• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

被动源面波法在城市居民区建筑间的应用

邬健强 陈松 徐俊杰 郑智杰 刘永亮 王越

邬健强,陈 松,徐俊杰,等. 被动源面波法在城市居民区建筑间的应用[J]. 中国岩溶,2023,42(6):1322-1330 doi: 10.11932/karst20230613
引用本文: 邬健强,陈 松,徐俊杰,等. 被动源面波法在城市居民区建筑间的应用[J]. 中国岩溶,2023,42(6):1322-1330 doi: 10.11932/karst20230613
WU Jianqiang, CHEN Song, XU Junjie, ZHENG Zhijie, LIU Yongliang, WANG Yue. Application of the method of passive surface wave to the exploration of urban residential area[J]. CARSOLOGICA SINICA, 2023, 42(6): 1322-1330. doi: 10.11932/karst20230613
Citation: WU Jianqiang, CHEN Song, XU Junjie, ZHENG Zhijie, LIU Yongliang, WANG Yue. Application of the method of passive surface wave to the exploration of urban residential area[J]. CARSOLOGICA SINICA, 2023, 42(6): 1322-1330. doi: 10.11932/karst20230613

被动源面波法在城市居民区建筑间的应用

doi: 10.11932/karst20230613
基金项目: 中国地质调查局项目(DD20230237);国家自然科学基金(42107485);
详细信息
    作者简介:

    邬健强(1990-),男,工程师,主要从事岩溶灾害及地下水勘探方法研究。E-mail:1191261549@qq.com

    通讯作者:

    陈松(1985-),男,高级工程师,主要从事近地表地震体波、面波成像方面研究。E-mail:anhuisongchen@163.com

  • 中图分类号: P631.4

Application of the method of passive surface wave to the exploration of urban residential area

  • 摘要: 城镇中的人文噪声和工业生产对传统的地球物理调查方法(重、磁、电、震)有极大的干扰限制,鉴于此,文章采用抗干扰能力强、受场地条件影响小的被动源面波法在城市居民区进行地下空间勘探的应用。研究结果表明:(1)被动源面波法在城市地区地下空间勘探中是一种有效的物探方法,其施工排列灵活多变,适应性强且不受外界干扰;(2)根据扩展的空间自相关法(ESPAC)处理得到视横波速度剖面能有效地对地下土洞、岩溶破碎带及溶洞等进行响应;(3)结合多条网状测线剖面结果,绘制不同深度的视横波速度水平切片图能有效对地下空间结构进行评价。

     

  • 图  1  研究区地质简图

    1. 泥盆系上统融县组上段灰岩 2. 第四系全新统桂平组黏土 3. 第三系上统南康组碎屑岩 4. 湖泊 5. 公路 6. 物探测区

    Figure  1.  Geology of the study area

    1. Dolomite of the upper segment of Devonian Upper Rongxian Formation 2. Clay of Quaternary Holocene Guiping Formation 3. Clastic rocks of Upper Tertiary Nankang Formation 4. Lakes 5. Highway 6. Testing zone of geophysical prospecting

    图  2  物探测线布置图

    Figure  2.  layout of geophysical prospecting

    图  3  实际野外数据采集示意图

    Figure  3.  Schematic map of field data acquisition

    图  4  H1线被动源面波原始数据图

    Figure  4.  Original data map of passive surface wave of Line H1

    图  5  H1线1-11道被动源面波原始数据图

    Figure  5.  Original data map of passive surface wave for traces 1-11 of Line H1

    图  6  V1-V2视横波速度剖面图

    Figure  6.  Apparent S-wave velocity profiles of Lines V1-V2

    图  7  H1-H5线视横波速度剖面图

    Figure  7.  Apparent S-wave velocity profiles of Lines H1-H5

    图  8  不同深度视横波速度切片图

    Figure  8.  Slice maps of apparent S-wave velocity at different depths

    图  9  综合物探解译平面图

    Figure  9.  Plan map of comprehensive geophysical interpretation

    表  1  各测线推测的异常位置统计表

    Table  1.   Inferred abnormal position of each survey line

    测线点号/m面波测量点号/m推测异常位置/m
    H156~15066~14080~88,98~104,110~130
    H250~11860~10894~102
    H348~13858~12882~90,120~128
    H450~14860~14062~70,84~90,122~130
    H556~12066~11088~94,96~104
    V150~10860~9864~72,92~98
    V248~11058~10088~98
    下载: 导出CSV

    表  2  各测线不同介质的视横波速度统计表

    Table  2.   Apparent shear wave velocity of different medium for each survey line

    测线覆盖层/m·s−1破碎灰岩/m·s−1充水溶洞/m·s−1完整灰岩/m·s−1
    H1220~380400~490370~430580~850
    H2220~370390~480350~400580~850
    H3220~350400~480340~420580~850
    H4220~360400~500350~410580~850
    H5220~370400~510360~420580~850
    V1240~380410~480360~410600~920
    V2240~360400~470370~420600~920
    下载: 导出CSV
  • [1] 黄健民, 吕镁娜, 郭宇, 陈小月. 广州金沙洲岩溶地面塌陷地质灾害成因分析[J]. 中国岩溶, 2013, 32(2):167-174.

    HUANG Jianmin, LV Meina, GUO Yu, CHEN Xiaoyue. Research on the reason for geologic disaster by karst surface collapse at Jinshazhou in Guangzhou[J]. Carsologica Sinica, 2013, 32(2):167-174.
    [2] Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin Earthquake Research Institute, 1957, 35(3):415-456.
    [3] Okada H, Suto K, Asten M W. The microtremor survey method[M]. Tulsa, USA: Society of Exploration Geophysicists, 2004.
    [4] Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quarterly Report of RTRI, 1989, 30(1):25-33.
    [5] Louie J N. Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays[J]. Bulletin of the Seismological Society of America, 2001, 91(2):347-364. doi: 10.1785/0120000098
    [6] Park C B, Miller R D. Roadside passive multichannel analysis of surface waves (MASW)[J]. Journal of Environmental & Engineering Geophysics, 2008, 13(1): 1-11.
    [7] 孙勇军, 徐佩芬, 凌甦群, 李传金. 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009, 24(1):326-334.

    SUN Yongjun, XU Peifen, LING Suqun, LI Chuanjin. Microtremor survey method and its progress[J]. Progress in Geophysics, 2009, 24(1):326-334.
    [8] 叶太兰. 微动台阵探测技术及其应用研究[J]. 中国地震, 2004, 20(1):47-52. doi: 10.3969/j.issn.1001-4683.2004.01.005

    YE Tailan. The exploration technique for microtremor array and its application[J]. Eathquake Research in China, 2004, 20(1):47-52. doi: 10.3969/j.issn.1001-4683.2004.01.005
    [9] 丁连靖, 冉伟彦. 天然源面波频率–波数法的应用[J]. 物探与化探, 2005, 29(2): 138-141, 145.

    DING Lianjing, RAN Weiyan. The application of natural source surface wave frequency-waves method[J]. Geophysical & Geochemical Exploration, 2005, 29(2): 138-141, 145.
    [10] 赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2010, 34(6):759-764.

    ZHAO Dong. Passive surface waves: Methods and applications[J]. Geophysical & Geochemical Exploration, 2010, 34(6):759-764.
    [11] 刘伟, 甘伏平, 赵伟, 陈玉玲. 高密度电法与微动技术组合在岩溶塌陷分区中的应用分析:以广西来宾吉利塌陷为例[J]. 中国岩溶, 2014, 33(1):118-122.

    LIU Wei, GAN Fuping, ZHAO Wei, CHEN Yuling. Application analysis of combining high density resistivity and microtremor survey methods in areas of karst collapse: A case study of the collapse in Jili village, Laibin, Guangxi[J]. Carsologica Sinica, 2014, 33(1):118-122.
    [12] 梁东辉, 甘伏平, 张伟, 韩凯. 微动HVSR法在岩溶区探测地下河管道和溶洞的有效性研究[J]. 中国岩溶, 2020, 39(1):97-102.

    LIANG Donghui, GAN Fuping, ZHANG Wei, HAN Kai. Study on the effectiveness of the microtremor HVSR method in detecting underground river pipelines and caves in karst areas[J]. Carsologica Sinica, 2020, 39(1):97-102.
    [13] Liang D H, Gan F P, Zhang W, Jia L. The application of HVSR method in detecting sediment thickness in karst collapse area of Pearl River Delta, China[J]. Environmental Earth Sciences, 2018, 77(6):259. doi: 10.1007/s12665-018-7439-x
    [14] 张伟, 甘伏平, 梁东辉, 韩凯, 刘伟. 利用微动法快速探测岩溶塌陷区覆盖层厚度研究[J]. 人民长江, 2016, 47(24):51-54.

    ZHANG Wei, GAN Fuping, LIANG Donghui, HAN Kai, LIU Wei. Application of microtremor exploration in quick inspection of overburden layer thickness in karst collapse area[J]. Yangtze River, 2016, 47(24):51-54.
    [15] 何正勤, 丁志峰, 贾辉, 叶太兰. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 2007, 50(2):492-498. doi: 10.3321/j.issn:0001-5733.2007.02.021

    HE Zhengqing, DING Zhifeng, JIA Hui, YE Tailan. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 2007, 50(2):492-498. doi: 10.3321/j.issn:0001-5733.2007.02.021
    [16] 何正勤, 胡刚, 鲁来玉, 张维, 叶太兰, 沈坤. 云南通海盆地的浅层速度结构[J]. 地球物理学报, 2013, 56(11):3819-3827. doi: 10.6038/cjg20131123

    HE Zhengqin, HU Gang, LU Laiyu, ZHANG Wei, YE Tailan, SHEN Kun. The shallow velocity structure for the Tonghai basin in Yunnan[J]. Chinese Journal of Geophysics, 2013, 56(11):3819-3827. doi: 10.6038/cjg20131123
    [17] 王伟君, 刘澜波, 陈棋福, 张杰. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 2009, 52(6):1515-1525.

    WANG Weijun, LIU Lanbo, CHEN Qifu, ZHANG Jie. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 2009, 52(6):1515-1525.
    [18] Foti S, Parolai S, Albarello D, Picozzi M. Application of surface-wave methods for seismic site characterization[J]. Surveys in Geophysics, 2011, 32(6):777-825.
    [19] Wang C F, Zhang J, Yan L H, Liu H, Zhao D. Application of passive source surface-wave method in site engineering seismic survey[J]. Earthquake Science, 2014, 27(1):101-106. doi: 10.1007/s11589-014-0065-0
    [20] Xu P F, Ling S Q, Li C J, Du J G, Zhang D M, XU X Q, Dai K M, Zhang Z H. Mapping deeply-buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 2012, 188(1):115-122. doi: 10.1111/j.1365-246X.2011.05266.x
    [21] 徐佩芬, 李世豪, 杜建国, 凌苏群, 郭慧丽, 田宝卿. 微动探测: 地层分层和隐伏断裂构造探测的新方法[J], 岩石学报, 2013, 29(5): 1841-1845.

    XU Peifen, LI Shihao, DU Jianguo, LING Suqun, GUO Huili, TIAN Baoqing. Microtermor survey method: A new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 2013, 29(5): 1841-1845.
    [22] 徐佩芬, 侍文, 凌苏群, 郭慧丽, 李志华. 二维微动剖面探测“孤石”: 以深圳地铁7号线为例[J]. 地球物理学报, 2012, 55(6): 2120-2128.

    XU Peifen, SHI Wen, LING Suqun, GUO Huili, LI Zhihua. Mapping spherically weathered "Boulders" using 2D microtremor profiling method: A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012, 55(6): 2120-2128.
    [23] 廖武林, 林亚洲, 李井冈, 王秋良, 姚运生, 张丽芬. 微动探测方法在武汉后湖勘察中的应用[J]. 地震工程与工程振动, 2014, 34(Suppl.1):173-177.

    LIAO Wulin, LIN Yazhou, LI Jinggang, WANG Qiuliang, YAO Yunsheng, ZHANG Lifen. Application of microtremor method in survey of Houhu district, Wuhan[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(Suppl.1):173-177.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  106
  • HTML浏览量:  41
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-11
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回