planning of Luzhou City[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(1): 194-207. [8] 梅芹芹, 龚绪龙, 史雅栋, 苟富刚. 江苏沿海地区工程建设地质适宜性评价[J]. 地质学刊, 2018, 42(2):317-322.MEI Qinqin, GONG Xulong, SHI Yadong, GOU Fugang. On geological suitability evaluation of engineering construction in coastal Jiangsu area[J]. Journal of Geology, 2018, 42(2): 317-322. [9] 黄敬军, 武鑫, 姜素, 崔龙玉, 魏永耀, 张丽, 陆华. 海绵城市建设的地质影响及适宜性评价:以徐州为例[J]. 地质论评, 2018, 64(6):1472-1480.HUANG Jingjun, WU Xin, JIANG Su, CUI Longyu, WEI Yongyao, ZHANG Li, LU Hua. Geological influence and suitability evaluation of the construction of sponge city: A case of Xuzhou[J]. Geological Review, 2018, 64(6): 1472-1480. [10] 范峻恺, 徐建刚, 胡宏. 基于BP神经网络模型的海绵城市建设适宜性评价方法研究:以福建省长汀县为例[J]. 生态经济, 2019, 35(11):222-229.FAN Junkai, XU Jiangang, HU Hong. Research on construction suitability evaluation of sponge city based on back propagation neural network model: A case of Changting, China[J]. Ecological Economy, 2019, 35(11): 222-229. [11] 沈春竹, 谭琦川, 王丹阳, 陈逸, 黄贤金. 基于资源环境承载力与开发建设适宜性的国土开发强度研究:以江苏省为例[J]. 长江流域资源与环境, 2019, 28(6):1276-1286.SHEN Chunzhu, TAN Qichuan, WANG Danyang, CHEN Yi, HUANG Xianjin. Research on land development intensity based on carrying capacity of resources and environment and suitability of development and construction: A case study of Jiangsu[J]. Resources and Environment in the Yangtze Basin, 2019, 28(6): 1276-1286. [12] 杨杨, 赵良杰, 夏日元, 王莹. 珠江流域岩溶地下河分布特征与影响因素研究[J]. 中国岩溶, 2022, 41(4):562-576. doi: 10.11932/karst20220515YANG Yang, ZHAO Liangjie, XIA Riyuan, WANG Ying. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. Carsologica Sinica, 2022, 41(4): 562-576. doi: 10.11932/karst20220515 [13] DZ/T 0060-93. 岩溶地区工程地质调查规程[S]. 1994. [14] 吴远斌, 刘之葵, 殷仁朝, 雷明堂, 戴建玲, 罗伟权, 潘宗源. 基于AHP和GIS技术的湖南怀化地区岩溶塌陷易发性评价[J]. 中国岩溶, 2022, 41(1):21-33.WU Yuanbin, LIU Zhikui, YIN Renchao, LEI Mingtang, DAI Jianling, LUO Weiquan, PAN Zongyuan. Evaluation of karst collapse susceptibility in Huaihua area, Hunan Province based on AHP and GIS[J]. Carsologica Sinica, 2022, 41(1): 21-33. [15] 张玘恺, 凌斯祥, 李晓宁, 孙春卫, 徐建祥, 黄涛. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(8): 1595-1610.ZHANG Qikai, LING Sixiang, LI Xiaoning, SUN Chunwei, XU Jianxiang, HUANG Tao. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou county, Sichuan Province, China[J]. Chinses Journal of Rock Mechanics ad Engineering, 2020, 39(8): 1595-1610. [16] 程惠红. 曹妃甸滨海新区工程建设适宜性评价[D]. 北京: 中国地质大学(北京), 2009.CHENG Huihong. Appraisals of suitability to project constructional in new region in Caofeidian[D]. Beijing: China University of Geosciences (Beijing), 2009. [17] 曹贤发, 刘玉康, 刘之葵, 张炳辉. 基于强溶蚀带特征的地基岩溶发育程度评价方法[J]. 中国岩溶, 2020, 39(4):577-583.CAO Xianfa, LIU Yukang, LIU Zhikui, ZHANG Binghui. Evaluation method of development degree based on features of intense dissolution layer[J]. Carsologica Sinica, 2020, 39(4): 577-583. [18] 曹继勇, 陈志龙, 郭东军. 北京市岩土体工程特征及工程适宜性评价[J]. 地下空间与工程学报, 2007, 3(4):656-659.CAO Jiyong, CHEN Zhilong, GUO Dongjun. The engineering character and feasibility evaluation of rock & soil in Beijing[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(4): 656-659. [19] 李瑞敏, 鞠建华, 王轶, 王祎萍, 曹峰, 覃小群, 申建梅, 孙自勇, 王红旗. 地质环境问题的地质指标体系框架及其构建方法[J]. 地质通报, 2011, 30(11):1738-1743.LI Ruimin, JU Jianhua, WANG Yi, WANG Yiping, CAO Feng, QIN Xiaoqun, SHEN Jianmei, SUN Ziyong, WANG Hongqi. Framework and design of the geoindicator system for geoenvironment problems[J]. Geological Bulletin of China, 2011, 30(11): 1738-1743.