• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湘西北地区岩溶地下水水化学与氘氧同位素特征分析

廖驾 朱振华 彭毅 韦珊瑚 罗朝晖 刘状 徐强强 谢亘

廖 驾,朱振华,彭 毅,等. 湘西北地区岩溶地下水水化学与氘氧同位素特征分析[J]. 中国岩溶,2023,42(3):425-435, 481 doi: 10.11932/karst2023y003
引用本文: 廖 驾,朱振华,彭 毅,等. 湘西北地区岩溶地下水水化学与氘氧同位素特征分析[J]. 中国岩溶,2023,42(3):425-435, 481 doi: 10.11932/karst2023y003
LIAO Jia, ZHU Zhenhua, PENG Yi, WEI Shanhu, LUO Zhaohui, LIU Zhuang, XU Qiangqiang, XIE Gen. Analysis on D/18O and hydrochemical characteristics of karst groundwater in northwestern Hunan Province[J]. CARSOLOGICA SINICA, 2023, 42(3): 425-435, 481. doi: 10.11932/karst2023y003
Citation: LIAO Jia, ZHU Zhenhua, PENG Yi, WEI Shanhu, LUO Zhaohui, LIU Zhuang, XU Qiangqiang, XIE Gen. Analysis on D/18O and hydrochemical characteristics of karst groundwater in northwestern Hunan Province[J]. CARSOLOGICA SINICA, 2023, 42(3): 425-435, 481. doi: 10.11932/karst2023y003

湘西北地区岩溶地下水水化学与氘氧同位素特征分析

doi: 10.11932/karst2023y003
基金项目: 中国地质调查局项目(DD20211557, ZD20220309)
详细信息
    作者简介:

    廖驾(1987-),男,工程师,主要从事基础地质调查研究工作。E-mail:liaojia2143@163.com

    通讯作者:

    彭毅(1988-),男,助理工程师,主要从事生态地质调查研究工作。E-mail:zrzy_py@163.com

  • 中图分类号: P641.134

Analysis on D/18O and hydrochemical characteristics of karst groundwater in northwestern Hunan Province

  • 摘要: 湘西北地区岩溶地下水水化学研究是地下水资源合理开发与利用的保证,文章在全面采集区内地下水水样进行水化学和同位素分析的基础上,利用氘氧同位素和综合水文地球化学研究方法对该区地下水的来源与组分成因进行探讨。结果表明:(1)研究区内岩溶水化学特征整体上三个区之间差异不大,但各区之间地下水组分的来源与成因仍有较大的不同,其主要来源于碳酸盐岩矿物的溶滤,并伴有不同程度的石膏等其他矿物溶滤,在龙山地区(I区)以方解石/白云石、石膏溶滤为主;永顺—凤凰地区(Ⅱ区)内,酉水流域地下水主要以白云岩溶滤为主;武水流域地下水中钙镁离子浓度受灰岩、白云岩溶滤作用共同影响。石门地区(Ⅲ区)主要离子来源于灰岩溶滤,地下水中钠钾离子、氯离子有多种来源;(2)研究区内氘氧同位素体现出明显的大陆效应和高程效应,泉相对井和暗河地下水系统具有相对封闭性,氘盈余则反映泉相对于暗河是一种快循环、短停留时间的系统。

     

  • 图  1  研究区岩溶地下水采样点分布图

    Figure  1.  Distribution of karst groundwater sampling points in the study area

    图  2  岩溶地下水Piper三线图

    Figure  2.  Piper trigram of karst groundwater

    图  3  研究区岩溶地下水Gibbs图

    Figure  3.  Gibbs diagram of karst groundwater in the study area

    图  4  Mg/Ca与${\rm{HCO}}_3^{-}$关系

    Figure  4.  Relationship between Mg/Ca and ${\rm{HCO}}_3^{-}$

    图  5  矿物饱和指数与TDS的关系

    Figure  5.  Relationship between saturation index of mineral and TDS

    图  6  研究区地下水Ca2+与${\rm{SO}}_4^{2-}$关系图

    Figure  6.  Relationship between Ca2+ and ${\rm{SO}}_4^{2-}$ of Groundwater in the study area

    图  7  研究区地下水Ca2++Mg2+-${\rm{HCO}}_3^{-}$-${\rm{SO}}_4^{2-}$与Na++K+-Cl关系图

    Figure  7.  Relationship between Ca2++Mg2+-${\rm{HCO}}_3^{-}$-${\rm{SO}}_4^{2-}$and Na++K+-Cl of groundwater in the study area

    图  8  研究区地下水K++Na+与Cl关系图

    Figure  8.  Relationship between (K++Na+) and Cl of groundwater in the study area

    图  9  地下水的δD-δ18O关系

    Figure  9.  δD - δ18O relationship of different water bodies

    图  10  δ18O和取样点高程的关系

    Figure  10.  Relationship between δ18O and elevation of sampling point

    图  11  δD和取样点高程的关系

    Figure  11.  Relationship between δD and the elevation of sampling point

    图  12  不同岩溶区d值变化

    Figure  12.  Variation of d values in different karst areas

    表  1  研究区地下水水化学统计表

    Table  1.   Statistical table of groundwater hydrochemistry in the study area

    统计项pHK+Na+Ca2+Mg2+Cl${\rm{SO}}_4^{2-}$${\rm{HCO}}_3^{-}$TDS
    Ⅰ区最小值6.810.6928.104.680.512.22109.8339.80
    最大值8.462.0311.70120.0025.715.3016.10378.31157.00
    均值7.841.122.2949.2512.502.659.09188.4276.89
    标准偏差0.440.403.6526.826.824.513.9575.1831.49
    变异系数0.060.361.590.540.551.710.430.400.41
    Ⅱ区最小值6.940.0846.202.960.456.85167.1872.00
    最大值8.2011.8011.3087.0050.0010.4081.1402.71214.00
    均值7.382.261.4566.8128.663.4021.90269.75124.46
    标准偏差0.292.662.7410.7413.692.5918.9462.1332.50
    变异系数0.041.181.890.160.480.760.860.230.26
    Ⅲ区最小值6.600.7347.502.612.2412.30128.1478.10
    最大值8.116.976.43128.0014.2013.7069.40352.68189.00
    均值7.322.231.5787.348.176.2134.86219.93140.47
    标准偏差0.481.922.1629.233.283.8018.9776.9942.65
    变异系数0.070.861.380.330.400.610.540.350.30
    注:pH无量纲,其余水化学组分单位均为(mg·L−1), “−”表示未检出。
    Note: pH is dimensionless. For other hydrochemical components, the units are all mg·L−1,"−" indicates that it is not detected.
    下载: 导出CSV

    表  2  岩溶水SAR值计算结果统计

    Table  2.   Statistics of the SAR value of karst water

    区域项目SAR
    Ⅰ区最大值3.43
    最小值0
    平均值0.67
    Ⅱ区最大值0.96
    最小值0
    平均值0.14
    Ⅲ区最大值0.78
    最小值0
    平均值0.22
    下载: 导出CSV

    表  3  地下水δD-δ18O特征

    Table  3.   Characteristics of δD-δ18O in groundwater

    变化范围/‰平均值/‰δ18O与δD关系
    δ18OV-SMOW−6.00~-8.44−6.88δD=6.57δ18O+2.74,R2=0.84
    δDV-SMOW−36.80~53.66−42.57
    下载: 导出CSV

    表  4  不同水体氢氧同位素特征及d值

    Table  4.   Characteristics of hydrogen and oxygen isotopes and d values in different water bodies

    类型δ18O变化范围/‰δ18O平均值/‰δD变化范围/‰δD平均值/‰d变化范围/‰d平均值/‰
    −8.44~−6.12−6.60−53.66~−38.47−40.479.24~16.7412.83
    −6.69~−6.57−6.63−43.47~−38.97−41.2210.06~13.6211.84
    地下暗河−7.78~−6.00−6.80−51.11~−36.80−43.778.23~11.8710.62
    下载: 导出CSV
  • [1] 巩书华, 朱丽芬. 湘西北地质地貌特征对岩溶石漠化影响研究:以张家界市为例[J]. 中国岩溶, 2021, 40(3):504-512.

    GONG Shuhua, ZHU Lifen. Influence of geological and geomorphologic features on karst rocky desertification in northwestern Hunan Province: A case study of Zhangjiajie City[J]. Carsologica Sinica, 2021, 40(3):504-512.
    [2] 蒋忠诚, 张晶, 黄超, 容悦冰, 吴亮君. 湘西地质公园岩溶峡谷群成因及其地学意义[J]. 中国岩溶, 2019, 38(2):269-275.

    JIANG Zhongcheng, ZHANG Jing, HUANG Chao, RONG Yuebing, WU Liangjun. Causes of formation and geo-scientific significance of karst gorge group in Xiangxi geopark[J]. Carsologica Sinica, 2019, 38(2):269-275.
    [3] 何师意, 周锦忠, 曾飞跃. 岩溶地下河流域地下水资源评价:以湖南湘西大龙洞为例[J]. 水文地质工程地质, 2007(5):33-36. doi: 10.3969/j.issn.1000-3665.2007.05.009

    HE Shiyi, ZHOU Jinzhong, ZENG Feiyue. Assessment on the karst water resources of Dalongdong underground river catchment of Xiangxi[J]. Hydrogeology & Engineering Geology, 2007(5):33-36. doi: 10.3969/j.issn.1000-3665.2007.05.009
    [4] 管清花, 李福林, 王爱芹, 冯平, 田婵娟, 陈学群, 刘丹. 济南市岩溶泉域地下水化学特征与水环境演化[J]. 中国岩溶, 2019, 38(5):653-662.

    GUAN Qinghua, LI Fulin, WANG Aiqin, FENG Ping, TIAN Chanjuan, CHEN Xuequn, LIU Dan. Hydrochemistry characteristics and evolution of karst spring groundwater system in Jinan[J]. Carsologica Sinica, 2019, 38(5):653-662.
    [5] 刘再华, 袁道先, 何师意. 岩溶动力系统水化学动态变化规律分析[J]. 中国岩溶, 1999, 18(2):3-8. doi: 10.3969/j.issn.1001-4810.1999.02.001

    LIU Zaihua, YUAN Daoxian, HE Shiyi. Analysis on the variation of hydrochemistry in karst dynamic system[J]. Carsologica Sinica, 1999, 18(2):3-8. doi: 10.3969/j.issn.1001-4810.1999.02.001
    [6] 郭清海. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 2020, 94(12):3544-3554. doi: 10.3969/j.issn.0001-5717.2020.12.002

    GUO Qinghai. Magma-heated geothermal systems and hydrogeochemical evidence of their occurrence[J]. Acta Geologica Sinica, 2020, 94(12):3544-3554. doi: 10.3969/j.issn.0001-5717.2020.12.002
    [7] 苏春利, 张雅, 马燕华, 刘文波. 贵阳市岩溶地下水水化学演化机制:水化学和锶同位素证据[J]. 地球科学, 2019, 44(9):2829-2838.

    SU Chunli, ZHANG Ya, MA Yanhua, LIU Wenbo. Hydrochemical evolution processes of karst groundwater in Guiyang City: Evidences from hydrochemistry and 87Sr/86Sr ratios[J]. Earth Science, 2019, 44(9):2829-2838.
    [8] Andres Marandi, Paul Shand. Groundwater chemistry and the Gibbs Diagram[J]. Applied Geochemistry, 2018, 97: 209-212.
    [9] 刘伟江, 袁祥美, 张雅, 马燕华, 苏春利. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技情报, 2018, 37(6):245-251. doi: 10.19509/j.cnki.dzkq.2018.0631

    LIU Weijiang, YUAN Xiangmei, ZHANG Ya, MA Yanhua, SU Chunli. Hydrochemical characteristics and evolution of karst groudwater in Guiyang City[J]. Geological Science and Technology Information, 2018, 37(6):245-251. doi: 10.19509/j.cnki.dzkq.2018.0631
    [10] 侯俊华, 谢春雷, 张冬. 东滩矿奥陶系灰岩地下水水化学特征与成因[J]. 山东煤炭科技, 2021, 39(10):177-180. doi: 10.3969/j.issn.1005-2801.2021.10.060

    HOU Junhua, XIE Chunlei, ZHANG Dong. Hydrochemical characteristics and genesis of underground water of Ordovician limestone in Dongtan mine[J]. Shandong Coal Science and Technology, 2021, 39(10):177-180. doi: 10.3969/j.issn.1005-2801.2021.10.060
    [11] 王东海, 李春, 高焰, 李大秋. 人类活动对济南泉域地下水水质的影响[J]. 中国环境监测, 2003, 19(5):18-21. doi: 10.3969/j.issn.1002-6002.2003.05.006

    WANG Donghai, LI Chun, GAO Yan, LI Daqiu. Effect on groundwater quality of Jinan spring region by human activity[J]. Environmental Monitoring in China, 2003, 19(5):18-21. doi: 10.3969/j.issn.1002-6002.2003.05.006
    [12] 唐金平, 胡漾, 张强, 何文君, 朱志强, 牛佚凡. 湔江冲洪积扇地下水氮分布特征及灌溉用水适宜性评价[J]. 中国农村水利水电, 2019(10):28-33. doi: 10.3969/j.issn.1007-2284.2019.10.006

    TANG Jinping, HU Yang, ZHANG Qiang, HE Wenjun, ZHU Zhiqiang, NIU Yifan. Characteristics of groundwater nitrogen distribution and suitability evaluation of irrigation water in alluvial-diluvial fan of Jianjiang river[J]. China Rural Water and Hydropower, 2019(10):28-33. doi: 10.3969/j.issn.1007-2284.2019.10.006
    [13] 贾超, 王丛, 刘森, 杨霄, 刘文, 高帅, 朱恒华. 济南西部冲积平原地下水水文地球化学特征研究[J]. 水利水电技术(中英文), 2022, 53(3):49-60.

    JIA Chao, WANG Cong, LIU Sen, YANG Xiao, LIU Wen, GAO Shuai, ZHU Henghua. Study on hydrogeochemical characteristic of groundwater in the alluvial plain of western Jinan[J]. Water Resources and Hydropower Engineering, 2022, 53(3):49-60.
    [14] 张世殊, 冉从彦, 许模, 郭建平. 开茂水库岩溶地下水水文地球化学特征研究[J]. 地下水, 2020, 42(5):17-20. doi: 10.19807/j.cnki.DXS.2020-05-005

    ZHANG Shishu, RAN Congyan, XU Mo, GUO Jianping. Hydrochemical characteristics of karst water in Kaimao reservoir[J]. Ground Water, 2020, 42(5):17-20. doi: 10.19807/j.cnki.DXS.2020-05-005
    [15] 仝晓霞, 刘存富. 西北干寒区冰雪融水氢氧同位素水文地质意义[J]. 环境科学与技术, 2018, 41(1):57-63. doi: 10.19672/j.cnki.1003-6504.2018.01.011

    TONG Xiaoxia, LIU Cunfu. Hydrogeological significance of hydrogen and oxygen isotopes in ice and snow melting water in northwest arid region[J]. Environmental Science & Technology, 2018, 41(1):57-63. doi: 10.19672/j.cnki.1003-6504.2018.01.011
    [16] Zhang Yinghua, WU Y, SU J, WEN X, LIU F. Groundwater replenishment analysis by using natural isotopes in Ejina basin, Northwestern China[J]. Environmental Geology, 2006, 48(1):6-14. doi: 10.1007/s00254-004-1214-x
    [17] 赵家成, 魏宝华, 肖尚斌. 湖北宜昌地区大气降水中的稳定同位素特征[J]. 热带地理, 2009, 29(6):526-531. doi: 10.3969/j.issn.1001-5221.2009.06.004

    ZHAO Jiacheng, WEI Baohua, XIAO Shangbin. Stable isotopic characteristics of atmospheric precipitation from Yichang, Hubei[J]. Tropical Geography, 2009, 29(6):526-531. doi: 10.3969/j.issn.1001-5221.2009.06.004
    [18] 黄一民, 章新平, 唐方雨, 吴华武, 张剑明. 长沙大气降水中稳定同位素变化及过量氘指示水汽来源[J]. 自然资源学报, 2013, 28(11):1945-1954. doi: 10.11849/zrzyxb.2013.11.011

    HUANG Yimin, ZHANG Xinping, TANG Fangyu, WU Huawu, ZHANG Jianming. Variations of precipitation stable isotope and vapor origins revealed by deuterium excess in Changsha[J]. Journal of Natural Resources, 2013, 28(11):1945-1954. doi: 10.11849/zrzyxb.2013.11.011
    [19] 张明亮. 滇东黔西地下水氢氧同位素特征[J]. 四川地质学报, 2019, 39(3):508-511. doi: 10.3969/j.issn.1006-0995.2019.03.032

    ZHANG Mingliang. The δ18O and δD values of groundwater in east Yunnan and west Guizhou[J]. Acta Geologica Sichuan, 2019, 39(3):508-511. doi: 10.3969/j.issn.1006-0995.2019.03.032
    [20] 焦艳军, 王广才, 崔霖峰, 韩永, 胡亚男, 陈鲁. 济源盆地地表水和地下水的水化学及氢、氧同位素特征[J]. 环境化学, 2014, 33(6):962-968. doi: 10.7524/j.issn.0254-6108.2014.06.023

    JIAO Yanjun, WANG Guangcai, CUI Linfeng, HAN Yong, HU Yanan, CHEN Lu. Characteristics of hydrochemistry and stable hydrogen, oxygen isotopes in surface water and groundwater in Jiyuan basin[J]. Environmental Chemistry, 2014, 33(6):962-968. doi: 10.7524/j.issn.0254-6108.2014.06.023
    [21] Joussaume S, Sadourny R, Jouzel J. A general-circulation model of water, of water isotope cycles in the atmosphere[J]. Nature, 1984, 311(5981):24-29. doi: 10.1038/311024a0
    [22] 尹观, 倪师军. 地下水氘过量参数的演化[J]. 矿物岩石地球化学通报, 2001(4):409-411. doi: 10.3969/j.issn.1007-2802.2001.04.057

    YIN Guan, NI Shijun. Deuterium excess parameter evolution in ground water[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001(4):409-411. doi: 10.3969/j.issn.1007-2802.2001.04.057
    [23] Long X, Sun Z Y, Zhou A G, Liu D L. Hydrogeochemical and isotopic evidence for flow paths of karst waters collected in the Heshang cave, Central China[J]. Journal of Earth Science, 2015, 26(1):149-156
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1041
  • HTML浏览量:  663
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回