Geochemical characteristics and paleoenvironmental implications of carbonate rocks at the Givertian and Eifelian boundary in northeast Guangxi
-
摘要: 依托阳朔县龙岩口艾菲尔阶与吉维特阶界线剖面,采集碳酸盐岩样品10个,通过显微特征、元素组分含量及相关元素的比值特征、碳氧同位素数据等,对该界线附近的古海洋沉积环境进行了分析和探讨。研究表明:①样品YS3层位产牙形刺分子Polygnathus intermedius,可归属于艾菲尔晚期ensensis带,为该层位碳同位素偏移事件、Eiffelian与Givertian界线以及Kačák事件提供了准确的时限约束;②参考Wilson的标准微相沉积模式,结合岩性特征,识别出SMF23、SMF16、SMF4和SMF15共四种微相类型;③通过对碳酸盐岩主、微量元素及其比值分析,得出以下结论:YS1至YS2对应阶段为沉积水体快速变深,且具有一定物源供给的沉积环境,反映了海侵初期,海洋环境由局限-半局限台地相向斜坡相快速转变的地质过程;YS3至YS4阶段低含量的陆源组分反映了水体较深、海平面相对较高的远岸沉积环境,该阶段海洋环境以缺氧为典型特征;YS5至YS10阶段陆源组分含量逐渐增加,出现代表低能环境的放射状鲕粒灰岩,沉积区海平面呈现出明显下降的趋势,剖面中多个向上变厚的进积型层序是良好的沉积学响应;④依据氧同位素,重建了古海水温度演化曲线,研究表明该时期海水平均温度为21 ℃,为温暖的亚热带气候,与其位于赤道附近的古地理位置相吻合;⑤样品YS3层位碳同位素表现出的负偏移现象与摩洛哥全球界线层型剖面和北美加拿大地区同层位的δ13C值曲线特征相吻合,共同反映了全球尺度海侵背景下的缺氧沉积环境。Abstract:
The Devonian period, marking the initial phase of the Late Paleozoic era, has garnered considerable attention in recent decades. This heightened interest stems from its intricate climatic fluctuations, recurrent global shifts in sea levels, and a series of consequential biological catastrophes. Of particular captivation is the upper Devonian-lower Carboniferous in northeastern Guangxi, characterized by a multifaceted paleogeographic configuration known as platform-trench-basin facies. Notably, the stratigraphic progression from basin facies to open platform facies displays a notable continuity, culminating in the formation of a substantial kilometer-thick carbonate rock layer. This unique geological foundation underpins the development of a renowned karst geomorphic landscape, which is globally significant. Furthermore, this distinctive karst landscape has facilitated the establishment of the international Devonian-Carboniferous boundary auxiliary layer profile, adding another layer of importance to the study of the Devonian system in this region. While prior investigations have primarily concentrated on sedimentary facies, paleontology, pivotal organisms, and event layers like the 'F-F' biological catastrophe event and the D/C boundary layer during the Late Devonian, certain critical events, notably the Kačak-Otomari event in the late middle Devonian, have received comparatively less attention. Moreover, a comprehensive global-scale comparative analysis has been lacking. Given these gaps, the present study investigates a critical juncture, the boundary between the Eiffelian and Givertian systems, situated in Longyankou village, Yangshuo county. A meticulous examination was carried out, involving the collection of ten carbonate rock samples from this specific section. Through a comprehensive analysis encompassing microscopic features, elemental compositions, ratios, as well as carbon and oxygen isotope data, the study aimed to elucidate and discuss the ancient oceanic sedimentary environments in proximity to this location. Our findings can be summarized as follows: (1) The presence of Polygnathus intermedius, a conodont fossil, is observed within the YS3 sample layer, attributed to the late Eifelian period. This fossil aids in establishing a precise temporal boundary for both the carbon isotope migration event and the Kačák event within this stratum. (2) By employing Wilson's established microfacies sedimentary model in conjunction with lithological traits, four distinct microfacies types, SMF23, SMF16, SMF4, and SMF15, have been successfully distinguished. (3) Through meticulous geochemical analysis, we draw several significant conclusions regarding the sedimentary environment during various stages: The sedimentary environment during the YS1 to YS2 transition demonstrates rapid deepening of sedimentary water and a consistent material source supply. This mirrors the geological process of swift transformation from limited platform facies to slope facies during the initial transgression phase; the low terrigenous component content during YS3 and YS4 stages indicates a distant shoreline sedimentary environment with deep waters and relatively elevated sea levels. Notably, this stage is characterized by widespread hypoxia, displaying global uniformity; Geochemical indicators for YS5 to YS10 stages exhibit minor fluctuations. Notably, the terrigenous component content gradually increases, while the appearance of radial oolitic limestone signifies a low-energy environment. Simultaneously, the sedimentary area witnesses a significant sea level decline, characterized by thicker upward progradational sequences that provide excellent sedimentary responses. (4) Reconstructing the paleoseawater temperature evolution curve based on oxygen isotope data reveals an average seawater temperature of 21 ℃ during the studied period. This temperature profile reflects a warm subtropical climate, aligning with the paleogeographic proximity to the equator. (5) The observed negative migration of carbon isotopes corresponds with the E/G boundary stratotype profile in Morocco and the carbon isotope curve characteristics observed in Canada within the same horizon as sample YS3. In summary, these findings emphasize the prevalence of a deep-water and anoxic sedimentary environment amidst a global-scale transgressive backdrop. -
Key words:
- northeast Guangxi /
- Kačák event /
- carbonate rocks /
- paleoenvironment /
- Devonian
-
图 1 研究区晚泥盆世岩相古地理图和地质图
1-古陆 2-浅海沉积区 3-半深海沉积区 4-深海沉积区 5-断裂构造线 6-石炭系 7-第四系 8-莲花山组 9-信都组 10-唐家湾组 11-桂林组 12-剖面位置
Figure 1. Lithofacies palaeogeographic map and geological map in the late Devonian of the study area
1-ancient land; 2-shallow-sea sedimentary area; 3-semi deep-sea sedimentary area; 4-deep-sea sediment area; 5-fracture; 6-Carboniferous strata; 7-Quaternary; 8-Lianhuashan Formation; 9-Xindu Formation; 10-Tangjiawan Formation; 11-Guilin Formation; 12-section location
图 3 龙岩口剖面碳酸盐岩宏观及薄片显微特征
A-细晶白云岩 a-细晶白云岩显微照片 B-纹层状生物屑藻砂屑灰岩 b-生物屑藻砂屑灰岩显微照片 C-向上变厚的沉积特征 c-泥晶生物屑砂屑灰岩显微照片 D-层孔虫生物屑灰岩 d-泥晶藻砂屑鲕粒灰岩显微照片
Figure 3. Macroscopic and microscopic characteristics of carbonate rocks in Longyankou section
A-fine crystalline dolomite; a-micrograph of fine crystalline dolomite; B-layered bioclastic and algal limestone; b-micrograph of bioclast and algae limestone; C-sedimentary characteristics of upward thickening; c-micrograph of micrite bioclastic limestone; D-stromatoporoid and bioclastic limestone; d-micrograph of micritic oolitic limestone
图 7 碳同位素演化曲线(包括本文数据曲线,加拿大Ontario地区的数据曲线,摩洛哥地区曲线)及海平面变化曲线
1-白云岩 2-灰岩 3-含燧石灰岩 4-亮晶灰岩 5-纹层状灰岩 6-角砾灰岩
Figure 7. The evolution curve of carbon isotopes (including the data of this paper, carbon isotope curves in Ontario, Canada and carbon isotope curve in Morocco), sea level change curve
1-dolomite; 2-limestone; 3-chert limestone; 4-sparry limestone; 5-layered limestone; 6-breccia limestone
表 1 阳朔县龙岩口剖面碳酸盐岩元素及同位素数据
Table 1. Element and isotope data of carbonate rocks in Longyankou section of Yangshuo
样号 YS1 YS2 YS3 YS4 YS5 YS6 YS7 YS8 YS9 YS10 SiO2 1.194 6.041 0.701 0.439 0.483 0.361 0.545 0.662 0.570 0.740 TiO2 0.013 0.081 0.010 0.009 0.007 0.008 0.007 0.010 0.011 0.006 Al2O3 0.241 1.584 0.101 0.054 0.057 0.091 0.074 0.157 0.129 0.076 TFe2O3 0.115 0.632 0.047 0.026 0.069 0.047 0.063 0.088 0.068 0.038 MnO 0.008 0.008 0.004 0.005 0.005 0.007 0.005 0.005 0.003 0.004 MgO 3.862 4.863 0.663 0.562 0.771 0.540 0.712 0.676 0.864 0.665 CaO 50.306 44.675 54.313 54.775 54.543 54.908 54.446 54.402 54.267 54.541 Na2O 0 0.024 0.015 0.017 0.013 0.010 0.017 0.010 0.001 0.010 K2O 0.082 0.620 0.036 0.012 0.021 0.020 0.023 0.046 0.038 0.020 P2O5 0.017 0.047 0.018 0.017 0.015 0.011 0.012 0.016 0.010 0.010 LOI 43.717 40.567 43.480 43.618 43.577 43.678 43.545 43.601 43.599 43.526 V 5.06 26.10 5.06 3.94 2.18 2.03 1.80 6.33 3.68 2.09 Ni 6.41 12.40 6.70 6.33 6.60 6.22 5.93 7.23 6.32 6.03 Sr 161 186 238 204 270 197 258 275 252 210 La 1.02 3.75 0.59 0.40 0.92 0.62 0.74 1.09 0.63 0.62 Cr 1.62 7.84 0.91 0.75 1.00 0.73 1.22 1.55 1.04 0.86 Ce 1.92 7.82 1.24 0.72 1.77 1.12 1.46 2.18 1.32 1.08 δ13C −3.23 −2.83 −7.05 −2.72 −1.38 −2.88 −1.33 −1.09 −1.44 −1.86 δ18O −6.86 −5.82 −7.18 −7.34 −6.69 −7.75 −7.23 −8.47 −5.62 −6.41 MgO/CaO 0.077 0.109 0.012 0.010 0.014 0.010 0.013 0.012 0.016 0.012 Ce/La 1.88 2.09 2.10 1.80 1.92 1.81 1.97 2.00 2.10 1.74 V/Cr 3.12 3.33 5.56 5.25 2.18 2.78 1.48 4.08 3.54 2.43 古温度t/ ℃ 21 16 22 23 20 25 22 28 15 19 -
[1] 曾允孚, 陈洪德, 张锦泉, 刘文均. 华南泥盆纪沉积盆地类型和主要特征[J]. 沉积学报, 1992, 10(3):104-113.ZENG Yunfu, CHEN Hongde, ZHANG Jinquan, LIU Wenjun. Types and main characteristics of Devonian sedimentary basin in South China[J]. Acta Sedimentologica Sinica, 1992, 10(3):104-113. [2] 陈洪德, 曾允孚. 右江盆地的性质及演化讨论[J]. 岩相古地理, 1990(1):28-37.CHEN Hongde, ZENG Yunfu. Nature and evolution of the Youjiang Basin[J]. Sedimentary Geology and Tethyan Geology, 1990(1):28-37. [3] 郭文, 张朝锋, 王晓鹏. 天峨-南丹地区泥盆系罗富组页岩气成藏条件及有利区预测[J]. 石油地质与工程, 2018, 32(1):22-26, 123.GUO Wen, ZHANG Chaofeng, WANG Xiaopeng. Geological conditions for shale gas accumulation and favorable area prediction of Luofu Formation of Devonian in Tian'e-Nandan area[J]. Petroleum Geology and Engineering, 2018, 32(1):22-26, 123. [4] 刘疆, 白志强. 广西横县六景泥盆系艾菲尔阶—吉维特阶之交化学地层研究[J]. 地质论评, 2008(5):683-693, 724. doi: 10.16509/j.georeview.2008.05.013LIU Jiang, BAI Zhiqiang. Chemostratigraphy of Eifelian-Givetian stage boundary at Liujing section, Guangxi, South China[J]. Geological Review, 2008(5):683-693, 724. doi: 10.16509/j.georeview.2008.05.013 [5] Thomas J Suttner, Erika Kido, Carlo Corradini, Stanislava Vodráková, Monica Pondrelli, Luca Simonetto. Conodont diversity across the late Eifelian Kaák Episode of the southern Alpine realm (central Carnic Alps, Austria/Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 479:34-47. [6] Joachimski M M, Breisig S, Buggisch W, Talent J A, Mawson R, Gereke M, Morrow J R, Day J, Weddige K. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite[J]. Earth and Planetary Science Letters, 2009, 284:599-609. doi: 10.1016/j.jpgl.2009.05.028 [7] House M R. Correlation of mid-Paleozoic ammonoid evolutionary events with global sedimentary perturbations[J]. Nature, 1985, 313:17-22. doi: 10.1038/313017a0 [8] Michal M. Lingulate brachiopods across the Kačák Event and Eifelian–Givetian boundary in the Barrandian area, Czech Republic[J]. Bulletin of Geosciences, 2019, 94(2):169-186. [9] Walliser O H, Bultynck P, Weddige K. Definition of the Eifelian–Givetian stage boundary[J]. Episodes, 1995, 18(3):107-115. doi: 10.18814/epiiugs/1995/v18i3/002 [10] Becker R T, Gradstein F M, Hammer O. The Devonian Period[M]//The Geological Time Scale. 2012, 559-601. [11] 王成源, 陈波, 邝国敦. 广西南宁大沙田下泥盆统那高岭组的牙形刺[J]. 微体古生物学报, 2016, 33(4):420-435.WANG Chengyuan, CHEN Bo, KUANG Guodun. Lower Devonian conodonts from the Nagaoling Formation of the Dashatian section near Nanning, Guangxi, South China[J]. Acta Micropalaeontologica Sinica, 2016, 33(4):420-435. [12] 王成源. 广西中部泥盆系二塘组的牙形刺[J]. 古生物学报, 1981(5):400-405, 489.WANG Chengyuan. Conodonts from Devonian Ertang Formation in central Guangxi[J]. Acta Palaeontologica Sinica, 1981(5):400-405, 489. [13] 黄晶, 储雪蕾, 常华进, 冯连君. 三峡地区埃迪卡拉系陡山沱组帽碳酸盐岩的微量元素和稀土元素研究[J]. 科学通报, 2009, 54(22):3498-3506.HUANG Jing, CHU Xuelei, CHANG Huajin, FENG Lianjun. Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges[J]. Chinese Science Bulletin, 2009, 54(22):3498-3506. [14] 储雪蕾, 张同钢, 张启锐, 冯连君, 张福松. 蓟县元古界碳酸盐岩的碳同位素变化[J]. 中国科学 (D辑: 地球科学), 2003(10):951-959. [15] Hladı́kováa J, Hladilb J, Křı́beka B. Carbon and oxygen isotope record across Pridoli to Givetian stage boundaries in the Barrandian basin (Czech Republic)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1):225-241. [16] Gröcke Darren R, van Hengstum Peter J. Stable isotope record of the Eifelian–Givetian boundary Kačák–otomari Event (Middle Devonian) from Hungry Hollow, Ontario, Canada[J]. Canadian Journal of Earth Sciences, 2008, 45(3):353-366. doi: 10.1139/E08-005 [17] Brooks B Ellwood, Stephen L Benoist, Ahmed El Hassani, Christopher Wheeler, Rex E Crick. Impact ejecta layer from the Mid-Devonian: Possible connection to global mass extinctions[J]. Science, 2003, 300:1734-1737. doi: 10.1126/science.1081544 [18] 梅冥相, 李仲远. 滇黔桂地区晚古生代至三叠纪层序地层序列及沉积盆地演化[J]. 现代地质, 2004(4):555-563.MEI Mingxiang, LI Zhongyuan. Sequence-stratigraphic succession and sedimentary-basin evolution from late Paleozotic to triassic in the Yunnan-Guizhou-Guangxi region[J]. Geoscience, 2004(4):555-563. [19] Klapper G. Sequence within the conodont genus polygnathus in the New York lower middle Devonian[J]. Geologica et Palaeontologica, 1971, 5(1):59-79. [20] 李飞, 张宁, 夏文臣. 鄂西峡口地区中二叠统栖霞组碳酸盐岩微相及相序[J]. 地质科技情报, 2010, 29(1):23-28.LI Fei, ZHANG Ning, XIA Wenchen. Carbonate microfacies analysis on Chihsia Formation (Middle Permian) at Xiakou area, western Hubei Province[J]. Bulletin of Geological Science and Technology, 2010, 29(1):23-28. [21] 马永生, 李启明, 关德师. 鄂尔多斯盆地中部气田奥陶系马五1-4碳酸盐岩微相特征与储层不均质性研究[J]. 沉积学报, 1996(1):22-32.MA Yongsheng, LI Qiming, GUAN Deshi. Carbonate microfacies characteristics and reservoir heterogeneity of the Ordovician weathering crust(O1ma51-4) of the Zhongbu Gasfield, Ordos Basin, Northwest China[J]. Acta Sedimentologica Sinica, 1996(1):22-32. [22] 潘明, 郝彦珍, 孙成杰, 吕勇, 山克强. 云南保山普里道利统沉积特征及其对冈瓦纳北缘古海洋环境的指示[J]. 地质学报, 2020, 94(5):1382-1396. doi: 10.3969/j.issn.0001-5717.2020.05.004PAN Ming, HAO Yanzhen, SUN Chengjie, LV Yong, SHAN Keqiang. Sedimentary characteristics of the Pridolian series in Baoshan, Yunnan Province and their implications for paleomarine environment[J]. Acta Geologica Sinica, 2020, 94(5):1382-1396. doi: 10.3969/j.issn.0001-5717.2020.05.004 [23] 胡明毅. 塔北柯坪奥陶系碳酸盐岩地球化学特征及环境意义[J]. 石油与天然气地质, 1994(2):158-163.HU Mingyi. Geochemical characteristics and environmental significance of Ordovician carbonate rocks in Keping area, Tarim Basin[J]. Petroleum Geology, 1994(2):158-163. [24] Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters[J]. Science, 1961, 133(3467):1833-1834. doi: 10.1126/science.133.3467.1833 [25] Longyi S, Jianwei D, Pengfei Z. Paleogeographic significances of carbon and oxygen isotopes in late permian rocks of Southwest China[J]. Geochimica, 1996, 25(6):575-581. [26] 潘明, 郝彦珍, 吕勇, 山克强, 苏光样. 滇东北镇雄西部栖霞—茅口组碳酸盐岩地球化学特征及环境意义[J]. 地质力学学报, 2017, 23(3):348-357. doi: 10.3969/j.issn.1006-6616.2017.03.003PAN Ming, HAO Yanzhen, LV Yong, SHAN Keqiang, SU Guangyang. Geochemical characteristics and environmental significance of carbonate rocks in Qixia-Maokou Formation in western Zhenxiong, northeastern Yunnan[J]. Journal of Geomechanics, 2017, 23(3):348-357. doi: 10.3969/j.issn.1006-6616.2017.03.003 [27] 王随继, 黄杏珍, 妥进才, 邵宏舜, 阎存凤, 王寿庆, 何祖荣. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报, 1997(1):66-71.WANG Suiji, HUANG Xingzhen, TUO Jincai, SHAO Hongshun, YAN Cunfeng, WANG Shouqing, HE Zurong. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang Depression[J]. Acta Sedimentologica Sinica, 1997(1):66-71. [28] 王大锐, 白志强. 广西中-上泥盆统界线附近的化学地层学特征[J]. 地层学杂志, 2002, 26(1):50-54.WANG Darui, BAI Zhiqiang. Chemostratigraphic characteristics of the Middle-Upper Devonian boundary in Guangxi, South China[J]. Journal of Stratigraphy, 2002, 26(1):50-54. [29] 王纯豪, 韩超, 韩梅, 钟文健. 川西坳陷中段雷口坡组碳酸盐岩地球化学特征及地质意义[J]. 山东科技大学学报:自然科学版, 2020, 39(1):28-36.WANG Chunhao, HAN Chao, HAN Mei, ZHONG Wenjian. Geochemical characteristics and geological significance of Leikoupo Formation carbonate rocks in the central western Sichuan Depression[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(1):28-36. [30] 李忠雄, 管士平. 扬子地台西缘宁蒗泸沽湖地区志留系沉积旋回及锶、碳、氧同位素特征[J]. 古地理学报, 2001(4):69-76.LI Zhongxiong, GUAN Shiping. Sedimentary cycle and strontium, carbon, oxygen isotopes of the Silurian at Luguhu region in Ninglang county of western margin of Yangtze platform[J]. Journal of Palaeogeography, 2001(4):69-76. [31] Königshof P, Da Silva A C, Suttner T J, Kido E, Waters J A, Carmichael S K, Jansen U, Pas D, Spassov S. Shallow-water facies setting around the Kačák Event: A multidisciplinary approach[J]. Geological Society Special Publications, 2016, 423(1):171-199. doi: 10.1144/SP423.4