• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SWAT-MODFLOW地表−地下水耦合模型的结构与应用研究

刘文冲 赵良杰 崔亚莉 曹建文 王莹 李美玲

刘文冲,赵良杰,崔亚莉,等. 基于SWAT-MODFLOW地表−地下水耦合模型的结构与应用研究[J]. 中国岩溶,2023,42(6):1131-1139 doi: 10.11932/karst2023y014
引用本文: 刘文冲,赵良杰,崔亚莉,等. 基于SWAT-MODFLOW地表−地下水耦合模型的结构与应用研究[J]. 中国岩溶,2023,42(6):1131-1139 doi: 10.11932/karst2023y014
LIU Wenchong, ZHAO Liangjie, CUI Yali, CAO Jianwen, WANG Ying, LI Meiling. Structure and application of SWAT-MODFLOW coupling model for surface-groundwater[J]. CARSOLOGICA SINICA, 2023, 42(6): 1131-1139. doi: 10.11932/karst2023y014
Citation: LIU Wenchong, ZHAO Liangjie, CUI Yali, CAO Jianwen, WANG Ying, LI Meiling. Structure and application of SWAT-MODFLOW coupling model for surface-groundwater[J]. CARSOLOGICA SINICA, 2023, 42(6): 1131-1139. doi: 10.11932/karst2023y014

基于SWAT-MODFLOW地表−地下水耦合模型的结构与应用研究

doi: 10.11932/karst2023y014
基金项目: 国家自然科学青年基金项目(42102296);广东省地下水资源调查监测评价
详细信息
    作者简介:

    刘文冲(1997-),男,硕士,主要从事水文数值模拟研究。E-mail:lwc19971030@163.com

    通讯作者:

    赵良杰(1986-),男,博士,副研究员,主要从事岩溶水资源调查监测评价及数值模型研究。E-mail:zhaoliangjie@mail.gov.cgs.cn

  • 中图分类号: P333;P641

Structure and application of SWAT-MODFLOW coupling model for surface-groundwater

  • 摘要: 为了利用Seonggyu Park和Ryan T.Bailey的SWAT-MODFLOW耦合程序实现地表、地下不同范围模型耦合,同时探究耦合程序输出的以SWAT计算的地下水补给量和以MODFLOW网格计算的补给量之间的差异,以及耦合程序在有关地表地下水研究上的优势。本文以该耦合程序示例模型美国佐治亚州南部小河流域(LRW)为例,选取模型中SWAT划分的104号子流域为边界,用GMS10.4建立地下水流模型,最后将地下水流模型和原SWAT模型进行耦合。研究结果表明:(1)耦合程序能实现以地表分水岭自然边界为范围的SWAT模型与以子流域为边界的小范围MODFLOW模型的耦合,但由于地下水流模型网格边界和子流域边界不能完全匹配,导致MODFLOW以网格计算的地下水降雨补给量和SWAT统计的地下水降雨补给量存在差异,误差随网格变小而变小;(2)耦合后各均衡项发生了变化,河道对地下水的总补给量变为耦合前的15.25%,地下水向河道的总排泄量比耦合前多19.29%,总降雨补给比耦合前多17.07%,总蒸发量是耦合前的3.08倍。经过研究发现耦合模型能更准确的模拟地表地下水文过程,反映降水与地下水、地表水与地下水转化关系。

     

  • 图  1  SWAT-MODFLOW模拟的水文过程

    Figure  1.  Hydrological process simulated by SWAT-MODFLOW

    图  2  选取的子流域及地下水流模型网格剖分示意图

    Figure  2.  Grid partition diagram of selected sub-basin and groundwater flow model

    图  3  地下水补给量误差随网格大小的变化曲线

    Figure  3.  Variation curve of groundwater recharge error with the change of grid sizes

    表  1  SWAT-MODFLOW传递变量说明表

    Table  1.   Variables passed by SWAT-MODFLOW

    变量传递方式说明
    潜水的补给量水文响应单元到地下水流模型
    对应活动网格
    地下水补给由SWAT计算
    蒸发水文响应单元到地下水流模型
    对应活动网格
    SWAT计算的潜在蒸散发和实际蒸
    散发的差值由潜水继续蒸发
    子流域河道的水位SWAT计算的河道水位到地下
    水流模型河流网格
    地下水流模型的河流网格水位由
    SWAT计算的河道水位而定
    地下水和河流的交换量地下水流模型河流网格计算结果到
    SWAT子流域河道
    交换量由River包计算后传递给
    SWAT模型河道
    下载: 导出CSV

    表  2  小河流域土地利用类型

    Table  2.   Land use types in the small river basin

    类型森林农田牧场湿地其它
    比例/%6530221
    下载: 导出CSV

    表  3  地下水补给量误差分析列表(单位:mm)

    Table  3.   Error analysis of groundwater recharge (unit: mm)

    组号网格大小/m199319941995199619971998199920002001平均
    SWAT281.92417.84148.54160.65322.96229.36103.80254.44231.60239.01
    120MODFLOW277.01412.20146.30157.71314.76228.73102.64245.75232.56235.30
    误差4.905.642.242.948.200.641.168.69−0.963.72
    250MODFLOW271.41403.84143.32154.49308.43224.15100.54240.94227.76230.54
    误差10.5114.005.226.1614.535.213.2613.503.858.47
    3100MODFLOW269.05400.40142.06152.90305.76222.0899.51238.67225.79228.47
    误差12.8617.446.477.7617.207.284.2815.785.8110.54
    4150MODFLOW268.40399.20141.52153.27304.61221.3899.67238.34225.41227.98
    误差13.5218.647.027.3818.357.994.1316.106.1911.04
    5200MODFLOW266.75396.80141.05152.21302.59220.0599.17235.66224.41226.52
    误差15.1721.047.498.4420.379.314.6318.787.1912.49
    6200MODFLOW283.49418.63150.37158.93320.69236.38104.96238.88241.06239.27
    误差0.690.52−0.140.861.37−0.860.150.930.040.40
    下载: 导出CSV

    表  4  耦合前地下水流模型均衡表(单位:104 m3

    Table  4.   Equalization table of groundwater flow model before coupling (unit: 104 m3)

    19881989199019911992199319941995199619971998199920002001
    流入河流6.005.395.423.964.464.474.054.445.064.904.195.155.284.61
    降雨95.51106.8999.73132.19105.53109.14141.4880.5594.97119.34105.5677.89105.85101.00
    总流入101.51112.28105.15136.15109.99113.61145.5384.99100.03124.24109.7683.04111.14105.60
    流出边界36.6036.5036.536.5036.6036.5036.5036.5036.6036.5036.5036.5036.5036.50
    河流60.5765.3964.7084.3176.8175.9785.2279.1567.5868.9180.9665.2264.4072.41
    蒸发0.340.370.360.490.440.430.490.450.370.380.460.360.360.41
    总流出97.51102.26101.57121.30113.85112.90122.21116.10104.55105.80117.92102.08101.36109.32
    均衡4.0010.023.5814.85−3.860.7123.32−31.11−4.5218.44−8.16−19.059.77−3.71
    总均衡14.28
    下载: 导出CSV

    表  5  耦合后地下水流模型均衡表(单位:104m3

    Table  5.   Equilibrium table of groundwater flow model after coupling (unit: 104m3)

    19881989199019911992199319941995199619971998199920002001
    流入河流0.750.990.760.700.570.650.640.430.700.930.540.721.110.78
    降雨102.80109.6187.05214.65135.54141.00209.7674.4580.33160.17116.3652.15125.39118.29
    总流入103.54110.5987.82215.35136.12141.65210.3974.8881.02161.1116.9052.87126.50119.07
    流出边界36.6036.536.5036.5036.6036.5036.5036.5036.6036.5036.5036.5036.6036.50
    河流81.9859.2071.96117.54101.81100.52118.00107.7970.7370.99107.9960.9055.2082.76
    蒸发1.050.661.101.921.501.571.611.830.990.891.820.810.681.23
    总流出119.6296.36109.57155.96139.91138.58156.11146.12108.32108.38145.7398.2192.49120.49
    均衡−16.0814.24−21.7559.39−3.803.0654.28−71.24−27.2952.72−28.82−45.3434.01−1.42
    总均衡1.96
    下载: 导出CSV
  • [1] 闫红飞, 王船海, 文鹏. 分布式水文模型研究综述[J]. 水电能源科学, 2008, 26(6):1-4. doi: 10.3969/j.issn.1000-7709.2008.06.001

    YAN Hongfei, WANG Chuanhai, WEN Peng. Overview of studies on distributed hydrological model[J]. Water Resources and Power, 2008, 26(6):1-4. doi: 10.3969/j.issn.1000-7709.2008.06.001
    [2] 吕清华. SWAT模型对农业面源污染模拟的适用性分析[J]. 云南水力发电, 2022, 38(2):57-59. doi: 10.3969/j.issn.1006-3951.2022.02.013

    LV Qinghua. Applicability analysis of SWAT model to agricultural non-point source pollution simulation[J]. Yunnan Water Power, 2022, 38(2):57-59. doi: 10.3969/j.issn.1006-3951.2022.02.013
    [3] Saha G K, Cibin R, Elliott H A, Elliott H A, Preisendanz H E. Toward a robust land suitability framework for manure management: Modeling impacts and evaluating biophysical characteristics[J]. Journal of the American Water Resources Association, 2022, 58(3): 435-452.
    [4] 魏健, 潘兴瑶, 孔刚, 白涛, 黄强, 李波, 马盼盼. 基于生态补水的缺水河流生态修复研究[J]. 水资源与水工程学报, 2020, 31(1):64-69, 76.

    WEI Jian, PAN Xingyao, KONG Gang, BAI Tao, HUANG Qiang, LI Bo, MA Panpan. Study on ecological restoration of water-deficient rivers based on ecological water supplement method[J]. Journal of Water Resources and Water Engineering, 2020, 31(1):64-69, 76.
    [5] 陈栋, 梁敏, 仇春光, 王颖聪, 蒋坤. 基于水质模拟分析的生态补水方案研究[J]. 人民长江, 2018, 49(Suppl.1):34-37.

    CHEN Dong, LIANG Min, CHOU Chunguang, WANG Yingcong, JIANG Kun. Ecological water supplement solution based on water quality simulation[J]. Yangtze River, 2018, 49(Suppl.1):34-37.
    [6] 焦丽君, 刘瑞民, 王林芳, 党晋华, 肖艳艳, 夏星辉. 基于SWAT模型的汾河流域生态补水研究[J]. 生态学报, 2022, 42(14): 5778-5788

    JIAO Lijun, LIU Ruimin, WANG Linfang, DANG Jinhua, XIAO Yanyan, XIA Xinghui. Study on ecological water supplement in Fenhe river basin based on SWAT model[J]. Acta Ecologica Sinica, 2022, 42(14): 5778-5788.
    [7] 卜玉. 基于SWAT模型的中长期洪水径流预测研究[J]. 黑龙江水利科技, 2022, 50(4): 165-168, 224.

    PU Yu. Study on medium and long term flood runoff prediction based on SWAT model[J]. Heilongjiang Hydraulic Science and Technology, 2022, 50(4): 165-168, 224.
    [8] Sushanth K, Sandeep H, Rao B K. Assessment of inflows to Rallapadu reservoir from catchment area using SWAT Model[J]. Indian Journal of Ecology, 2020, 47(11).
    [9] 刘家威, 蔡宏, 郑婷婷, 唐敏. 基于SWAT模型的赤水河流域径流年内分配特征及其对降水的响应研究[J]. 水土保持通报, 2022, 42(3):180-187. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203024

    LIU Jiawei, CAI Hong, ZHENG Tingting, TANG Min. Annual distribution characteristics of Chishui river watershed runoff and its response to precipitation based on SWAT model[J]. Bulletin of Soil and Water Conservation, 2022, 42(3):180-187. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203024
    [10] 邰理想, 饶文波, 檀涛, 谭红兵, 姜三元, 张西营. 基于格尔木河流域的SWAT模型水文特征情景模拟研究[J]. 水文, 2023, 43(2): 46-51.

    TAI Lixiang, RAO Wenbo, TAN Tao, TAN Hongbin, JIANG Sanyuan, ZHANG Xiying. Scenario simulation research on hydrological characteristics of the Golmud river basin based on SWAT model[J]. Journal of China Hydrology, 2023, 43(2): 46-51.
    [11] Luo Z, Shao Q. A modified hydrologic model for examining the capability of global gridded PET products in improving hydrological simulation accuracy of surface runoff, streamflow and baseflow[J]. Journal of Hydrology, 2022:127960.
    [12] Khadka A. Runoff modeling using SWAT Model in Little Wabash river watershed, Illinois[D]. Edwardsville, USA: Southern Illinois University at Edwardsville, 2022.
    [13] 胡倩, 王军霞, 刘世强, 吴嘉铃, 唐仲华, 成建梅. 基于SWAT模型的洞庭湖平原水资源量计算[J]. 安全与环境工程, 2022, 29(3):244-252. doi: 10.13578/j.cnki.issn.1671-1556.20210444

    HU Qian, WANG Junxia, LIU Shiqiang, WU Jialing, TANG Zhonghua, CHENG Jianmei. Calculation of water resources in Dongting lake plain based on SWAT model[J]. Safety and Environmental Engineering, 2022, 29(3):244-252. doi: 10.13578/j.cnki.issn.1671-1556.20210444
    [14] 陈沛源, 李金文, 俞巧. 基于 SWAT 模型的泾河流域地下水分布特征与水资源评价[J]. 灌溉排水学报, 2021, 40(12):102-109, 126.

    CHEN Peiyuan, LI Jinwen, YU Qiao. Evaluation groundwater resource and its distribution in Jinghe basin using the SWAT model[J]. Journal of Irrigation and Drainage, 2021, 40(12):102-109, 126.
    [15] 孙振权, 魏涛, 洪梅. 基于SWAT模型的最佳管理措施对伊逊河流域水沙的影响研究[J]. 世界地质, 2022, 41(4): 914-925.

    SUN Zhenquan, WEI Tao, HONG Mei. Impact of best management practices on water and sediment in Yixun river basin based on SWAT model[J]. Global Geology, 2022, 41(4): 914-925.
    [16] 曹灿, 孙瑞, 吴志祥, 李茜. 基于SWAT模型的南渡江流域土地利用/覆被变化的径流响应[J]. 水土保持研究, 2022, 29(4):167-175. doi: 10.3969/j.issn.1005-3409.2022.4.stbcyj202204024

    CAO Can, SUN Rui, WU Zhixiang, LI Xi. Responses of streamflow to land use/cover changes in Nandu river basin based on SWAT model[J]. Research of Soil and Water Conservation, 2022, 29(4):167-175. doi: 10.3969/j.issn.1005-3409.2022.4.stbcyj202204024
    [17] 严芳芳. Visual Modflow在水资源论证中的应用探讨[J]. 山东水利, 2021(5):44-45.

    YAN Fangfang. The discussion on the application of Visual Modflow in water resources argumentation[J]. Shandong Water Resources, 2021(5):44-45.
    [18] 温海燕, 吕昊楠. 基于Visual MODFLOW的丰南区北刘堼水源地地下水位预测[J]. 河南科技, 2021, 40(20):13-15. doi: 10.3969/j.issn.1003-5168.2021.20.013

    WEN Haiyan, LV Haonan. Groundwater level prediction of the Beiliuheng water source area in Fengnan district based on Visual MODFLOW[J]. Henan Science Technology, 2021, 40(20):13-15. doi: 10.3969/j.issn.1003-5168.2021.20.013
    [19] 于红梅, 张楠, 燕艳, 李莉莉. 基于ModFlow对地下水资源量的计算[J]. 内蒙古水利, 2018(5):50-51.
    [20] Mondal N C, Singh V S. Mass transport modeling of an industrial belt using Visual MODFLOW and MODPATH: A case study[J]. Journal of Geography and Regional Planning, 2009, 2(1):1-19.
    [21] 何浩, 张强, 张金林, 冯杰, 李威龙, 王志鹏. 基于Visual Modflow研究武隆–广杨深层岩溶水径流特征[J]. 甘肃水利水电技术, 2022, 58(2):22-27, 34.
    [22] 赵良杰, 夏日元, 杨杨, 邵景力, 易连兴, 王喆. 基于MODFLOW的岩溶管道水流模拟方法探讨与应用[J]. 中国岩溶, 2017, 36(3):346-351. doi: 10.11932/karst20170308

    ZHAO Liangjie, XIA Riyuan, YANG Yang, SHAO Jingli, YI Lianxing, WANG Zhe. Discussion and application of simulation methods for karst conduit flow based on MODFLOW[J]. Carsologica Sinica, 2017, 36(3):346-351. doi: 10.11932/karst20170308
    [23] 杨杨, 唐建生, 苏春田, 潘晓东, 赵良杰. 岩溶区多重介质水流模型研究进展[J]. 中国岩溶, 2014, 33(4):419-424. doi: 10.11932/karst20140405

    YANG Yang, TANG Jiansheng, SU Chuntian, PAN Xiaodong, ZHAO Liangjie. Research advances on multi-medium flow model for karst aquifers[J]. Carsologica Sinica, 2014, 33(4):419-424. doi: 10.11932/karst20140405
    [24] 杨郑秋, 杨杨, 邵景力, 苏春田, 崔亚莉, 罗飞. 基于MODFLOW-CFP的岩溶水模型降雨非线性入渗补给研究:以湖南省香花岭地区为例[J]. 中国岩溶, 2019, 38(5):691-695.

    YANG Zhengqiu, YANG Yang, SHAO Jingli, SU Chuntian, CUI Yali, LUO Fei. Study on non-linear rainfall infiltration recharge of numerical karst water model based on MODFLOW-CFP: A case study of Xianghualing area, Hunan Province[J]. Carsologica Sinica, 2019, 38(5):691-695.
    [25] 李星宇, 南天, 王新娟, 李鹏, 谢振华, 邵景力. 数值模拟方法在隐伏岩溶水源地保护区划分及污染治理中的应用[J]. 中国岩溶, 2014, 33(3):280-287. doi: 10.11932/zgyr20140303

    LI Xingyu, NAN Tian, WANG Xinjuan, LI Peng, XIE Zhenhua, SHAO Jingli. Application of the numerical simulation method in concealed karst wellhead for protection area delimitation and contamination prevention[J]. Carsologica Sinica, 2014, 33(3):280-287. doi: 10.11932/zgyr20140303
    [26] 杨杨, 赵良杰, 夏日元, 王莹. 珠江流域岩溶地下河分布特征与影响因素研究[J]. 中国岩溶, 2022, 41(4): 562-576.

    YANG Yang, ZHAO Liangjie, XIA Riyuan, WANG Ying. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. Carsologica Sinica, 2022, 41(4): 562-576.
    [27] 杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究:以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123.

    YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J]. Carsologica Sinica, 2022, 41(1):111-123.
    [28] 徐中平, 周训, 崔相飞, 拓明明, 王昕昀, 张颖. 岩溶区地下水数值模拟研究进展[J]. 中国岩溶, 2018, 37(4):475-483.

    XU Zhongping, ZHOU Xun, CUI Xiangfei, TUO Mingming, WANG Xinyun, ZHANG Ying. Research advances of numerical simulation of groundwater in karst areas[J]. Carsologica Sinica, 2018, 37(4):475-483.
    [29] 姜光辉. 融合生态学和提升岩溶水数值模拟技术的国际前沿研究[J]. 中国岩溶, 2016, 35(1):1-4. doi: 10.11932/karst201601y01

    JIANG Guanghui. The research progress and developing tendency of karst water[J]. Carsologica Sinica, 2016, 35(1):1-4. doi: 10.11932/karst201601y01
    [30] 张琳琳, 崔亚莉, 梁桂星, 梁灵君, 王晓阳. SWAT-MODFLOW耦合模型在地下水量均衡分析中的应用[J]. 南水北调与水利科技(中英文), 2020, 18(6): 176-183.

    ZHANG Linlin, CUI Yali, LIANG Guixing, LIANG Lingjun, WANG Xiaoyang. Application of SWAT-MODFLOW coupling model in groundwater balance analysis[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(6): 176-183.
    [31] Yifru B A, Chung I M, Kim M G, Chang S W. Assessing the effect of land/use land cover and climate change on water yield and groundwater recharge in East African Rift Valley using integrated model[J]. Journal of Hydrology: Regional Studies, 2021, 37:100926. doi: 10.1016/j.ejrh.2021.100926
    [32] 王蕾. 基于SWAT-MODFLOW的变化环境下渠井结合灌区地下水循环特征研究[D]. 杨凌: 西北农林科技大学, 2017.

    WANG Lei. Study on characteristics of groundwater circulation in canal-well combined irrigation area under changing environment based on SWAT-MODFLOW model[D]. Yangling: Northwest A & F University, 2017.
    [33] 吴德丰. 基于SWAT-MODFLOW的灌区土壤水与地下水转化特征研究[D]. 郑州: 华北水利水电大学, 2021.

    WU Defeng. Assessment of water exchange between soil water and groundwater in irrigation area based on SWAT-MODFLOW[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
    [34] 周铮. 基于SWAT-MODFLOW模型的北山水库流域地表–地下水耦合模拟研究[D]. 南京: 南京大学, 2021.

    ZHOU Zheng. Coupling simulation of surface water and groundwater in Beishan reservoir watershed based on SWAT-MODFLOW[D]. Nanjing: Nanjing University, 2021.
    [35] Jafari T, Kiem A S, Javadi S, Nakamura T, Nishida K. Using insights from water isotopes to improve simulation of surface water-groundwater interactions[J]. Science of the Total Environment, 2021, 798:149253. doi: 10.1016/j.scitotenv.2021.149253
    [36] Bailey R T, Wible T C, Arabi M, Records R M, Ditty J. Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model[J]. Hydrological Processes, 2016, 30(23):4420-4433.
    [37] 康燕楠. 基于SWAT-MODFLOW的多尺度干旱时段水资源优化配置[D]. 杨凌: 西北农林科技大学, 2021.

    KANG Yannan. Multi-scale optimal allocation of water resources in drought periods based on SWAT-MODFLOW[D]. Yangling: Northwest A & F University, 2021.
    [38] Petpongpan C, Ekkawatpanit C, Bailey R T, Kositgittiwong D. Improving integrated surface water-groundwater modelling with groundwater extraction for water management[J]. Hydrological Sciences Journal, 2021, 66(10):1513-1530. doi: 10.1080/02626667.2021.1948549
    [39] 张洪波, 支童, 卫星辰, 党池恒, 夏岩, 高文冰. 基于SWAT-MODFLOW的黄河中游区径流过程模拟及对黄土高原变绿的响应[J]. 华北水利水电大学学报(自然科学版), 2020, 41(6):1-10.

    ZHANG Hongbo, ZHI Tong, WEI Xingchen, DANG Chiheng, XIA Yan, GAO Wenbing. Simulation of runoff process in the middle Yellow River based on SWAT-MODFLOW and its response to the greening of the Loess Plateau[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2020, 41(6):1-10.
    [40] Frederiksen R R, Molina Navarro E. The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW[J]. Agricultural Water Management, 2021, 255:107058. doi: 10.1016/j.agwat.2021.107058
    [41] Bailey R, Rathjens H, Bieger K, Chaubey I, Arnold J. SWATMOD-Prep: Graphical user interface for preparing coupled SWAT-MODFLOW simulations[J]. JAWRA Journal of the American Water Resources Association, 2017, 53(2):400-410. doi: 10.1111/1752-1688.12502
    [42] Bosch D D, Sheridan J M, Lowrance R R, Hubbard R K, Strickland T C, Feyereisen G W, Sullivan D G. Little river experimental watershed database[J]. Water Resources Research, 2007, 43(9): W09470.1-W09470.6.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  497
  • HTML浏览量:  79
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-26
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回