• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石漠化治理区表层岩溶泉流量衰减分析及无机碳通量估算

罗振宇 杨琰 李计 肖文杰 孙婷婷 叶枝茂

罗振宇,杨 琰,李 计,等. 石漠化治理区表层岩溶泉流量衰减分析及无机碳通量估算:以重庆酉阳龙潭槽谷老泉为例[J]. 中国岩溶,2023,42(2):337-350, 381 doi: 10.11932/karst2023y011
引用本文: 罗振宇,杨 琰,李 计,等. 石漠化治理区表层岩溶泉流量衰减分析及无机碳通量估算:以重庆酉阳龙潭槽谷老泉为例[J]. 中国岩溶,2023,42(2):337-350, 381 doi: 10.11932/karst2023y011
LUO Zhenyu, YANG Yan, LI Ji, XIAO Wenjie, SUN Tingting, YE Zhimao. Flow attenuation analysis and inorganic carbon flux estimation of surface karst spring in rocky desertification control area: A case study at Laoquan spring in the Longtan trough valley, Youyang county, Chongqing City, China[J]. CARSOLOGICA SINICA, 2023, 42(2): 337-350, 381. doi: 10.11932/karst2023y011
Citation: LUO Zhenyu, YANG Yan, LI Ji, XIAO Wenjie, SUN Tingting, YE Zhimao. Flow attenuation analysis and inorganic carbon flux estimation of surface karst spring in rocky desertification control area: A case study at Laoquan spring in the Longtan trough valley, Youyang county, Chongqing City, China[J]. CARSOLOGICA SINICA, 2023, 42(2): 337-350, 381. doi: 10.11932/karst2023y011

石漠化治理区表层岩溶泉流量衰减分析及无机碳通量估算——以重庆酉阳龙潭槽谷老泉为例

doi: 10.11932/karst2023y011
基金项目: 国家自然科学基金项目(42277048);国家重点研发计划子课题(2016YFC050230205)
详细信息
    作者简介:

    罗振宇(1996-),男,硕士研究生,主要从事岩溶环境变化研究。E-mail:956458061@qq.com

    通讯作者:

    杨琰(1976-),男,博士,教授,博士生导师,主要从事岩溶关键带水资源与水环境研究。E-mail:yy2954@swu.edu.cn

  • 中图分类号: X171.4;P641.134

Flow attenuation analysis and inorganic carbon flux estimation of surface karst spring in rocky desertification control area: A case study at Laoquan spring in the Longtan trough valley, Youyang county, Chongqing City, China

  • 摘要: 应对“双碳”目标,加强岩溶石漠化综合治理工作,地下水是关键。为探究重庆市酉阳县龙潭槽谷石漠化治理区岩溶泉的流量衰减及无机碳通量变化特征,采用流量衰减方程与水化学径流法对研究点老泉进行模拟与分析。结果表明:(1)老泉的流量衰减分为两个亚动态,衰减系数分别为0.089 2、0.019 6,其具有双重性含水介质特征。(2)暴雨期老泉的碳通量随流量变化的特征明显;而伏旱期(7月底-8月底)老泉的碳通量与土壤CO2、泉水CO2均具有明显的昼夜变化特征,表现为夜间低、日间高。(3)老泉夏季的碳通量与降水量呈正相关(R=0.78),与蒸发量呈负相关(R=−0.36),气候的不稳定性变化对碳通量影响显著。老泉的月${\rm{HCO}}_3^{-}$浓度与月土壤CO2浓度的相关系数为0.64,${\rm{HCO}}_3^{-}$敏感地响应土壤CO2的变化;而老泉年碳通量与年土壤CO2浓度的相关系数为0.90,且年均δ13CDIC呈偏负趋势,土地利用变化(植被恢复)有利于土壤CO2及老泉碳通量的增加。(4)老泉2018-2021年的碳通量呈波动上升趋势,年均无机碳通量为15.05 t·km−2·a−1。研究结果能为石漠化生态恢复治理工作提供参考。

     

  • 图  1  龙潭槽谷水文地质概况图(a-水文地质平面图,b-石漠化治理区卫星图(据Google Earth),c-老泉实景图,d-水文地质剖面图(修改自参考文献[25]))

    Figure  1.  Hydrogeological survey of Longtan trough valley (a- Hydrogeological map, b- Satellite map of rocky desertification control area (based on Google Earth), c- Map of Laoquan spring, d- Hydrogeological profile [25])

    图  2  龙潭槽谷老泉的降水流量变化曲线

    注:虚线部分数据因仪器故障而缺失

    Figure  2.  Variation curve of precipitation discharge in Laoquan spring of Longtan trough valley

    Part of the dotted line data is missing due to the instrument failure

    图  3  老泉200506号暴雨的流量衰减过程

    Figure  3.  Flow attenuation process of rainstorm No. 200506 in Laoquan spring

    图  4  老泉${\rm{HCO}}_3^{-}$与电导率EC的相关性

    Figure  4.  Correlation between ${\rm{HCO}}_3^{-}$ and EC in Laoquan spring

    图  5  老泉210628号暴雨期间的碳通量变化

    Figure  5.  Variation of carbon flux during Rainstorm No. 210628 in Laoquan spring

    图  6  老泉夏季伏旱期的土-水CO2-碳通量的变化

    Figure  6.  Changes of soil-water CO2-carbon flux of Laoquan spring during the summer drought period

    图  7  老泉2018-2021年土-水CO2-碳通量的变化(注:虚线部分数据因仪器故障而缺失)

    Figure  7.  Changes of soil-water CO2-carbon flux of Laoquan spring from 2018 to 2021. Part of the dotted line data is missing due to instrument failure

    图  8  老泉岩溶产物浓度与土壤CO2浓度的相关性

    Figure  8.  Correlation between the concentration of karst products of Laoquan spring and the concentration of soil CO2

    图  9  老泉夏季月降水量、月蒸发量与月碳通量的相关性

    Figure  9.  Correlation analysis between monthly precipitation, monthly evaporation and monthly carbon flux of Laoquan spring in Summer

    表  1  2018-2021年伏旱期(7月21日-8月31日)老泉的气候与流量情况

    Table  1.   Climate and discharge of Laoquan spring during the drought period (from July 21 to August 31) from 2018 to 2021

    时间/年2018201920202021多年平均值
    降水总量/mm1 485.21 461.61 500.21 429.81 470.0
    伏旱期降水量/mm103.8139.6216.8491.2237.9
    伏旱期蒸发量/mm166.9178.7178.7226.9187.8
    伏旱期干旱天数/天2931291927
    伏旱期降水天数/天1311132315
    伏旱期高温天数(大于35 ℃)/天2729232526
    伏旱期断流天数/天3734182328
    伏旱期流量/L·s−100.030.652.380.76
    下载: 导出CSV

    表  2  老泉200506号暴雨的流量衰减参数

    Table  2.   Flow attenuation parameters of Rainstorm No. 200506 in Laoquan spring

    岩溶水系统亚动态衰减系数/15 min持续时间/h含水介质储水量/m3亚动态占总储水量之比/%总储水量/m3
    老泉0.089 29620.4384739.26
    0.019 621118.8316
    下载: 导出CSV

    表  3  老泉210628号暴雨期间流量与碳通量参数

    Table  3.   Flow and carbon flux parameters during Rainstorm No.210628 in Laoquan spring

    阶段平均流量/L·s−1${\rm{HCO}}_3^{-}$平均浓度/mg·L−1持续时间/h各阶段累计的碳通量/kg·km−2·d−1累计碳通量/kg·km−2·d−1
    0227.536097.64
    38.52127.491.59.25
    31.75140.3010.564.43
    3.25181.782923.96
    下载: 导出CSV

    表  4  老泉2018-2021年的水文水化学与碳通量参数

    Table  4.   Hydrochemical features and carbon sink flux of Laoquan spring from 2018 to 2021

    时间/年${\rm{HCO}}_3^{-}$浓度/mg·L−1CO2消耗量/mg·L−1年均流量/L·s−1无机碳通量/t·km−2·a−1
    2018年197.2371.134.6811.66
    2019年234.8584.703.4810.33
    2020年231.0383.327.3021.31
    2021年239.6486.435.5816.90
    平均值225.6981.405.2615.05
    下载: 导出CSV

    表  5  老泉2018-2021年碳通量与土壤CO2浓度的相关性分析

    Table  5.   Correlation analysis between carbon flux and soil CO2 concentration of Laoquan spring from 2018 to 2021

    年平均土壤CO2浓度/mL·m−3
    年碳通量/t·km−2·a−1Pearson 相关性0.903
    显著性(双侧)0.097
    N4
    下载: 导出CSV

    表  6  2018-2021年老泉δ13CDIC的变化趋势

    Table  6.   Variation trend of δ13CDIC of Laoquan spring from 2018 to 2021

    时间(年/月)2018年2019年2020年2021年
    实测值/‰实测值/‰实测值/‰实测值/‰
    1月−10.13−10.90−10.56
    2月−8.58−10.30
    3月−10.62
    4月−9.63−10.29
    5月−11.62−10.37−11.47
    6月−11.72−8.92−11.26−10.23
    7月−11.19−9.45−11.99−12.10
    8月−11.17−8.46−11.91
    9月−11.03−11.74−12.25−12.22
    10月−10.06−9.84−12.36−11.58
    11月−10.59−10.46−11.35−11.11
    12月−9.89−10.82−11.41−11.36
    年平均值/‰−10.91−9.85−11.68−11.08
    注:−代表数据缺失。
    下载: 导出CSV
  • [1] Zeng S B, Liu Z H, Goldscheider N, Frank S, Goeppert N, Kaufmann G, Zeng C, Zeng Q R, Sun H L. Comparisons on the effects of temperature, runoff, and land-cover on carbonate weathering in different karst catchments: Insights into the future global carbon cycle[J]. Hydrogeology Journal, 2021, 29:331-345. doi: 10.1007/s10040-020-02252-5
    [2] 张彩云, 蒋勇军, 马丽娜, 汪啟容. 岩溶槽谷区不同土地利用方式下的坡地产流产沙规律[J]. 水土保持通报, 2021, 41(1):49-55.

    ZHANG Caiyun, JIANG Yongjun, MA Lina, WANG Qirong. Characteristics of runoff and sediment on slope land with different land use in karst trough valley area[J]. Bulletin of Soil and Water Conservation, 2021, 41(1):49-55.
    [3] 伏文兵, 严友进, 李华林, 林梽桓, 胡刚, 黄朝海. 岩溶槽谷石漠化综合治理区治理生态效益评价[J]. 西南大学学报(自然科学版), 2021, 43(7):146-156. doi: 10.13718/j.cnki.xdzk.2021.07.019

    FU Wenbin, YAN Youjin, LI Hualin, LIN Zhihuan, HU Gang, HUANG Chaohai. Evaluation of ecological benefits of comprehensive management of rocky desertification in karst trough valleys[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(7):146-156. doi: 10.13718/j.cnki.xdzk.2021.07.019
    [4] 蒋勇军, 刘秀明, 何师意, 何丙辉, 谢建平, 罗维均, 白晓永, 肖琼. 喀斯特槽谷区土地石漠化与综合治理技术研发[J]. 生态学报, 2016, 36(22):7092-7097.

    JIANG Yongjun, LIU Xiuming, HE Shiyi, HE Binghui, XIE Jianping, LUO Weijun, BAI Xiaoyong, XIAO Qiong. Research and development of comprehensive rehabilitation measures for land rocky desertification in karst trough valley area[J]. Acta Ecologica Sinica, 2016, 36(22):7092-7097.
    [5] 王明章. 西南岩溶石山区地下水开发在石漠化防治中的地位[J]. 贵州地质, 2006(4):261-265. doi: 10.3969/j.issn.1000-5943.2006.04.003

    WANG Mingzhang. Status on exploitation of undergroundwater in prevention and control of rocky desertification in the areas of karst rocky mountain, Southwestern China[J]. Guizhou Geology, 2006(4):261-265. doi: 10.3969/j.issn.1000-5943.2006.04.003
    [6] 袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼. 现代岩溶学[M]. 北京: 科学出版社, 2016: 292-305.

    YUAN Daoxian, JIANG Yongjun, SHEN Licheng, PU Junbin, XIAO Qiong. Modern Karstology[M]. Beijing: Science Press, 2016: 292-305.
    [7] Fiorillo F, Leone G, Pagnozzi M, Esposito L. Long-term trends in karst spring discharge and relation to climate factors and changes[J]. Hydrogeology Journal, 2021, 29:347-377. doi: 10.1007/s10040-020-02265-0
    [8] Worthington S. R. H. Characteristics of channel networks in unconfined carbonate aquifers[J]. Geological Society of America Bulletin, 2015, 127(5-6):759-769. doi: 10.1130/B31098.1
    [9] 吴平, 葛勤, 张卫民, 李荐华, 刘海燕, 王洋, 王振, 陈家鸿. 基于水化学和同位素示踪岩溶含水系统的水力联系: 以宜春市四方井副坝区为例[J]. 科学技术与工程, 2021, 21(28):12058-12065. doi: 10.3969/j.issn.1671-1815.2021.28.019

    WU Ping, GE Qin, ZHANG Weimin, LI Jianhua, LIU Haiyan, WANG Yang, WANG Zhen, CHEN Jiahong. Tracing hydraulic connection of a karst aquifer system based on hydrochemistry and isotopes: A case study of the auxiliary dam of Sifangjing in Yichun City[J]. Science Technology and Engineering, 2021, 21(28):12058-12065. doi: 10.3969/j.issn.1671-1815.2021.28.019
    [10] 杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究: 以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123.

    YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J]. Carsologica Sinica, 2022, 41(1):111-123.
    [11] 张程鹏, 张凤娥, 耿新新, 冀俊杰, 陈永康. 岩溶地下河在SWAT中的概化方法: 以毕节倒天河流域为例[J]. 中国岩溶, 2020, 39(5):665-672.

    ZHANG Chengpeng, ZHANG Fenge, GENG Xinxin, JI Junjie, CHEN Yongkang. Generalization method of karst underground river in SWAT: An example of the Daotian river watershed in Bijie, Guizhou[J]. Carsologica Sinica, 2020, 39(5):665-672.
    [12] 常勇, 吴吉春, 刘玲, 罗跃. 岩溶泉流量衰减曲线分析[J]. 水文, 2016, 36(1):15-21. doi: 10.3969/j.issn.1000-0852.2016.01.003

    CHANG Yong, WU Jichun, LIU Ling, LUO Yue. On recession curve of karst spring[J]. Journal of China Hydrology, 2016, 36(1):15-21. doi: 10.3969/j.issn.1000-0852.2016.01.003
    [13] 梁日胜, 曾成, 闫志为, 石彪, 何师意, 樊宇虹, 灌瑾. 贵州印江朗溪岩溶槽谷龙洞湾泉流量衰减分析[J]. 中国岩溶, 2019, 38(1):10-18.

    LIANG Risheng, ZENG Cheng, YAN Zhiwei, SHI Biao, HE Shiyi, FAN Yuhong, GUAN Jin. Recession flow analysis for Longdongwan spring at Langxi karst valley in Yinjiang county, Guizhou Province[J]. Carsologica Sinica, 2019, 38(1):10-18.
    [14] 吕玉香, 胡伟, 杨琰. 岩溶关键带水循环过程研究进展[J]. 水科学进展, 2019, 30(1):123-138.

    LV Yuxiang, HU Wei, YANG Yan. Research progress of hydrological cycle in karst critical zone[J]. Advances in Water Science, 2019, 30(1):123-138.
    [15] 孙平安, 肖琼, 郭永丽, 苗迎, 王奇岗, 章程. 混合岩溶流域碳酸盐岩溶蚀速率与岩溶碳汇: 以漓江流域上游为例[J]. 中国岩溶, 2021, 40(5):825-834.

    SUN Pingan, XIAO Qiong, GUO Yongli, MIAO Ying, WANG Qigang, ZHANG Cheng. Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain: Take the upper reaches of the Lijiang river basin as an example[J]. Carsologica Sinica, 2021, 40(5):825-834.
    [16] LI H W, WANG S J, BAI X Y, CAO Y, WU L H. Spatiotemporal evolution of carbon sequestration of limestone weathering in China[J]. Science China (Earth Sciences), 2019, 62(6):974-991. doi: 10.1007/s11430-018-9324-2
    [17] 马明国, 汤旭光, 韩旭军, 时伟宇, 宋立生, 黄静. 西南岩溶地区碳循环观测与模拟研究进展和展望[J]. 地理科学进展, 2019, 38(8):1196-1205. doi: 10.18306/dlkxjz.2019.08.008

    MA Mingguo, TANG Xuguang, HAN Xujun, SHI Weiyu, SONG Lisheng, HUANG Jing. Research progress and prospect of observation and simulation of carbon cycle in the karst areas of Southwest China[J]. Progress in Geography, 2019, 38(8):1196-1205. doi: 10.18306/dlkxjz.2019.08.008
    [18] 郭静芸, 毕鑫涛, 方然可, 李守定. 可溶岩化学溶蚀试验方法研究综述[J]. 水文地质工程地质, 2020, 47(4):24-34.

    GUO Jingyun, BI Xintao, FANG Ranke, LI Shouding. Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology & Engineering Geology, 2020, 47(4):24-34.
    [19] 曹星星, 吴攀, 杨诗笛, 刘闪, 廖家豪. 贵州威宁草海流域地下水水化学特征及无机碳通量估算[J]. 环境科学, 2021, 42(4):1761-1771.

    CAO Xingxing, WU Pan, YANG Shidi, LIU Shan, LIAO Jiahao. Hydrochemistry characteristics and estimation of the dissolved inorganic carbon flux in the Caohai lake wetland catchment of Guizhou Province[J]. Environmental Science, 2021, 42(4):1761-1771.
    [20] 曾成, 赵敏, 杨睿, 刘再华. 岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较: 以陈旗岩溶泉域为例[J]. 水文地质工程地质, 2014, 41(1):106-111.

    ZENG Cheng, ZHAO Min, YANG Rui, LIU Zaihua. Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and solute load method: A case study in the Chenqi karst spring system[J]. Hydrogeology & Engineering Geology, 2014, 41(1):106-111.
    [21] 刘再华, 曾庆睿, 陈波, 贺海波. 碳酸盐风化碳汇研究[M]. 北京: 科学出版社, 2021: 1-10.

    LIU Zaihua, ZENG Qingrui, CHEN Bo, HE Haibo. Study on carbonate weathering carbon sink[M]. Beijing: Science Press, 2021: 1-10.
    [22] Tong X W, Brandt M, Yue Y M, Ciais P, Rudbeck J M, Penuelas J, Wigneron J P, Xiao X M, Song X P, Horion S, Rasmussen K, Saatchi S, Fan L, Wang K L, Zhang B, Chen Z C, Wang Y H, Li X J, Fensholt R. Forest management in Southern China generates short term extensive carbon sequestration[J]. Nature Communications, 2020, 11(1):129. doi: 10.1038/s41467-019-13798-8
    [23] Wang Y H, Li X B, Xin L J, Tan M H. Farmland marginalization and its drivers in mountainous areas of China[J]. Science of the Total Environment, 2020, 719:135132. doi: 10.1016/j.scitotenv.2019.135132
    [24] 邹晓岗, 杨琰, 徐刚, 田宁, 游贤慧, 何志立, 田洪明, 曾朱周. 岩溶槽谷石漠化治理区表层泉水化学特征研究: 以重庆酉阳泔溪花椒基地老泉为例[J]. 地球与环境, 2018, 46(6):524-533.

    ZOU Xiaogang, YANG Yan, XU Gang, TIAN Ning, YOU Xianhui, HE Zhili, TIAN Hongming, ZENG Zhuzhou. Chemical characteristics of surface spring in the rehabilitation area of karst rock desertification: A case study at Laoquan in the pepper planting base of Ganxi town, Youyang county, Chongqing City, China[J]. Earth and Environment, 2018, 46(6):524-533.
    [25] Xiao W J, Yang Y, Jiang X Y, He Z L, Zou X G, You X H, Yang Y Y, Zeng Z Z, Shi W Y. Different responses of ecohydrological processes in the re-vegetation area between the dip and anti-dip slope in a karst rocky desertification area in Southwestern China[J]. Plant and Soil, 2022, 475:25-43. doi: 10.1007/s11104-020-04821-9
    [26] SL 551-2012, 土石坝安全监测技术规范[S]. 中华人民共和国水利部, 2012: 108-109.

    SL 551-2012, Technical specification for earth-rockfill dam safety monitoring[S]. Ministry of Water Resources of the PRC, 2012: 108-109.
    [27] 他金城, 谭立新, 张宗孝. 黄池沟配水枢纽分水池侧槽退水道水力特性试验研究[J]. 水资源与水工程学报, 2021, 32(2):141-145.

    TA Jincheng, TAN Lixin, ZHANG Zongxiao. Experiments on the hydraulic characteristics of the side channel spillway of the water allocation pool in Huangchigou Water Distribution Hub[J]. Journal of Water Resources and Water Engineering, 2021, 32(2):141-145.
    [28] 徐玲君, 陈刚, 李国栋, 薛阳. 薄壁堰泄流能力的数值模型计算及模拟自由水面的评价[J]. 西北农林科技大学学报(自然科学版), 2010, 38(1):225-230. doi: 10.13207/j.cnki.jnwafu.2010.01.006

    XU Lingjun, CHEN Gang, LI Guodong, XUE Yang. Numerical simulation about Rectangle Sharp-crested Weir and evaluation of free-surface[J]. Journal of Northwest A& F University (Natural Science Edition), 2010, 38(1):225-230. doi: 10.13207/j.cnki.jnwafu.2010.01.006
    [29] Cerino A E, Taddia G, Gizzi M, Lo R S. Reliability of spring recession curve analysis as a function of the temporal resolution of the monitoring dataset[J]. Environmental Earth Sciences, 2021, 80(7):249. doi: 10.1007/s12665-021-09529-2
    [30] 张春来, 黄芬, 蒲俊兵, 曹建华. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4):40-52.

    ZHANG Chunlai, HUANG Fen, PU Junbing, CAO Jianhua. Estimation of karst carbon sink fluxes and manual intervention to increase carbon sinks in China[J]. Geological Survey of China, 2021, 8(4):40-52.
    [31] 康志强, 陈骏, 袁道先, 何师意, 邓艳, 陈旸, 刘媛媛, 姜光辉, 张勤军. 岩溶关键带植被对水循环过程的影响作用研究[J]. 地球学报, 2021, 42(3):391-396. doi: 10.3975/cagsb.2020.080201

    KANG Zhiqiang, CHEN Jun, YUAN Daoxian, HE Shiyi, DENG Yan, CHEN Yang, LIU Yuanyuan, JIANG Guanghui, ZHANG Qinjun. The effect of vegetation on groundwater cycle in the critical zone of the karst area[J]. Acta Geoscientica Sinica, 2021, 42(3):391-396. doi: 10.3975/cagsb.2020.080201
    [32] Chang W, Wan J W, Tan J H, Wang Z X, Jiang C, Huang K. Responses of spring discharge to different rainfall events for single-conduit karst aquifers in western Hunan Province, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(11):5775-5775. doi: 10.3390/ijerph18115775
    [33] Luo M M, Chen Z H, Yin D C, Jakada H, Huang H, Zhou H, Wang T. Surface flood and underground flood in Xiangxi River Karst Basin: Characteristics, models, and comparisons[J]. Journal of Earth Science, 2016, 27(1):15-21. doi: 10.1007/s12583-016-0624-5
    [34] 万豪杰, 赵骏, 张松松, 张茹星. 永顺隧道岩溶涌水风险性评价及地下水流量衰减过程分析[J]. 安全与环境工程, 2019, 26(5):1-7, 16.

    WAN Haojie, ZHAO Jun, ZHANG Songsong, ZHANG Ruxing. Analysis of water flow and risk assessment of karst water gushing in Yongshun Tunnel[J]. Safety and Environmental Engineering, 2019, 26(5):1-7, 16.
    [35] Gan F L, He B H, Qin Z Y, Li W B. Role of rock dip angle in runoff and soil erosion processes on dip/anti-dip slopes in a karst trough valley[J]. Journal of Hydrology, 2020:588. doi: 10.1016/j.jhydrol.2020.125093
    [36] Zeng C, Liu Z H, Zhao M, Yang R. Hydrologically-driven variations in the karst-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Journal of Hydrology, 2016, 533:74-90. doi: 10.1016/j.jhydrol.2015.11.049
    [37] Zhang C, Yan J, Pei J G, Jiang Y J. Hydrochemical variations of epikarst springs in vertical climate zones: A case study in Jinfo Mountain National Nature Reserve of China[J]. Environmental Earth Sciences, 2011, 63(2):375-381. doi: 10.1007/s12665-010-0708-y
    [38] Liu Z H, Li Q, Sun H L, Wang J L. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1-2):207-223. doi: 10.1016/j.jhydrol.2007.01.034
    [39] 刘朋雨, 张连凯, 黄奇波, 覃小群. 外源水和外源酸对万华岩地下河系统岩溶碳汇效应的影响[J]. 中国岩溶, 2020, 39(1):17-23.

    LIU Pengyu, ZHANG Liankai, HUANG Qibo, QIN Xiaoqun. Effect of exogenous water and acid on karst carbon sink in the Wanhuayan underground river system[J]. Carsologica Sinica, 2020, 39(1):17-23.
    [40] 任坤, 潘晓东, 曾洁, 焦友军, 彭聪, 梁嘉鹏. 岩溶区不同土地利用下地下水碳同位素地球化学特征及生态意义[J]. 环境科学, 2019, 40(10):4523-4531.

    REN Kun, PAN Xiaodong, ZENG Jie, JIAO Youjun, PENG Cong, LIANG Jiapeng. Geochemical characteristics and ecological significance of carbon isotopes in groundwater under the influence of different land use types in karst areas[J]. Environmental Science, 2019, 40(10):4523-4531.
    [41] 李汇文, 王世杰, 白晓永, 操玥, 田义超, 罗光杰, 陈飞, 李琴, 吴路华, 王金凤, 王明明, 田诗琪, 邓元红, 胡泽银, 杨钰杰, 李朝君, 路茜, 习慧鹏, 陈欢, 冉晨, 罗旭玲. 气候变化及生态恢复对喀斯特槽谷碳酸盐岩风化碳汇的影响评估[J]. 生态学报, 2019, 39(16):6158-6172.

    LI Huiwen, WANG Shijie, BAI Xiaoyong, CAO Yue, TIAN Yichao, LUO Guangjie, CHEN Fei, LI Qin, WU Luhua, WANG Jinfeng, WANG Mingming, TIAN Shiqi, DENG Yuanhong, HU Zeyin, YANG Yujie, LI Chaojun, LU Xi, XI Huipeng, CHEN Huan, RAN Chen, LUO Xuling. Effects of climate change and ecological restoration on carbonate rock weathering carbon sequestration in the karst valley of Southwest China[J]. Acta Ecologica Sinica, 2019, 39(16):6158-6172.
    [42] 孙亚卿, 李春, 石剑. 长江流域夏季极端高温的年代际变化特征及其与大西洋多年代际振荡的关系[J]. 中国海洋大学学报(自然科学版), 2022, 52(2):13-22. doi: 10.16441/j.cnki.hdxb.20210079

    SUN Yaqing, LI Chun, SHI Jian. Interdecadal variation of Summer Extreme High Temperature in the Yangtze River and its relationship with Atlantic Multidecadal Oscillation[J]. Periodical of Ocean University of China, 2022, 52(2):13-22. doi: 10.16441/j.cnki.hdxb.20210079
    [43] Zhang C. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin, 2011, 56(35):3759-3765. doi: 10.1007/s11434-011-4404-4
    [44] Zhao M, Liu Z, Li H C, Zeng C, Yang R, Chen B, Yan H. Response of dissolved inorganic carbon (DIC) and δ13CDIC to changes in climate and land cover in SW China karst catchments[J]. Geochimica et Cosmochimica Acta, 2015, 165:123-136. doi: 10.1016/j.gca.2015.05.041
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  1423
  • HTML浏览量:  951
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 网络出版日期:  2023-03-07
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回