• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶包气带水流衰减过程与调蓄能力影响机制研究

张轶博 王锦国 刘芮彤

张轶博,王锦国,刘芮彤. 岩溶包气带水流衰减过程与调蓄能力影响机制研究[J]. 中国岩溶,2023,42(6):1140-1148 doi: 10.11932/karst20230601
引用本文: 张轶博,王锦国,刘芮彤. 岩溶包气带水流衰减过程与调蓄能力影响机制研究[J]. 中国岩溶,2023,42(6):1140-1148 doi: 10.11932/karst20230601
ZHANG Yibo, WANG Jinguo, LIU Ruitong. Research on water flow attenuation process and regulating capacity in karst vadose zone[J]. CARSOLOGICA SINICA, 2023, 42(6): 1140-1148. doi: 10.11932/karst20230601
Citation: ZHANG Yibo, WANG Jinguo, LIU Ruitong. Research on water flow attenuation process and regulating capacity in karst vadose zone[J]. CARSOLOGICA SINICA, 2023, 42(6): 1140-1148. doi: 10.11932/karst20230601

岩溶包气带水流衰减过程与调蓄能力影响机制研究

doi: 10.11932/karst20230601
详细信息
    作者简介:

    张轶博(1997-),男,硕士研究生,主要研究方向为地质资源与地质工程。E-mail:zhangyibo@hhu.edu.cn

    通讯作者:

    王锦国(1974-),男,博士,教授,主要从事地质工程、地下水科学与工程方面的科研与教学工作。E-mail:wang_jinguo@hhu.edu.cn

  • 中图分类号: P641

Research on water flow attenuation process and regulating capacity in karst vadose zone

  • 摘要: 我国岩溶水资源丰富,是岩溶地区重要的生产生活用水来源。岩溶包气带对地下水起着涵养调蓄作用,为定量评价岩溶包气带水流衰减过程和调蓄能力影响因素,通过搭建实验室尺度的岩溶包气带物理模型,分析衰减曲线与调蓄系数,探究降雨强度、传输带裂隙发育程度、传输带厚度对岩溶包气带水流过程与调蓄能力的影响。试验结果表明,降雨强度的增大将引起岩溶包气带水流衰减系数的增大与调蓄系数的减小,降雨强度对结构一定的岩溶包气带调蓄能力的影响有一定限度;随着传输带裂隙增加,快速流衰减系数呈增大趋势,慢速流衰减系数呈减小趋势,调蓄系数呈减小趋势;传输带厚度的增加引起衰减系数的减小与调蓄系数的增大,但对调蓄系数的影响不明显。

     

  • 图  1  岩溶包气带概念模型和物理模型图

    Figure  1.  Conceptual and physical model diagrams of karst aeration zone

    图  2  调蓄系数计算示意图

    Figure  2.  Schematic diagram for calculation of regulating coefficient

    图  3  裂隙位置示意图

    Figure  3.  Schematic diagram of fissure location

    图  4  不同降雨强度下水流衰减系数与调蓄系数变化

    Figure  4.  Variation of attenuation coefficient and regulating coefficient of water flow under different precipitation intensities

    图  5  不同裂隙发育程度下水流衰减系数和调蓄系数变化

    Figure  5.  Variation of attenuation coefficient and regulating coefficient of water flow under different fissure development degrees

    图  6  不同传输带厚度下水流衰减系数和调蓄系数变化

    Figure  6.  Variation of attenuation coefficient and regulating coefficient of water flow under different thicknesses of transfer zone

    表  1  降雨强度影响试验试验条件

    Table  1.   Test conditions for influence of precipitation intensity

    对照组编号有无落水洞传输带厚度/cm地面坡度/°降雨强度/mm·h−1裂隙/条
    1-a801552
    1-b8015102
    1-c8015202
    1-d8015302
    1-e8015502
    下载: 导出CSV

    表  2  传输带裂隙发育程度影响试验试验条件

    Table  2.   Test conditions for influence of fissure development degree of transfer zone

    对照组编号有无落水洞传输带厚度/cm地面坡度/°降雨强度/mm·h−1裂隙/条
    2-a800201
    2-b800202
    2-c800203
    2-d800204
    2-e80020全裂隙
    下载: 导出CSV

    表  3  传输带厚度影响试验试验条件

    Table  3.   Test conditions for thickness influence of transfer zone

    对照组编号有无落水洞传输带厚度/cm地面坡度/°降雨强度/mm·h−1裂隙/条
    3-a400202
    3-b600202
    3-c800202
    3-d1000202
    3-e1200202
    下载: 导出CSV
  • [1] Peng T, Wang S J. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in Southwest China[J]. Catena, 2012, 90:53-62. doi: 10.1016/j.catena.2011.11.001
    [2] 郭小娇. 中国南方典型岩溶上部包气带水文过程对降雨响应机制研究: 以丫吉试验场为例[D]. 北京: 中国地质科学院, 2017.

    GUO Xiaojiao. The mechanisms investigation for vadose hydrological processes response to precipitation events in a typical upper unsaturated zone, South China: A case study in the Yaji experimental site[D]. Beijing: Chinese Academy of Geological Sciences, 2017.
    [3] Poulain A, Watlet A, Kaufmann O, Van Camp M, Jourde H, Mazzilli N, Rochez G, Deleu R, Quinif Y, Hallet V. Assessment of groundwater recharge processes through karst vadose zone by cave percolation monitoring[J]. Hydrological Processes, 2018, 32(13):2069-2083. doi: 10.1002/hyp.13138
    [4] Perrin J. A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers[D]. Neuchatel, Switzerland: University of Neuchatel, 2003.
    [5] 赵良杰, 杨杨, 曹建文, 夏日元, 王喆, 栾崧, 林玉山. 珠江流域地下水资源评价及问题分析[J]. 中国地质, 2021, 48(4):1020-1031.

    ZHAO Liangjie, YANG Yang, CAO Jianwen, XIA Riyuan, WANG Zhe, LUAN Song, LIN Yushan. Groundwater resources evaluation and problem analysis in Pearl river basin[J]. Geology in China, 2021, 48(4):1020-1031.
    [6] Liu R T, Wang J G, Zhan H B, Chen Z, Li W J, Yang D, Zheng S Y. Influence of thick karst vadose zone on aquifer recharge in karst formations[J]. Journal of Hydrology, 2021, 592:125791. doi: 10.1016/j.jhydrol.2020.125791
    [7] 常勇. 裂隙–管道二元结构的岩溶泉水文过程分析与模拟[D]. 南京: 南京大学, 2015.

    CHANG Yong. Analysis and simulation of the hydrological process of the karst aquifer with fracture-conduit dual struture[D]. Nanjing: Nanjing University, 2015.
    [8] Fan Y H, Huo X L, Hao Y H, Liu Y, Wang T K, Liu Y C, Yeh T J. An assembled extreme value statistical model of karst spring discharge[J]. Journal of Hydrology, 2013, 504:57-68. doi: 10.1016/j.jhydrol.2013.09.023
    [9] 程星, 杨子江. 影响喀斯特地下水调蓄功能的因素的探讨[J]. 中国岩溶, 2000, 19(1):52-57.

    CHENG Xing, YANG Zijiang. A discussion on the factors of underground water regulation in karst areas[J]. Carsologica Sinica, 2000, 19(1):52-57.
    [10] 周玥, 束龙仓, 方依雯, 翟月, 王硕, 鲁程鹏. 落水洞对裂隙–管道介质泉流量衰减过程影响的试验研究[J]. 南水北调与水利科技, 2017, 15(3):108-112. doi: 10.13476/j.cnki.nsbdqk.2017.03.018

    ZHOU Yue, SHU Longcang, FANG Yiwen, ZHAI Yue, WANG Shuo, LU Chengpeng. Experimental study on the effects of sinkholes on spring flow attenuation process within fissure-conduit media[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(3):108-112. doi: 10.13476/j.cnki.nsbdqk.2017.03.018
    [11] Fiorillo F, Revellino, Ventafridda G. Karst aquifer draining during dry periods[J]. Journal of Caves & Karst Studies, 2012, 74(2): 148-156.
    [12] Fiorillo F. The recession of spring hydrographs, focused on karst aquifers[J]. Water Resources Management, 2014, 28(7):1781-1805.
    [13] Mendoza G F, Steenhuis T S, Walter M T, Parlange J Y. Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis[J]. Journal of Hydrology, 2003, 279(1-4):57-69. doi: 10.1016/S0022-1694(03)00174-4
    [14] Malvicini C F, Steenhuis T S, Walter M T, Parlange J Y, Walter M F. Evaluation of spring flow in the uplands of Matalom, Leyte, Philippines[J]. Advances in Water Resources, 2005, 28(10):1083-1090. doi: 10.1016/j.advwatres.2004.12.006
    [15] Padilla A, Pulido Bosch A, Mangin A. Relative importance of baseflow and quickflow from hydrographs of karst spring[J]. Groundwater, 1994, 32(2):267-277. doi: 10.1111/j.1745-6584.1994.tb00641.x
    [16] Mohammadi Z, Shoja A. Effect of annual rainfall amount on characteristics of karst spring hydrograph[J]. Carbonates and Evaporites, 2014, 29(3):279-289. doi: 10.1007/s13146-013-0175-0
    [17] Forkasiewic J, Paloc H. Le régime de tarissement de la Foux de la Vis[J]. Ediciones Sígueme, 1965.
    [18] Baedke S J, Krothe N C. Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis[J]. Water Resources Research, 2001, 37(1):13-19. doi: 10.1029/2000WR900247
    [19] 杨立铮. 地下河流域岩溶水天然资源类型及评价方法[J]. 水文地质工程地质, 1982(4):22-25. doi: 10.16030/j.cnki.issn.1000-3665.1982.04.005
    [20] 苏春田. 湖南新田县富锶地下水形成机理研究[D]. 武汉: 中国地质大学, 2021.

    SU Chuntian. Study on the formation mechanism of strontium-rich groundwater in Xintian county, Hunan Province[D]. Wuhan: China University of Geosciences, 2021.
    [21] Aquilina L, Ladouche B, Dorfliger N. Water storage and transfer in the epikarst of karstic systems during high flow periods[J]. Journal of Hydrology, 2006, 327(3-4):472-485. doi: 10.1016/j.jhydrol.2005.11.054
    [22] Williams P W. The role of the subcutaneous zone in karst hydrology[J]. Journal of Hydrology, 1983, 61(1-3):45-67. doi: 10.1016/0022-1694(83)90234-2
    [23] Williams P W. The role of the epikarst in karst and cave hydrogeology: A review[J]. International Journal of Speleology, 2008, 37(1):1-10. doi: 10.5038/1827-806X.37.1.1
    [24] 蒋忠诚, 王瑞江, 裴建国, 何师意. 我国南方表层岩溶带及其对岩溶水的调蓄功能[J]. 中国岩溶, 2001, 20(2):106-110. doi: 10.3969/j.issn.1001-4810.2001.02.005

    JIANG Zhongcheng, WANG Ruijiang, PEI Jianguo, HE Shiyi. Epikarst zone in South China and its regulation function of karst water[J]. Carsologica Sinica, 2001, 20(2):106-110. doi: 10.3969/j.issn.1001-4810.2001.02.005
    [25] 邹胜章, 张文慧, 梁小平, 罗伟权, 梁彬. 表层岩溶带调蓄系数定量计算:以湘西洛塔赵家湾为例[J]. 水文地质工程地质, 2005(4):37-42. doi: 10.3969/j.issn.1000-3665.2005.04.010

    ZOU Shengzhang, ZHANG Wenhui, LIANG Xiaoping, LUO Weiquan, LIANG Bin. Quantitative calculation of regulating coefficient for epikarsk zone: Case study of Zhaojiawan, Luota, west of Hunan[J]. Hydrogeology & Engineering Geology, 2005(4):37-42. doi: 10.3969/j.issn.1000-3665.2005.04.010
    [26] 束龙仓, 范建辉, 鲁程鹏, 张春艳, 唐然. 裂隙–管道介质泉流域水文地质模拟试验[J]. 吉林大学学报(地球科学版), 2015, 45(3): 908-917.

    SHU Longcang, FAN Jianhui, LU Chengpeng, ZHANG Chunyan, TANG Ran. Hydrogeological simulation test of fissure-conduit media in springs watershed[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3): 908-917.
    [27] 王熹, 束龙仓, 苏佳林, 王茂枚, 苏小茹, 张依楠. 裂隙–管道介质调蓄系数与补给强度之间关系的试验研究[J]. 水电能源科学, 2016, 34(9):139-143.

    WANG Xi, SHU Longcang, SU Jialin, WANG Maomei, SU Xiaoru, ZHANG Yinan. Experimental study of relationship between regulating coefficient and recharge rates through fissure-conduit media model[J]. Water Resources and Power, 2016, 34(9):139-143.
    [28] 孙晨, 束龙仓, 鲁程鹏, 张春艳. 裂隙–管道介质泉流量衰减过程试验研究及数值模拟[J]. 水利学报, 2014, 45(1):50-57, 64.

    SUN Chen, SHU Longcang, LU Chengpeng, ZHANG Chunyan. Physical experiment and numerical simulation of spring flow attenuation process in fissure-conduit media[J]. Journal of Hydraulic Engineering, 2014, 45(1):50-57, 64.
    [29] 严友进. 喀斯特石漠化区浅层岩溶裂隙及其土壤主要生态功能研究[D]. 贵阳: 贵州大学, 2019.

    YAN Youjin. Study on the main ecological functions of shallow karst fissures and soil in an area of karst rocky desertification in SW China[D]. Guiyang: Guizhou University, 2019.
    [30] 王泽君, 周宏, 齐凌轩, 王纪元, 燕子琪. 岩溶水系统结构和水文响应机制的定量识别方法:以三峡鱼迷岩溶水系统为例[J]. 地球科学, 2020, 45(12):4512-4523.

    WANG Zejun, ZHOU Hong, QI Lingxuan, WANG Jiyuan, YAN Ziqi. Method for characterizing structure and hydrological response in karst water systems: A case study in Y-M system in Three Gorges Area[J]. Earth Science, 2020, 45(12):4512-4523.
    [31] 刘丽红, 李娴, 鲁程鹏. 岩溶含水系统水动力特征研究进展[J]. 水电能源科学, 2012, 30(7):21-24, 79.

    LIU Lihong, LI Xian, LU Chengpeng. Research progress on hydrodynamic characteristics of karstic water system[J]. Water Resources and Power, 2012, 30(7):21-24, 79.
    [32] 陈植华, 陈刚, 靖娟利, 蒋忠诚, 时坚. 西南岩溶石山表层岩溶带岩溶水资源调蓄能力初步评价[C]//岩溶地区水、工、环及石漠化问题学术研讨会论文集. 南宁: 广西科学技术出版社, 2003: 180-188.

    CHEN Zhihua, CHEN Gang, JING Juanli, JIANG Zhongcheng, SHI Jian. A preliminary evaluation of the capacity to storage groundwater of epikarst zone in southwest karst mountain of China[C]//Proceedings of the symposium on water, industrial, environmental and rocky desertification in karst areas. Nanning: Guangxi Science & Technology Publishing House Co., Ltd., 2003: 180-188.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  128
  • HTML浏览量:  27
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 录用日期:  2023-02-23
  • 修回日期:  2022-09-23
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回