• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表层喀斯特带溶蚀岩体单轴压缩力学特性模拟研究

冷德明 史文兵 李华 梁风

冷德明,史文兵,李 华,等. 表层喀斯特带溶蚀岩体单轴压缩力学特性模拟研究[J]. 中国岩溶,2023,42(6):1258-1269 doi: 10.11932/karst2023y015
引用本文: 冷德明,史文兵,李 华,等. 表层喀斯特带溶蚀岩体单轴压缩力学特性模拟研究[J]. 中国岩溶,2023,42(6):1258-1269 doi: 10.11932/karst2023y015
LENG Deming, SHI Wenbing, LI Hua, LIANG Feng. Numerical simulation on uniaxial compressive mechanical properties of karstified rock mass in epikarst zone[J]. CARSOLOGICA SINICA, 2023, 42(6): 1258-1269. doi: 10.11932/karst2023y015
Citation: LENG Deming, SHI Wenbing, LI Hua, LIANG Feng. Numerical simulation on uniaxial compressive mechanical properties of karstified rock mass in epikarst zone[J]. CARSOLOGICA SINICA, 2023, 42(6): 1258-1269. doi: 10.11932/karst2023y015

表层喀斯特带溶蚀岩体单轴压缩力学特性模拟研究

doi: 10.11932/karst2023y015
基金项目: 国家自然科学基金(42067046);贵州省科技计划项目(黔科合基础-ZK[2021]一般128)
详细信息
    作者简介:

    冷德明(1996-),男,硕士研究生,主要从事岩溶工程地质方面的科研工作。E-mail:540216744@qq.com

    通讯作者:

    史文兵(1980-),男,教授,主要从事岩溶工程地质与地质灾害防治科研工作。 E-mail:wbshi@gzu.edu.cn

  • 中图分类号: TU45

Numerical simulation on uniaxial compressive mechanical properties of karstified rock mass in epikarst zone

  • 摘要: 研究表层喀斯特带溶蚀岩体的力学特性,有助于岩溶区边坡稳定性分析。本文以表层岩溶带溶蚀特征为依据,设定溶蚀率和溶蚀均匀系数作为溶蚀特征参数。基于元胞自动机算法思路,在颗粒离散元软件中构建不同溶蚀特征的岩体模型。对溶蚀岩体进行单轴压缩数值试验,检测岩体加载过程中声发射事件。试验结果表明:溶蚀岩体加载过程可分为:(1)压密阶段;(2)弹性变形阶段;(3)稳定破裂发展阶段;(4)不稳定破裂发展阶段;(5)峰后缓慢软化阶段;(6)峰后快速软化阶段。随溶蚀率增加,岩体弹性变形阶段曲线缩短,岩体抗压强度降低;岩体由脆性破坏逐渐转为延性破坏;同时,溶蚀率增加,岩体抗压强度下降速率由最初快速降低转为缓慢降低,最终收敛。溶蚀均匀系数增加,不稳定破裂阶段曲线增长,岩体由局部破坏转为整体性破坏。研究发现溶蚀岩体单轴抗压强度与溶蚀特征参数呈负指数关系,该关系式可用作溶蚀岩体强度取值,实际工程中应增加溶蚀均匀系数对岩体质量的影响。溶蚀岩体裂纹扩展机理有助于边坡失稳机理研究。

     

  • 图  1  平直节理模型与光滑节理模型示意图

    Figure  1.  Schematic diagram of flat joint model and smooth joint model

    图  2  DFN尺寸密度图

    Figure  2.  Density diagram of DFN dimension

    图  3  数值实验及拟合参数标定关系式

    Figure  3.  Relationship between numerical test and fitting microscopic parameter calibration

    图  4  溶蚀转化过程及最小、大溶蚀均匀系数示意图

    Figure  4.  Karstification and the minimum and maximum of dissolution uniformity coefficient

    图  5  加载条件下溶蚀岩体应力应变曲线、声发射特征

    Figure  5.  Stress-strain curve and acoustic emission characteristics of karstified rock mass on loading

    图  6  岩体变形破坏过程及各阶段裂纹扩展

    Figure  6.  Deformation and failure process of rock mass and crack propagation

    图  7  溶蚀岩体破坏后微裂纹分布图

    Figure  7.  Distribution of microcracks after the damage of karstified rock mass

    图  8  不同溶蚀均匀系数下溶蚀率与单轴抗压强度关系图

    Figure  8.  Relationship between uniaxial compressive strength and dissolution rate in terms of different dissolution uniformity coefficients

    表  1  岩体宏观力学参数

    Table  1.   Macro-mechanic parameters of rock mass

    参数类型力学参数属性参数值
    岩块 密度ρ /g·cm−3 2.50
    单轴抗压强度σc /MPa 57.5
    抗拉强度σt /MPa 3.50
    压拉强度之比σc/σt 16.40
    弹性模量E /GPa 22.10
    泊松比ν 0.19
    结构面参数 内聚力C /MPa 0.08
    内摩擦角φ 49.00
    下载: 导出CSV

    表  2  岩体细观强度参数

    Table  2.   Micro-mechanic parameters of rock mass

    参数类型细观参数/单位参数值
    颗粒尺寸 半径比 R* 1.66
    最小半径Rmin 0.01
    平直节理模型
    (Flat Joint Model)
    杨氏模量Ec /GPa 35.0
    刚度比K* 2.00
    抗拉强度σt /MPa 6.00
    粘聚力c /MPa 35.0
    内摩擦角φ 0.00
    内摩擦系数μ 0.50
    光滑节理模型
    (Smooth Joint Model)
    法向刚度Kn /GPa·m−1 30.00
    切向刚度Ks /GPa·m−1 20.00
    内摩擦系数μ 0.60
    内摩擦角ϕb 49.70
    剪胀角ψ 5.00
    抗拉强度σc /MPa 0.00
    黏聚力cb /MPa 0.15
    下载: 导出CSV

    表  3  岩体结构面几何参数

    Table  3.   Geometric parameters of structural plane of rock mass

    结构面名称倾角迹长间隔
    分布平均值/标准差分布参数/(下、上限指数)分布P10密度(条/m)
    节理面J1 正态 82.26/2.83 幂律 2.5/(0.15、2) 均匀 8
    层面 正态 3.12/0.16 / 全贯通 均匀 4
    下载: 导出CSV
  • [1] 蒋忠诚, 裴建国, 夏日元, 张美良, 雷明堂. 我国“十一五”期间的岩溶研究进展与重要活动[J]. 中国岩溶, 2010, 29(4):349-354. doi: 10.3969/j.issn.1001-4810.2010.04.001

    JIANG Zhongcheng, PEI Jianguo, XIA Riyuan, ZHANG Meiliang, LEI Mingtang. Progresses and important activities of karst research during the 11th Five-Year Plan in China[J]. Carsologica Sinica, 2010, 29(4):349-354. doi: 10.3969/j.issn.1001-4810.2010.04.001
    [2] 李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2):147-150.

    LI Datong, LUO Yan. Measurement of carbonate rocks distribution area in China[J]. Carsologica Sinica, 1983, 2(2):147-150.
    [3] 蒋忠诚. 中国南方表层岩溶带的特征及形成机理[J]. 热带地理, 1998, 18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007

    JIANG Zhongcheng. Features of epikarst zone in South China and formation mechanism[J]. Tropical Geography, 1998, 18(4):322-326. doi: 10.3969/j.issn.1001-5221.1998.04.007
    [4] 彭韬, 周长生, 宁茂岐, 付磊, 戴德求, 王世杰. 基于探地雷达解译的喀斯特坡地表层岩溶带空间分布特征研究[J]. 第四纪研究, 2017, 37(6):1262-1270. doi: 10.11928/j.issn.1001-7410.2017.06.10

    PENG Tao, ZHOU Changsheng, NING Maoqi, FU Lei, DAI Deqiu, WANG Shijie. Study on spatial distribution of epikarst zone on plateau karst slope based on ground-penetrating radar[J]. Quaternary Sciences, 2017, 37(6):1262-1270. doi: 10.11928/j.issn.1001-7410.2017.06.10
    [5] 杜尊龙. 强烈岩溶控制型高速滑坡形成机理研究: 以武隆鸡尾山滑坡为例[D]. 成都: 成都理工大学, 2016.

    DU Zunlong. Study on formation mechanism of high-speed landslide controlled by intensively developed karst: A case study of cocktail mountain landslide in Wulong[D]. Chengdu: Chengdu University of Technology, 2016
    [6] 黄波林, 殷跃平, 李滨, 秦臻, 张鹏. 三峡工程库区岩溶岸坡岩体劣化及其灾变效应[J]. 水文地质工程地质, 2020, 47(4):51-61.

    HUANG Bolin, YIN Yueping, LI Bin, QIN Zhen, ZHANG Peng. Rock mass deterioration and its catastrophic effect of karst bank slope in the Three Gorges Project Reservoir area[J]. Hydrogeology & Engineering Geology, 2020, 47(4):51-61.
    [7] 光耀华. 岩溶地区工程地质研究的若干新进展概述[J]. 中国岩溶, 1998, 17(4):70-75.

    GUANG Yaohua. An introduction to the progress of the geologic engineering researches in karst regions[J]. Carsologica Sinica, 1998, 17(4):70-75.
    [8] 张社荣, 王枭华, 王超. 孔隙结构特征及发育程度对溶蚀岩体力学特性的影响[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(10):1018-1028.

    ZHANG Sherong, WANG Xiaohua, WANG Chao. Effects of pore structure and its development degree on dissolution rock mechanical characteristics[J]. Journal of Tianjin University (Science and Technology), 2017, 50(10):1018-1028.
    [9] 朱雷, 王小群, 聂德新, 郑百录, 姚男. 基于随机模型溶蚀岩体强度参数研究[J]. 工程地质学报, 2014, 22(6):1034-1038.

    ZHU Lei, WANG Xiaoqun, NIE Dexin, ZHENG Bailu, YAO Nan. Stochastic method based evaluation of corrosion rock strength parameters[J]. Journal of Engineering Geology, 2014, 22(6):1034-1038.
    [10] 张牧子, 孙永福, 宋玉鹏, 修宗祥, 赵晓龙, 胡光海. 单轴压缩条件下溶蚀礁灰岩细观变形破坏特征研究[J]. 计算力学学报, 2021, 38(2):222-229.

    ZHANG Muzi, SUN Yongfu, SONG Yupeng, XIU Zongxiang, ZHAO Xiaolong, HU Guanghai. Study on the microstructure and failure characteristics of limestone in dissolution reef under uniaxial compression[J]. Chinese Journal of Computational Mechanics, 2021, 38(2):222-229.
    [11] 罗小杰. 武汉地区浅层岩溶发育特征与岩溶塌陷灾害防治[J]. 中国岩溶, 2013, 32(4):419-432.

    LUO Xiaojie. Features of shallow karst development and control of karst collapse in Wuhan[J]. Carsologica Sinica, 2013, 32(4):419-432.
    [12] 曹贤发, 刘之葵, 李海玲. 西南岩溶区建筑地基溶蚀程度深度分布规律[J]. 桂林理工大学学报, 2016, 36(2):253-259. doi: 10.3969/j.issn.1674-9057.2016.02.009

    CAO Xianfa, LIU Zhikui, LI Hailing. Dissolution distribution rules with depth at building ground in southwestern karst area, China[J]. Journal of Guilin University of Technology, 2016, 36(2):253-259. doi: 10.3969/j.issn.1674-9057.2016.02.009
    [13] 何珣, 何勇, 郭磊, 潘绪超, 庞春旭, 乔良, 涂建. 基于Flat-Joint接触模型的软化本构开发及其参数影响分析[J]. 岩石力学与工程学报, 2018, 37(10):2277-2287.

    HE Xun, HE Yong, GUO Lei, PAN Xuchao, PANG Chunxu, QIAO Liang, TU Jian. Development of softening constitutive model based on Flat-Joint contact model and parametric analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10):2277-2287.
    [14] Itasca Consulting Group. PFC 5.0 documentation[Z]. Minneapolis, USA: Itasca Consulting Group, 2014.
    [15] 王涛, 周炜波, 徐大朋, 曾俊. 基于光滑节理模型的岩体水力压裂数值模拟[J]. 武汉大学学报(工学版), 2016, 49(4): 500-508.

    WANG Tao, ZHOU Weibo, XU Dapeng, ZENG Jun. Numerical simulation of hydraulic fracturing of rock mass based on smooth joint model[J]. Engineering Journal of Wuhan University, 2016, 49(4): 500-508.
    [16] Chen P Y. Effects of microparameters on macroparameters of flat-jointed bonded-particle materials and suggestions on trial-and-error method[J]. Geotechnical and Geological Engineering, 2017, 35(2):663-677. doi: 10.1007/s10706-016-0132-5
    [17] 曹贤发, 刘玉康, 刘之葵, 张炳晖. 基于强溶蚀带特征的地基岩溶发育程度评价方法[J]. 中国岩溶, 2020, 39(4):577-583.

    CAO Xianfa, LIU Yukang, LIU Zhikui, ZHANG Binghui. Evaluation method of development degree based on features of intense dissolution layer[J]. Carsologica Sinica, 2020, 39(4):577-583.
    [18] Garcia Rios M, Luquot L, Soler J M, Cama J. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414:95-108. doi: 10.1016/j.chemgeo.2015.09.005
    [19] Ford D, Williams P D. Karst hydrogeology and geomorphology[M]. New York, USA: John Wiley & Sons, 2013.
    [20] Williams P W. The role of the epikarst in karst and cave hydrogeology: A review[J]. International Journal of Speleology, 2008, 37(1):1-10. doi: 10.5038/1827-806X.37.1.1
    [21] 汤艳春, 周辉, 冯夏庭, 姚华彦. 单轴压缩条件下岩盐应力−溶解耦合效应的细观力学试验分析[J]. 岩石力学与工程学报, 2008(2):294-302. doi: 10.3321/j.issn:1000-6915.2008.02.010

    TANG Yanchun, ZHOU Hui, FENG Xiating, YAO Huayan. Analysis of mesomechanical test of rock salt considering coupled stress-dissolving effecet under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(2):294-302. doi: 10.3321/j.issn:1000-6915.2008.02.010
    [22] 李庶林, 唐海燕. 不同加载条件下岩石材料破裂过程的声发射特性研究[J]. 岩土工程学报, 2010, 32(1):147-152.

    LI Shulin, TANG Haiyan. Acoustic emission characteristics in failure process of rock under different uniaxial compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1):147-152.
    [23] 刘海峰, 郑坤, 朱长歧, 孟庆山, 吴文娟. 基于应力−应变曲线的礁灰岩脆性特征评价[J]. 岩土力学, 2021, 42(3):673-680.

    LIU Haifeng, ZHENG Kun, ZHU Changqi, MENG Qingshan, WU Wenjuan. Brittleness evaluation of coral reef limestone base on stress-strain curve[J]. Rock and Soil Mechanics, 2021, 42(3):673-680.
    [24] 郑坤. 珊瑚礁灰岩工程地质及声发射特性研究[D]. 南宁: 广西大学, 2019.

    ZHENG Kun. Study on engineering geology and acoustic emission characteristics of coral reef limestone[D]. Nanning: Guangxi University, 2019
    [25] Yang W, Zhang Q, Ranjith P G, Yu R, Luo R, Huang C, Wang G. A damage mechanical model applied to analysis of mechanical properties of jointed rock masses[J]. Tunnelling and Underground Space Technology, 2019, 84:113-128. doi: 10.1016/j.tust.2018.11.004
    [26] Fakhimi A, Alavi Gharahbagh E. Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1):77-85. doi: 10.1016/j.ijrmms.2010.08.007
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  54
  • HTML浏览量:  23
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-03-15
  • 修回日期:  2021-11-30
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回