Numerical simulation on uniaxial compressive mechanical properties of karstified rock mass in epikarst zone
-
摘要: 研究表层喀斯特带溶蚀岩体的力学特性,有助于岩溶区边坡稳定性分析。本文以表层岩溶带溶蚀特征为依据,设定溶蚀率和溶蚀均匀系数作为溶蚀特征参数。基于元胞自动机算法思路,在颗粒离散元软件中构建不同溶蚀特征的岩体模型。对溶蚀岩体进行单轴压缩数值试验,检测岩体加载过程中声发射事件。试验结果表明:溶蚀岩体加载过程可分为:(1)压密阶段;(2)弹性变形阶段;(3)稳定破裂发展阶段;(4)不稳定破裂发展阶段;(5)峰后缓慢软化阶段;(6)峰后快速软化阶段。随溶蚀率增加,岩体弹性变形阶段曲线缩短,岩体抗压强度降低;岩体由脆性破坏逐渐转为延性破坏;同时,溶蚀率增加,岩体抗压强度下降速率由最初快速降低转为缓慢降低,最终收敛。溶蚀均匀系数增加,不稳定破裂阶段曲线增长,岩体由局部破坏转为整体性破坏。研究发现溶蚀岩体单轴抗压强度与溶蚀特征参数呈负指数关系,该关系式可用作溶蚀岩体强度取值,实际工程中应增加溶蚀均匀系数对岩体质量的影响。溶蚀岩体裂纹扩展机理有助于边坡失稳机理研究。Abstract:
The research of mechanical properties of karstified rock mass is helpful to the study of slope stability, foundation bearing capacity and mechanism of karst-induced disasters in karst area. However, it is difficult to obtain suitable rock samples for mechanical tests of karstified rock mass, or there exist experimental results with large differences. Nowadays, many scholars have studied mechanical properties by numerical simulation and have achieved greatly. In this kind of research, the stochastic method to simulate the karstification process is mainly adopted, whose algorithm is relatively simple but with less accurate response to the kasitified characteristics of rock mass, thus leading to the limitations of the results. Relevant literature shows that the epikarst zone presents characteristics of negative exponential relationship between the dissolution rate and depth, uneven distribution of dissolved pores caused by the difference of dissolution morphology, and more vertical karstification than horizontal karstification. In this study, two parameters of the karstification characteristics—the dissolution rate (the quantitative index of dissolution degree of rock mass) and dissolution uniformity coefficient (representing the uneven distribution of dissolution fractures)—have been set to analyze its characteristics in the epikarst zone. According to the characteristics of limestone joint in a typical karst area in Guizhou, the equivalent model of jointed rock mass has been established by using the Flat Joint Model (FJM), Smooth Joint Model (SJM) and Discrete Fracture Network (DFN). Based on the cellular automata algorithm and the dissolution of the equivalent model of jointed rock mass, the kastified rock mass model with different dissolution rates and different dissolution uniformity coefficients has been obtained. According to the numerical uniaxial compression test and the acoustic emission events in the process of loading rock mass. A total of 48 groups of test samples were collected in terms of 8 grades of dissolution rate and 6 groups of dissolution uniformity coefficient. The results show that the loading process of karstified rock mass can be divided into six stages: (1) stage of compaction; (2) stage of elastic deformation; (3) stage of stable fracture development; (4) stage of unstable fracture development; (5) stage of post-peak strain softening; (6) stage of post-peak rapid strain softening. The karstification reduces the cementation between rock masses and destroys the skeleton of rock mass, which leads to the following effects. With an increase of dissolution rate, the uniaxial compressive strength decreases. The curve shortens at the stage of elastic deformation. The number of acoustic emission events decreases significantly when the rock mass is damaged. The failure mode of rock mass gradually changes from brittle failure to ductile failure. The strength after failure mainly comes from the locking effect of rock bridge and the friction between fracture surfaces. At the same time, with the continuous increase of dissolution rate, the compressive strength of rock mass declines from rapid to slow rate. The higher the dissolution uniformity coefficient is, the smaller size the dissolution pore and the more uniform distribution of dissolution fractures may become. Under these conditions, the formation and penetration of macro cracks need to go through a longer process, and the curve of unstable fracture development increases. The internal stress of rock mass is more divergent, and the rock mass changes from local failure to overall failure. The fitting of uniaxial compressive strength and karstification characteristic parameters (k, U) indicate their negative exponential relationship, and the exponential constant C is related to the uniformity coefficient u. The relationship can be used as the basis for determining the strength of karstified rock mass. In practical engineering, the deformation state of karstified rock mass can be judged according to this acoustic emission characteristics, and thus corresponding treatment measures can be taken. In the evaluation of rock mass quality, the dissolution uniformity coefficient can be used as an auxiliary evaluation basis, in addition to the dissolution rate as the main feature of dissolution development. -
表 1 岩体宏观力学参数
Table 1. Macro-mechanic parameters of rock mass
参数类型 力学参数属性 参数值 岩块 密度ρ /g·cm−3 2.50 单轴抗压强度σc /MPa 57.5 抗拉强度σt /MPa 3.50 压拉强度之比σc/σt 16.40 弹性模量E /GPa 22.10 泊松比ν 0.19 结构面参数 内聚力C /MPa 0.08 内摩擦角φ /° 49.00 表 2 岩体细观强度参数
Table 2. Micro-mechanic parameters of rock mass
参数类型 细观参数/单位 参数值 颗粒尺寸 半径比 R* 1.66 最小半径Rmin 0.01 平直节理模型
(Flat Joint Model)杨氏模量Ec /GPa 35.0 刚度比K* 2.00 抗拉强度σt /MPa 6.00 粘聚力c /MPa 35.0 内摩擦角φ /° 0.00 内摩擦系数μ 0.50 光滑节理模型
(Smooth Joint Model)法向刚度Kn /GPa·m−1 30.00 切向刚度Ks /GPa·m−1 20.00 内摩擦系数μ 0.60 内摩擦角ϕb /° 49.70 剪胀角ψ /° 5.00 抗拉强度σc /MPa 0.00 黏聚力cb /MPa 0.15 表 3 岩体结构面几何参数
Table 3. Geometric parameters of structural plane of rock mass
结构面名称 倾角 迹长 间隔 分布 平均值/标准差 分布 参数/(下、上限指数) 分布 P10密度(条/m) 节理面J1 正态 82.26/2.83 幂律 2.5/(0.15、2) 均匀 8 层面 正态 3.12/0.16 / 全贯通 均匀 4 -
[1] 蒋忠诚, 裴建国, 夏日元, 张美良, 雷明堂. 我国“十一五”期间的岩溶研究进展与重要活动[J]. 中国岩溶, 2010, 29(4):349-354. doi: 10.3969/j.issn.1001-4810.2010.04.001JIANG Zhongcheng, PEI Jianguo, XIA Riyuan, ZHANG Meiliang, LEI Mingtang. Progresses and important activities of karst research during the 11th Five-Year Plan in China[J]. Carsologica Sinica, 2010, 29(4):349-354. doi: 10.3969/j.issn.1001-4810.2010.04.001 [2] 李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2):147-150.LI Datong, LUO Yan. Measurement of carbonate rocks distribution area in China[J]. Carsologica Sinica, 1983, 2(2):147-150. [3] 蒋忠诚. 中国南方表层岩溶带的特征及形成机理[J]. 热带地理, 1998, 18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007JIANG Zhongcheng. Features of epikarst zone in South China and formation mechanism[J]. Tropical Geography, 1998, 18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007 [4] 彭韬, 周长生, 宁茂岐, 付磊, 戴德求, 王世杰. 基于探地雷达解译的喀斯特坡地表层岩溶带空间分布特征研究[J]. 第四纪研究, 2017, 37(6):1262-1270. doi: 10.11928/j.issn.1001-7410.2017.06.10PENG Tao, ZHOU Changsheng, NING Maoqi, FU Lei, DAI Deqiu, WANG Shijie. Study on spatial distribution of epikarst zone on plateau karst slope based on ground-penetrating radar[J]. Quaternary Sciences, 2017, 37(6):1262-1270. doi: 10.11928/j.issn.1001-7410.2017.06.10 [5] 杜尊龙. 强烈岩溶控制型高速滑坡形成机理研究: 以武隆鸡尾山滑坡为例[D]. 成都: 成都理工大学, 2016.DU Zunlong. Study on formation mechanism of high-speed landslide controlled by intensively developed karst: A case study of cocktail mountain landslide in Wulong[D]. Chengdu: Chengdu University of Technology, 2016 [6] 黄波林, 殷跃平, 李滨, 秦臻, 张鹏. 三峡工程库区岩溶岸坡岩体劣化及其灾变效应[J]. 水文地质工程地质, 2020, 47(4):51-61.HUANG Bolin, YIN Yueping, LI Bin, QIN Zhen, ZHANG Peng. Rock mass deterioration and its catastrophic effect of karst bank slope in the Three Gorges Project Reservoir area[J]. Hydrogeology & Engineering Geology, 2020, 47(4):51-61. [7] 光耀华. 岩溶地区工程地质研究的若干新进展概述[J]. 中国岩溶, 1998, 17(4):70-75.GUANG Yaohua. An introduction to the progress of the geologic engineering researches in karst regions[J]. Carsologica Sinica, 1998, 17(4):70-75. [8] 张社荣, 王枭华, 王超. 孔隙结构特征及发育程度对溶蚀岩体力学特性的影响[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(10):1018-1028.ZHANG Sherong, WANG Xiaohua, WANG Chao. Effects of pore structure and its development degree on dissolution rock mechanical characteristics[J]. Journal of Tianjin University (Science and Technology), 2017, 50(10):1018-1028. [9] 朱雷, 王小群, 聂德新, 郑百录, 姚男. 基于随机模型溶蚀岩体强度参数研究[J]. 工程地质学报, 2014, 22(6):1034-1038.ZHU Lei, WANG Xiaoqun, NIE Dexin, ZHENG Bailu, YAO Nan. Stochastic method based evaluation of corrosion rock strength parameters[J]. Journal of Engineering Geology, 2014, 22(6):1034-1038. [10] 张牧子, 孙永福, 宋玉鹏, 修宗祥, 赵晓龙, 胡光海. 单轴压缩条件下溶蚀礁灰岩细观变形破坏特征研究[J]. 计算力学学报, 2021, 38(2):222-229.ZHANG Muzi, SUN Yongfu, SONG Yupeng, XIU Zongxiang, ZHAO Xiaolong, HU Guanghai. Study on the microstructure and failure characteristics of limestone in dissolution reef under uniaxial compression[J]. Chinese Journal of Computational Mechanics, 2021, 38(2):222-229. [11] 罗小杰. 武汉地区浅层岩溶发育特征与岩溶塌陷灾害防治[J]. 中国岩溶, 2013, 32(4):419-432.LUO Xiaojie. Features of shallow karst development and control of karst collapse in Wuhan[J]. Carsologica Sinica, 2013, 32(4):419-432. [12] 曹贤发, 刘之葵, 李海玲. 西南岩溶区建筑地基溶蚀程度深度分布规律[J]. 桂林理工大学学报, 2016, 36(2):253-259. doi: 10.3969/j.issn.1674-9057.2016.02.009CAO Xianfa, LIU Zhikui, LI Hailing. Dissolution distribution rules with depth at building ground in southwestern karst area, China[J]. Journal of Guilin University of Technology, 2016, 36(2):253-259. doi: 10.3969/j.issn.1674-9057.2016.02.009 [13] 何珣, 何勇, 郭磊, 潘绪超, 庞春旭, 乔良, 涂建. 基于Flat-Joint接触模型的软化本构开发及其参数影响分析[J]. 岩石力学与工程学报, 2018, 37(10):2277-2287.HE Xun, HE Yong, GUO Lei, PAN Xuchao, PANG Chunxu, QIAO Liang, TU Jian. Development of softening constitutive model based on Flat-Joint contact model and parametric analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10):2277-2287. [14] Itasca Consulting Group. PFC 5.0 documentation[Z]. Minneapolis, USA: Itasca Consulting Group, 2014. [15] 王涛, 周炜波, 徐大朋, 曾俊. 基于光滑节理模型的岩体水力压裂数值模拟[J]. 武汉大学学报(工学版), 2016, 49(4): 500-508.WANG Tao, ZHOU Weibo, XU Dapeng, ZENG Jun. Numerical simulation of hydraulic fracturing of rock mass based on smooth joint model[J]. Engineering Journal of Wuhan University, 2016, 49(4): 500-508. [16] Chen P Y. Effects of microparameters on macroparameters of flat-jointed bonded-particle materials and suggestions on trial-and-error method[J]. Geotechnical and Geological Engineering, 2017, 35(2):663-677. doi: 10.1007/s10706-016-0132-5 [17] 曹贤发, 刘玉康, 刘之葵, 张炳晖. 基于强溶蚀带特征的地基岩溶发育程度评价方法[J]. 中国岩溶, 2020, 39(4):577-583.CAO Xianfa, LIU Yukang, LIU Zhikui, ZHANG Binghui. Evaluation method of development degree based on features of intense dissolution layer[J]. Carsologica Sinica, 2020, 39(4):577-583. [18] Garcia Rios M, Luquot L, Soler J M, Cama J. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414:95-108. doi: 10.1016/j.chemgeo.2015.09.005 [19] Ford D, Williams P D. Karst hydrogeology and geomorphology[M]. New York, USA: John Wiley & Sons, 2013. [20] Williams P W. The role of the epikarst in karst and cave hydrogeology: A review[J]. International Journal of Speleology, 2008, 37(1):1-10. doi: 10.5038/1827-806X.37.1.1 [21] 汤艳春, 周辉, 冯夏庭, 姚华彦. 单轴压缩条件下岩盐应力−溶解耦合效应的细观力学试验分析[J]. 岩石力学与工程学报, 2008(2):294-302. doi: 10.3321/j.issn:1000-6915.2008.02.010TANG Yanchun, ZHOU Hui, FENG Xiating, YAO Huayan. Analysis of mesomechanical test of rock salt considering coupled stress-dissolving effecet under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(2):294-302. doi: 10.3321/j.issn:1000-6915.2008.02.010 [22] 李庶林, 唐海燕. 不同加载条件下岩石材料破裂过程的声发射特性研究[J]. 岩土工程学报, 2010, 32(1):147-152.LI Shulin, TANG Haiyan. Acoustic emission characteristics in failure process of rock under different uniaxial compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1):147-152. [23] 刘海峰, 郑坤, 朱长歧, 孟庆山, 吴文娟. 基于应力−应变曲线的礁灰岩脆性特征评价[J]. 岩土力学, 2021, 42(3):673-680.LIU Haifeng, ZHENG Kun, ZHU Changqi, MENG Qingshan, WU Wenjuan. Brittleness evaluation of coral reef limestone base on stress-strain curve[J]. Rock and Soil Mechanics, 2021, 42(3):673-680. [24] 郑坤. 珊瑚礁灰岩工程地质及声发射特性研究[D]. 南宁: 广西大学, 2019.ZHENG Kun. Study on engineering geology and acoustic emission characteristics of coral reef limestone[D]. Nanning: Guangxi University, 2019 [25] Yang W, Zhang Q, Ranjith P G, Yu R, Luo R, Huang C, Wang G. A damage mechanical model applied to analysis of mechanical properties of jointed rock masses[J]. Tunnelling and Underground Space Technology, 2019, 84:113-128. doi: 10.1016/j.tust.2018.11.004 [26] Fakhimi A, Alavi Gharahbagh E. Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1):77-85. doi: 10.1016/j.ijrmms.2010.08.007