Analysis of critical safety distance between tunnel and concealing filled karst cave in the karst area
-
摘要: 当隧道施工穿越喀斯特地貌发育区时,隧道应与溶洞保持一定的距离,确保隧道围岩及支护的稳定性。为探究隧道与岩溶的临界安全距离,综合采用理论计算与数值试验方法,基于强度理论,建立不同部位充填溶洞(顶部、底部、侧部)临界安全距离的计算模型,推导出隧道与环向不同位置溶洞临界安全距离计算公式;采用FLAC 3D软件建立环向不同位置溶洞与隧道间的临界安全距离数值模型,基于正交试验设计方法,分析了围岩级别、溶洞水压、溶洞尺寸对临界安全距离的影响规律和显著性。结果表明:隧道与环向不同部位溶洞间的临界安全距离均随围岩级别、溶洞水压及溶洞尺寸的增大而增大,综合影响程度从大到小可排序为围岩级别>溶洞水压>溶洞尺寸;结合试验结果的非线性多元回归分析建立了临界安全距离预测公式;最后将研究成果应用于阳宗隧道项目来验证临界安全距离预测模型的合理性及适用性。Abstract:
If the tunnel construction work is done in the karst area, the tunnel shall keep a certain distance from the karst cave to ensure the stability of the surrounding rock and support. If the distance between the tunnel and the filled karst cave with high water pressure is short, it is easy to cause the instability and damage of tunnel face or the circumferential surrounding rock, thus resulting in karst water inrush, mud inrush, collapse and other disasters. Especially, the karst cave concealing around the tunnel is often difficult to be accurately predicted. Therefore, the study of the critical safety distance between the karst cave and the tunnel plays a vital role in the evaluation and prevention of disasters caused by concealing filled karst cave. Studies on the critical safety distance between tunnel and karst cave can be divided into qualitative research, semi-quantitative research and quantitative research. Qualitative research, such as judging the influence degree of karst cave on tunnel through numerical analysis, is generally conducted to comprehensively analyze the factors affecting the stability of structure for water burst prevention and obtain the empirical critical safety value. Semi-quantitative research mainly focuses on theoretical calculation, which can be roughly sub-divided into three types: simplified beam slab model based on strength theory, catastrophe theory model and the model of crack tension-compression shear based on fracture mechanics. Mainly focusing on numerical simulation, quantitative research is conducted to set up multiple groups of numerical tests for calculation, and to obtain the calculation model of safety distance through linear regression. The safety distance between the tunnel and the filled karst cave can be explored by theoretical calculation and numerical simulation test. Based on the bending and shear strength theory, the mechanical calculation models of the filled karst cave at the top, bottom and side of the tunnel are established by using the fixed beam model at both ends. Meanwhile, the self-weight of the internal filler and the pore water pressure are taken into account. Given the influence of the surrounding rock pressure above the karst cave on the waterproof rock stratum, the critical safety distance between the tunnel and the karst cave can be explored, and the calculation formula of the distance in different circumferential positions can be deduced. However, this formula does not consider the excavation effect of the tunnel and the process of support, nor can it reflect the changes of the displacement, stress and plastic zone of the surrounding rock. Therefore, it is difficult to obtain a universal formula to express relationship. It is necessary to supplement the predicted safety distance with the help of numerical simulation. In this study, the numerical model of the critical safety distance between the filled karst cave and the tunnel at different circumferential positions was established by FLAC 3D software. Based on the method of orthogonal experimental design (a total of 48 numerical test schemes), the stability of surrounding rock has been evaluated by the distribution range of plastic zone of surrounding rock caused by tunnel excavation. If the plastic zone connects the tunnel with the karst cave, the distance between these two indicates that the surrounding rock is unstable, and thereby the critical safety distance can be calculated. The results of critical safety distance under different working conditions were also analyzed by range analysis and variance analysis. Besides, the law and significance of three influencing factors—the level of surrounding rock, the water pressure in karst cave and the karst cave size—on the critical safety distance were explored. Through the nonlinear multiple regression analysis of the orthogonal test results, the prediction formula of the critical safety distance between the filled karst cave and the tunnel at different circumferential positions was established respectively. The results show that the critical safety distance increases with the increase of surrounding rock level, pressure of karst cave water and the karst cave size. The comprehensive influence degree of the three factors can be ranked from the strongest to the weakest as follows: the surrounding rock level, the pressure of karst cave water and karst cave size. Finally, the research results were applied to Yangzong tunnel project to verify the rationality and applicability of the prediction model of critical safety distance. The results show that the safety distance predicted based on the strength theory is relatively conservative, and the predicted results based on the numerical test are close to the reserved distance. The predicted results have a certain reference for the project of karst tunnel with water abundance. -
表 1 溶洞充填物物理力学参数
Table 1. Physical and mechanical parameters of cave filling
参数 重度γ 粘聚力$c$ 摩擦角$\varphi $ 弹性模量E 泊松比μ kN·m−3 kPa ° MPa 溶洞充填物 18 1.0 26 7 0.26 表 2 各影响因素的水平值
Table 2. Level value of each influence factor
水平取值 围岩级别A 溶洞直径D 水压P m MPa 1 Ⅲ1 5 0.8 2 Ⅲ2 10 1.2 3 Ⅳ1 15 1.6 4 Ⅳ2 20 2.0 表 3 围岩级别的各因子取值范围
Table 3. Value range of each factor of surrounding rock level
围岩级别 重度γ 粘聚力c 摩擦角φ 弹性模量E 泊松比μ kN·m−3 MPa ° GPa Ⅲ1 24 1.0 41 9 0.26 Ⅲ2 23 0.8 39 7 0.28 Ⅳ1 22 0.6 37 5 0.30 Ⅳ2 21 0.4 35 3 0.32 表 4 L16(44)正交试验方案及结果
Table 4. Scheme and results of L16(44) orthogonal test
编号 围岩级别A 溶洞水压P 溶洞直径D 误差项e 临界安全距离 - MPa m - St/m Sb/m Ss/m 1 Ⅲ1 0.8 5 1 1.1 1.1 1.0 2 Ⅲ1 1.2 10 2 1.5 2.2 1.3 3 Ⅲ1 1.6 15 3 1.9 3.5 1.4 4 Ⅲ1 2.0 20 4 2.5 4.8 1.6 5 Ⅲ2 0.8 10 3 1.9 1.9 1.4 6 Ⅲ2 1.2 5 4 1.7 1.9 1.4 7 Ⅲ2 1.6 20 1 2.6 4.4 1.8 8 Ⅲ2 2.0 15 2 3.3 5.2 2.0 9 Ⅳ1 0.8 15 4 2.9 2.8 2.2 10 Ⅳ1 1.2 20 3 2.9 4.0 2.3 11 Ⅳ1 1.6 5 2 2.7 3.4 2.1 12 Ⅳ1 2.0 10 1 4.0 5.6 2.4 13 Ⅳ2 0.8 20 2 4.3 4.1 3.1 14 Ⅳ2 1.2 15 1 4.2 5.2 3.0 15 Ⅳ2 1.6 10 4 4.8 6.0 3.0 16 Ⅳ2 2.0 5 3 5.1 5.8 3.2 表 5 临界安全距离极差表
Table 5. Range table of critical safety distance
影响因素 St/m Sb/m Ss/m 围岩
级别A溶洞
水压P溶洞
直径D误差列 围岩
级别A溶洞
水压P溶洞
直径D误差列 围岩
级别A溶洞
水压P溶洞
直径D误差列 K1 7.00 10.20 10.60 11.90 11.60 9.90 12.20 16.30 5.30 7.70 7.70 8.20 K2 9.50 10.30 12.20 11.80 13.40 13.30 15.70 14.90 6.60 8.00 8.10 8.50 K3 12.50 120 12.30 11.80 15.80 17.30 16.70 15.20 9.00 8.30 8.60 8.30 K4 18.40 14.90 12.30 11.90 21.10 21.40 17.30 15.50 12.30 9.20 8.80 8.20 k1 1.75 2.55 2.65 2.98 2.90 2.48 3.05 4.08 1.33 1.93 1.93 2.05 k2 2.38 2.58 3.05 2.95 3.35 3.33 3.93 3.73 1.65 2.00 2.03 2.13 k3 3.13 3.00 3.08 2.95 3.95 4.33 4.18 3.80 2.25 2.08 2.15 2.08 k4 4.60 3.73 3.08 2.98 5.28 5.35 4.33 3.88 3.08 2.30 2.20 2.05 极差R 11.4 4.7 1.7 0.1 9.5 11.5 5.1 1.4 7.0 1.5 1.1 0.3 表 6 临界安全距离方差表
Table 6. Variance table of critical safety distance
影响
因素St/m Sb/m Ss/m 围岩
级别A溶洞
水压P溶洞
直径D误差
列围岩
级别A溶洞
水压P溶洞
直径D误差
列围岩
级别A溶洞
水压P溶洞
直径D误差
列SS 18.092 3.612 0.552 0.003 12.767 18.567 3.902 0.272 7.095 0.315 0.185 0.015 df 3 3 3 3 3 3 3 3 3 3 3 3 MS 6.031 1.204 0.174 0.001 4.256 6.187 1.301 0.091 2.365 0.105 0.062 0.005 F 6 031 1 204 174 − 46.77 67.99 14.3 − 473 21 12.4 − 显著性 显著 显著 显著 − 显著 显著 有影响 − 显著 有影响 有影响 − 注:F0.05(3,3)=9.28,F0.01(3,3)=29.46,其中:SS-离差平方和,df-自由度,MS-均方离差。
Note: F0.05(3, 3)=9.28, F0.01(3, 3)=29.46; SS: Sum of Squares, df: degree of freedom, MS: mean square deviation.表 7 岩溶区灰岩物理力学参数指标
Table 7. Physical and mechanical parameters of limestone in the karst area
岩性参数 重度 抗压强度 抗弯强度 抗剪强度 kN·m−3 MPa MPa MPa 灰岩 22 28 4.2 2.52 -
[1] 王泽峰, 钟世航. 陆地声纳法在探测岩溶区高铁隧道基底隐患中的应用[J]. 中国岩溶, 2019, 38(4): 573-577.WANG Zefeng, ZHONG Shihang. Application of the landsonar to detecting hidden hazards of tunnel base on high-speed railway in karst areas[J]. Carsologica Sinica, 2019, 38 (4): 573-577 [2] 陈洪松, 岳跃民, 王克林. 西南喀斯特地区石漠化综合治理: 成效、问题与对策[J]. 中国岩溶, 2018, 37(1): 37-42.CHEN Hongsong, YUE Yuemin, WANG Kelin. Comprehensive control on rocky desertification in karst regions of Southwestern China: Achievements, problems, and countermeasures[J]. Carsologica Sinica, 2018, 37 (1): 37-42 [3] 吕玉香, 蒋勇军, 王正雄, 胡伟. 西南岩溶槽谷区隧道建设的水文生态环境效应研究进展[J]. 生态学报, 2020, 40(6): 1851-1864.LV Yuxiang, JIANG Yongjun, WANG Zhengxiong, HU Wei. Review on the hydrology and the ecological and environmental effects of tunnel construction in the karst valley of Southwest China[J]. Acta Ecologica Sinica, 2020, 40 (6): 1851-1864 [4] 周毅, 李术才, 李利平, 张乾青, 石少帅, 宋曙光, 王康, 陈迪杨, 孙尚渠. 地下工程流–固耦合试验新技术及其在充填型岩溶管道突水模型试验中的应用[J]. 岩土工程学报, 2015, 37(7): 1232-1240.ZHOU Yi, LI Shucai, LI Liping, ZHANG Qianqing, SHI Shaoshuai, SONG Shuguang, WANG Kang, CHEN Diyang, SUN Shangqu. New technology for fluid-solid coupling tests of underground engineering and its application in experimental simulation of water inrush in filled-type karst conduit[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (7): 1232-1240 [5] 李术才, 潘东东, 许振浩, 李利平, 林鹏, 袁永才, 高成路, 路为. 承压型隐伏溶洞突水灾变演化过程模型试验[J]. 岩土力学, 2018, 39(9): 3164-3173. DOI: 10.16285/j.rsm.2016.2808.LI Shucai, PAN Dongdong, XU Zhenhao, LI Liping, LIN Peng, YUAN Yongcai, GAO Chenglu, LU Wei. A model test on catastrophic evolution process of water inrush of a concealed karst cave filled with confined water[J]. Rock and Soil Mechanics, 2018, 39 (9): 3164-3173. DOI:10.16285/j.rsm. 2016.2808. [6] 李术才, 许振浩, 黄鑫, 林鹏, 赵晓成, 张庆松, 杨磊, 张霄, 孙怀凤, 潘东东. 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018, 37(5): 1041-1069. DOI:10.13722/j. cnki.jrme.2017.1332.LI Shucai, XU Zhenhao, HUANG Xin, LIN Peng, ZHAO Xiaocheng, ZHANG Qingsong, YANG Lei, ZHANG Xiao, SUN Huaifeng, PAN Dongdong. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (5): 1041-1069. DOI:10.13722/j.cnki. jrme. 2017.1332. [7] 李俊杰. 广清高速路段岩溶发育特征及分类研究[J]. 土工基础, 2018, 32(3): 289-292.LI Junjie. Characteristics of karstic rock cavity along the Guangzhou-Qingyuan expressway alignment[J]. Soil Engineering and Foundation, 2018, 32 (3): 289-292 [8] 刘超群, 彭红君. 隧道掌子面与溶洞安全距离分析[J]. 现代隧道技术, 2012, 49(3): 109-113. DOI: 10.13807/j.cnki.mtt.2012.03.017.LIU Chaoqun, PENG Hongjun. Analysis of the safe distance between a tunnel face and karst cave[J]. Modern Tunnelling Technology, 2012, 49 (3): 109-113. DOI: 10.13807/j.cnki.mtt.2012.03.017. [9] 储汉东. 岩溶隧道突水机理及防突层安全厚度研究[D]. 北京: 中国地质大学, 2017.CHU Handong. Study on mechanism of water inrush and safety thickness of against-inrush layer in karst tunnel[D]. Beijing: China University of Geosciences, 2017 [10] 邹洋, 彭立敏, 张智勇, 雷明锋, 彭龙, 施成华. 基于突变理论的岩溶隧道拱顶安全厚度分析与失稳预测[J]. 铁道科学与工程学报, 2021, 18(10): 2651-2659. DOI: 10.19713/j.cnki.43-1423/u.T20201075.ZOU Yang, PENG Limin, ZHANG Zhiyong, LEI Mingfeng, PENG long, SHI Chenghua. Safety thickness analysis and stability prediction of tunnel roof in karst region based on catastrophe theory[J]. Journal of Railway Science and Engineering, 2021, 18 (10): 2651-2659. DOI:10.19713/j.cnki. 43-1423/u.T20201075. [11] 孙周. 基于强度理论的隐伏溶洞与隧道安全距离预测模型研究[D]. 长沙: 长沙理工大学, 2018.SUN Zhou. Research on safety distance prediction model of hidden caverns and tunnel based on strength theory[D]. Changsha: Changsha University of technology, 2018 [12] 张桥. 小三峡岩溶隧道围岩防突层安全厚度有限元分析[J]. 中国岩溶, 2020, 39(4): 614-621.ZHANG Qiao. Finite element analysis on safety thickness of the inrush prevention layer inrock beds of the small Three Gorges karst tunnel[J]. Carsologica Sinica, 2020, 39 (4): 614-621 [13] 赖金星, 汪珂, 邱军领. 溶洞位置对隧道结构影响的数值模拟研究[J]. 公路, 2015, 60(8): 275-281.LAI Jinxing, WANG Ke, QIU Junling. Numerical simulation and research on the influence of different positions of concealed karst caves in tunnel structure[J]. Highway, 2015, 60 (8): 275-281 [14] 郭佳奇. 岩溶隧道防突厚度及突水机制研究[D]. 北京: 北京交通大学, 2011.GUO Jiaqi. Study on against-inrush thickness and waterburst mechanism of karst tunnel[D]. Beijing: Beijing Jiaotong University, 2011 [15] 郭佳奇, 乔春生, 曹茜. 侧部高压富水溶腔与隧道间岩柱安全厚度的研究[J]. 现代隧道技术, 2010, 47(6): 10-16. DOI: 10.13807/j.cnki.mtt.201 0.06.003.GUO Jiaqi, QIAO Chunsheng, CAO Xi. Research on safe thickness of rock pillar between the tunnel and adjacent karst cave with pressurised water[J]. Modern Tunnel Technology, 2010, 47 (6): 10-16. DOI:10.13807/j.cnki. mtt. 2010.06.003. [16] 陈禹成, 王朝阳, 郭明, 林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报(工学版), 2020, 50(5): 33-43.CHEN Yucheng, WANG Chaoyang, GUO Ming, LIN Peng. Influence of concealed karst cave on surrounding rock stability and its treatment technology[J]. Journal of Shandong University (Engineering Science), 2020, 50 (5): 33-43 [17] 师海, 白明洲, 许兆义, 田岗. 基于突变理论的岩溶隧道与隐伏溶洞安全距离分析[J]. 现代隧道技术, 2016, 53(4): 61-69. DOI:10.13807/j.cnki.mtt.201 6.04.009.SHI Hai, BAI Mingzhou, XU Zhaoyi, TIAN Gang. Analysis of the safe distance between a karst tunnel and a concealed karst cave based on catastrophe theory[J]. Modern Tunnel Technology, 2016, 53 (4): 61-69. DOI:10.13807/j.cnki. mtt. 2016.04.009. [18] 刘扬, 林国庆, 苏秀婷, 陈健, 郑煜茜, 刘涛. 大直径盾构隧道与下伏溶洞安全距离[J]. 科学技术与工程, 2021, 21(29): 12727-12734.LIU Yang, LIN Guoqing, SU Xiuting, CHEN Jian, ZHENG Yuqian, LIU Tao. Safety distance between large diameter shield tunnel and underlying karst cave[J]. Science Technology and Engineering, 2021, 21 (29): 12727-12734