Groundwater hydrochemical characteristics and evolution of the karst water system in the Feicheng fault block in Shandong Province
-
摘要: 地下水是肥城地区最主要的供水水源,近年来受到工农业生产、煤矿开采、闭坑、矿井排水等人类活动影响,肥城地区地下水动力场及化学场都发生了变化,为查明地下水的环境质量状况,文章在研究水文地质调查和样品采集分析基础上,综合运用数理统计方法、水化学方法(Piper三线图、Gibbs模型、矿物饱和指数、离子比例分析)等,探讨肥城断块地下水水化学特征及演化规律。结果表明:(1)研究区地下水均呈弱碱性,$ {\mathrm{C}\mathrm{a}}^{2+} $、$ {\mathrm{M}\mathrm{g}}^{2+} $、$ {{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}}^{-} $和$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $为主要离子,主要来源于方解石、白云石及石膏溶解;矿物饱和指数表明方解石和白云石绝大多数处于饱和状态,石膏和岩盐矿物呈溶解未饱和状态。(2)区内岩溶水化学类型主要为$ {\mathrm{H}\mathrm{C}\mathrm{O}}_{3}-\mathrm{C}\mathrm{a}\left(\mathrm{M}\mathrm{g}\right) $型,其次为$ {\mathrm{H}\mathrm{C}\mathrm{O}}_{3}·{\mathrm{S}\mathrm{O}}_{4}-\mathrm{C}\mathrm{a} $型和$ {\mathrm{H}\mathrm{C}\mathrm{O}}_{3}·\mathrm{C}\mathrm{l}-\mathrm{C}\mathrm{a} $型。孔隙水主要为$ {\mathrm{S}\mathrm{O}}_{4}·{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}-\mathrm{C}\mathrm{a} $型、局部出现$ {\mathrm{S}\mathrm{O}}_{4}{·\mathrm{N}\mathrm{O}}_{3}-\mathrm{C}\mathrm{a} $型。河流水化学类型相对复杂,包括$ {\mathrm{S}\mathrm{O}}_{4}·{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}-\mathrm{C}\mathrm{a}·\mathrm{N}\mathrm{a} $型、$ \mathrm{C}\mathrm{l}·{\mathrm{S}\mathrm{O}}_{4}-\mathrm{C}\mathrm{a}·\mathrm{N}\mathrm{a} $型等。(3)区内地下水中$ {\mathrm{C}\mathrm{l}}^{-} $、$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $和$ {\mathrm{N}\mathrm{O}}_{3}^{-} $含量相比1999年、2013年显著升高。裂隙水及岩溶水水质整体较好,局部呈点状变差,孔隙水及河水水质普遍较差,影响区域地下水水质的主要因素有化肥施用、禽畜养殖、生活污水下渗以及煤矿排水等。Abstract:
The Feicheng area is one of the important industrial bases in Shandong Province with the early development of coal mine, power generation and chemical industry. Besides, vegetable farming is widely distributed. Karst groundwater is the main source of water supply and the only source of drinking water in this area. In recent years, due to human activities such as industrial and agricultural exploitation of groundwater, and reduction of water emissions from coal mine closures, the groundwater dynamic and chemical fields in this area have undergone changes. The current status of groundwater environmental quality needs to be determined. On the basis of hydro-geological survey, this study collected 59 groundwater samples and 6 river water samples in the dry season of 2022, and comprehensively used mathematical statistical methods, hydrochemical methods (Piper three-line diagram, Gibbs model, mineral saturation index, ion proportion analysis) to explore the hydrochemical characteristics and evolution rules of groundwater in the Feicheng fault block. The results show that, (1) The average pH of groundwater in the study area is 7.34–7.47, all of which are weakly alkaline, and Ca2+, Mg2+, ${\rm{HCO}}_3^{-}$ and ${\rm{SO}}_4^{2-}$ are the main ions in the water. The hydrochemical composition is mainly controlled by water rock interaction, while the influence of atmospheric precipitation and evaporation concentration is relatively small. The water-rock interaction of calcite and dolomite plays a major role in controlling the chemical composition of karst water and fissure water, and the dissolution of evaporite plays an important role in the chemical composition of pore water. The mineral saturation index shows that most of calcite and dolomite is in a saturated state, while gypsum and halite minerals are in a dissolved but unsaturated state. (2) Karst hydrochemical types in the area are mainly HCO3-Ca (Mg) type, accounting for 47.9%, followed by HCO3·SO4-Ca type and HCO3·Cl-Ca type, 16.7% and 20.8%, respectively. Pore water is mainly of SO4·HCO3-Ca type and HCO3·Cl·SO4-Ca type, with SO4·NO3-Ca type appearing locally in the area of Wangguadian town. The chemical types of river water are relatively complex, including SO4·HCO3-Ca·Na type, Cl·SO4-Ca·Na type, etc. (3) From the perspective of component content, the average TDS content of pore water, karst water, and fissure water is 1,207.13 mg·L−1, 670.96 mg·L−1, 514.5 mg·L−1, respectively. The coefficient of variation of Ca2+ and Mg2+ in groundwater is relatively small, indicating that they are relatively stable ions. The average values of ${\rm{SO}}_4^{2-}$, Cl− and ${\rm{NO}}_3^{-}$ in pore water are 288.29 mg·L−1, 155.86 mg·L−1, 195.41 mg·L−1, respectively, with high content and small coefficient of variation, indicating that they are mainly influenced by external inputs from human activities. The content of ${\rm{SO}}_4^{2-}$, Cl− and ${\rm{NO}}_3^{-}$ in karst water is relatively low, but the coefficient of variation is large, with uneven concentration distribution, and occurrence of enrichment in local areas. The average ${\rm{SO}}_4^{2-}$ in the Huihe river reaches 345.83 mg·L−1, which is much higher than that of the surrounding groundwater and has a small coefficient of variation, indicating that its source is mainly from external inputs and may be related to the drainage of surrounding coal mines. (4) Some sources of Ca2+ are related to the dissolution of gypsum minerals and the infiltration of pollutants containing Cl− and ${\rm{NO}}_3^{-}$, and the nitrate pollutants mixed into aquifers may promote the dissolution of carbonate rocks. The cation exchange is weak in groundwater, but strong in river water. (5) From a time-scale perspective, the groundwater quality in the study area has shown a decreasing trend compared to the quality in 1999 and 2013, with significant increases in the content of Cl−, ${\rm{SO}}_4^{2-}$, and ${\rm{NO}}_3^{-}$ in groundwater over the years. From the perspective of groundwater types and spatial distribution, the chemical characteristics of groundwater in the Feicheng area are significantly influenced by human activities. Both the concentrations of nitrogen and chlorine are generally low in the fissure water of magmatic rocks, and hence the water quality is relatively the best. The overall quality of karst water is good, and the rise of the water level in the closed pit mine in Feicheng has not caused cross-layer pollution to the surrounding karst water. However, there are local occurrences of "high nitrogen" or "high chlorine" in Wangzhuang, Taoyuan, Shiheng, Dayang, and other places, which may be affected by pollution sources such as agricultural fertilization, livestock breeding, and domestic sewageinfiltration. Both the concentrations of nitrogen and chlorine are high in most of the pore water, and hence the water quality is generally poor, with ${\rm{NO}}_3^{-}$, as the main ion exceeding the permitted level, which may be related to the application of chemical fertilizer for large-scale agricultural vegetable farming in the study area, and the infiltration of surface nitrate and other pollutants into the groundwater with rainwater. The nitrogen concentration in both Kangwang river and the Huihe river is generally low, while those of chlorine and sulfur are high, reflecting the significant impact of urban sewage discharge and coal mine drainage on these two rivers. -
表 1 研究区地下水及河水水化学组分统计
Table 1. Statistics of chemical components of groundwater and river water in the study area
水样类型 项目 水化学/mg·L−1 TDS
mg·L−1pH Na+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2-}$ ${\rm{HCO}}_3^{-}$ ${\rm{NO}}_3^{-}$ 松散岩类
孔隙水最大值 174.00 311.00 54.60 223.00 470.00 481.00 303.00 1 380.68 7.43 最小值 33.20 166.00 25.50 110.00 199.00 286.00 11.50 931.00 7.07 平均值 61.51 262.14 43.91 155.86 288.29 366.02 195.41 1 207.13 7.34 标准差 50.40 57.91 9.64 42.96 95.79 73.69 143.19 143.19 0.13 变异系数 0.82 0.22 0.22 0.28 0.33 0.20 0.12 0.12 0.02 碳酸盐岩类
裂隙岩溶水最大值 137.00 309.00 51.80 206.00 720.00 463.01 237.00 1 347.54 7.74 最小值 3.84 60.10 9.80 15.10 18.60 116.49 0.22 285.66 7.10 平均值 29.07 152.69 26.87 72.37 138.64 299.92 83.02 670.96 7.42 标准差 26.11 52.59 10.00 52.67 121.42 56.95 56.92 250.99 0.16 变异系数 0.90 0.34 0.37 0.73 0.88 0.19 0.69 0.37 0.02 岩浆岩变质
岩类裂隙水最大值 30.70 160.00 33.90 51.00 169.00 295.47 127.00 611.58 7.60 最小值 5.18 93.70 11.60 28.40 67.90 194.95 27.80 427.37 7.30 平均值 15.96 119.18 21.03 35.05 101.95 251.94 71.03 514.50 7.47 标准差 11.40 28.62 9.37 10.70 45.51 47.49 41.45 76.07 0.12 变异系数 0.71 0.24 0.45 0.31 0.45 0.19 0.58 0.15 0.02 河水 最大值 153.00 150.00 45.40 249.00 468.00 341.00 23.90 1 140.31 7.79 最小值 91.90 103.00 28.90 58.40 220.00 127.94 2.89 766.12 7.40 平均值 122.65 117.67 36.72 143.80 345.83 216.26 14.26 908.73 7.58 标准差 19.86 17.39 6.26 71.20 113.62 71.47 8.18 127.76 0.15 变异系数 0.16 0.15 0.17 0.50 0.33 0.33 0.57 0.14 0.02 -
[1] 申豪勇, 梁永平, 徐永新, 张发旺. 中国北方岩溶地下水补给研究进展[J]. 水文, 2019, 39(3):15-21. doi: 10.3969/j.issn.1000-0852.2019.03.003SHEN Haoyong, LIANG Yongping, XU Yongxin, ZHANG Fawang. Research progress of karst groundwater recharge in Northern China[J]. Journal of China Hydrology, 2019, 39(3):15-21. doi: 10.3969/j.issn.1000-0852.2019.03.003 [2] 梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5):199-219.LIANG Yongping, SHEN Haoyong, GAO Xubo. Review of research progress of karst groundwater in Northern China[J]. Bulletin of Geological Science and Technology, 2022, 41(5):199-219. [3] 高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3):287-298. [4] 梁永平, 王维泰, 赵春红, 王玮, 唐春雷. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶, 2013, 32(1):34-42.LIANG Yongping, WANG Weitai, ZHAO Chunhong, WANG Wei, TANG Chunlei. Variations of karst water and environmental problems in North China[J]. Carsologica Sinica, 2013, 32(1):34-42. [5] 王焰新. 我国北方岩溶泉域生态修复策略研究:以晋祠泉为例[J]. 中国岩溶, 2022, 41(3):331-344.WANG Yanxin. Study on ecological restoration strategy of karst spring region in North China: Taking Jinci spring as an example[J]. Carsologica Sinica, 2022, 41(3):331-344. [6] 魏晓燕, 张保祥, 李旺林, 刘冬梅, 张吉圣. 肥城盆地岩溶地下水系统数值模拟[J]. 中国农村水利水电, 2015, 397(11):59-64. doi: 10.3969/j.issn.1007-2284.2015.11.014WEI Xiaoyan, ZHANG Baoxiang, LI Wanglin, LIU Dongmei, ZHANG Jisheng. Research on the numerical simulation of karst groundwater in Feicheng basin[J]. China Rural Water and Hydropower, 2015, 397(11):59-64. doi: 10.3969/j.issn.1007-2284.2015.11.014 [7] 刘冬梅. 肥城盆地浅层地下水水质变化特征及水资源保护研究[D]. 北京: 中国农业大学, 2003.LIU Dongmei. Study on the characteristics of water quality changes and water resource protection of shallow groundwater in Feicheng basin[D]. Beijing: China Agricultural University, 2003. [8] 崔素芳, 张保祥, 范明元, 魏晓燕, 张吉圣, 刘冬梅, 吴泉源, 刘杰. 肥城盆地地下水水化学演变规律研究[J]. 人民黄河, 2015, 37(3):75-79. doi: 10.3969/j.issn.1000-1379.2015.03.019CUI Sufang, ZHANG Baoxiang, FAN Mingyuan, WEI Xiaoyan, ZHANG Jisheng, LIU Dongmei, WU Quanyuan, LIU Jie. Research on the evolution law of groundwater hydrochemistry in Feicheng basin[J]. Yellow River, 2015, 37(3):75-79. doi: 10.3969/j.issn.1000-1379.2015.03.019 [9] 杨海博, 朱文峰, 周良, 路兵. 肥城盆地区域地下水化学特征及水质评价[J]. 山东国土资源, 2020, 36(2):50-55. doi: 10.12128/j.issn.1672-6979.2020.02.008YANG Haibo, ZHU Wenfeng, ZHOU Liang, LU Bing. Evaluation on chemical characteristics and water quality of groundwater in Feicheng basin[J]. Shandong Land and Resources, 2020, 36(2):50-55. doi: 10.12128/j.issn.1672-6979.2020.02.008 [10] 张兆强. 肥城矿区地下水环境质量评价[D]. 青岛: 山东科技大学, 2004.ZHANG Zhaoqiang. Assessment of groundwater environmental quality in Feicheng mining area[D]. Qingdao: Shandong University of Science and Technology, 2004. [11] 仕玉治, 张保祥, 范明元, 杨小凤, 刘海娇, 张吉圣, 刘冬梅. 肥城盆地矿井水特征识别与开发利用[J]. 南水北调与水利科技, 2014, 12(1):105-109.SHI Yuzhi, ZHANG Baoxiang, FAN Mingyuan, YANG Xiaofeng, LIU Haijiao, ZHANG Jisheng, LIU Dongmei. Feature identification and development of mining water in Feicheng basin[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(1):105-109. [12] 杨延梅, 张田, 郑明霞, 苏婧, 孙源媛, 傅雪梅. 基于水化学及当地稳定同位素的地下水硝酸盐污染空间分布特征及污染源解析[J]. 环境科学研究, 2021, 284(9):2164-2172.YANG Yanmei, ZHANG Tian, ZHENG Mingxia, SU Jing, SUN Yuanyuan, FU Xuemei. Spatial distribution characteristics and pollution source analysis of nitrate pollution in groundwater based on hydrochemistry and local stable isotopes[J]. Research of Environmental Sciences, 2021, 284(9):2164-2172. [13] 卢丽, 陈余道, 邹胜章, 樊连杰, 林永生, 王喆. 岩溶区典型工业型城市地下水水化学特征及成因机制[J]. 中国岩溶, 2022, 41(4):588-598. doi: 10.11932/karst20220407LU Li, CHEN Yudao, ZOU Shengzhang, FAN Lianjie, LIN Yongsheng, WANG Zhe. Hydrochemical characteristics and water quality evaluation of karst groundwater in typical industrial cities[J]. Carsologica Sinica, 2022, 41(4):588-598. doi: 10.11932/karst20220407 [14] 张秋霞, 周建伟, 林尚华, 魏东, 张黎明, 袁磊. 淄博洪山、寨里煤矿区闭坑后地下水污染特征及成因分析[J]. 安全与环境工程, 2015, 22(6):23-28.ZHANG Qiuxia, ZHOU Jianwei, LIN Shanghua, WEI Dong, ZHANG Liming, YUAN Lei. Characteristics and causes of groundwater pollution after Hongshan Zhaili mine closure in Zibo[J]. Safety and Environmental Engineering, 2015, 22(6):23-28. [15] 郝庆杰. 灰色聚类法在汇河水质评价中的应用[J]. 西南师范大学学报(自然科学版), 2011, 175(4):115-122.HAO Qingjie. Application of the gray clustering method on water quality evaluation of Huihe river[J]. Journal of Southwest China Normal University (Natural Science Edition), 2011, 175(4):115-122. [16] 张勇, 郭纯青, 朱彦光, 于奭. 云南荞麦地流域地下水水化学特征及物质来源分析[J]. 环境科学, 2019, 40(6):2686-2695.ZHANG Yong, GUO Chunqing, ZHU Yanguang, YU Shi. Chemical characteristics of groundwater and material sources analysis in buckwheat field, Yunnan Province[J]. Environmental Science, 2019, 40(6):2686-2695. [17] Zhang Yan, Li Fadong, Zhang Qiuying, Li Jing, Liu Qiang. Tracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopes[J]. Science of the Total Environment, 2014, 490:213-222. doi: 10.1016/j.scitotenv.2014.05.004 [18] 任坤, 潘晓东, 梁嘉鹏, 彭聪, 曾洁. 碳氮氧同位素解析典型岩溶流域地下水中硝酸盐来源与归趋[J]. 环境科学, 2021, 42(5):2268-2275.REN Kun, PAN Xiaodong, LIANG Jiapeng, PENG Cong, ZENG Jie. Sources and fate of nitrate in groundwater in a typical karst basin: Insights from carbon, nitrogen, and oxygen isotopes[J]. Environmental Science, 2021, 42(5):2268-2275. [19] 高帅, 李常锁, 贾超, 孙斌, 张海林, 逄伟. 济南趵突泉泉域岩溶水化学特征时空差异性研究[J]. 地质学报, 2019, 93(Suppl.1):61-70. doi: 10.1111/1755-6724.13937GAO Shuai, LI Changsuo, JIA Chao, SUN Bin, ZHANG Hailin, PANG Wei. Spatiotemporal difference study of karst hydrochemical characteristics in the Baotu Spring area of Jinan[J]. Acta Geologica Sinica, 2019, 93(Suppl.1):61-70. doi: 10.1111/1755-6724.13937 [20] 王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因[J]. 中国岩溶, 2021, 40(3):398-408.WANG Rui, LI Xiaohan. Hydrochemical characteristics and genesis of karst groundwater in the Baiquan spring catchment[J]. Carsologica Sinica, 2021, 40(3):398-408. [21] 郭永丽, 全洗强, 王奇岗, 章程, 吴庆. 大武岩溶水源地地下水水化学特征及其影响因素[J]. 南水北调与水利科技(中英文), 2020, 18(4):130-140.GUO Yongli, QUAN Xiqiang, WANG Qigang, ZHANG Cheng, WU Qing. Hydrochemical characteristics of groundwater and its influencing factors in Dawu karst water source[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(4):130-140. [22] 王珺瑜, 王家乐, 靳孟贵. 济南泉域岩溶水水化学特征及其成因[J]. 地球科学, 2017, 42(5):821-831.WANG Junyu, WANG Jiale, JIN Menggui. Hydrochemical characteristics and formation causes of karst water in Jinan spring catchment[J]. Earth Science, 2017, 42(5):821-831. [23] Pant Ramesh Raj, Zhang Fan, Rehman Faizan Ur, Wang Guanxing, Ye Ming, Zeng Chen, Tang Handuo. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki river basin, central Himalayas, Nepal[J]. Science of the Total Environment, 2018, 622-623(1): 770-782 . [24] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe. Spatial variation assessment of groundwater quality using multivariate statistical analysis (case study: Fasa plain, Iran)[J]. Journal of Groundwater Science and Engineering, 2020, 8(3):230-243. [25] 田明刚, 徐建, 赵耘, 郑梦琪, 徐秋林. 泰莱盆地地下水化学特征分类及成因分析[J]. 节水灌溉, 2021, 312(8):78-82. doi: 10.3969/j.issn.1007-4929.2021.08.015TIAN Minggang, XU Jian, ZHAO Yun, ZHENG Mengqi, XU Qiulin. Classification and cause analysis of groundwater chemical characteristics in Tailai basin[J]. Water Saving Irrigation, 2021, 312(8):78-82. doi: 10.3969/j.issn.1007-4929.2021.08.015 [26] 滕跃, 张文强, 王金晓. 淄河流域岩溶地下水化学特征及控制因素分析[J]. 环境化学, 2023, 42(6):1-12.TENG Yue, ZHANG Wenqiang, WANG Jinxiao. Analysis on hydrochemical characteristics and controlling factors of karst groundwater in Zihe river basin[J]. Environmental Chemistry, 2023, 42(6):1-12. [27] 吴璇, 宋一心, 王金晓, 高菡, 刘春伟, 李波. 山东省柴汶河上游地区地下水化学特征分析[J]. 环境化学, 2021, 40(7):2125-2134. doi: 10.7524/j.issn.0254-6108.2020022701WU Xuan, SONG Yixin, WANG Jinxiao, GAO Han, LIU Chunwei, LI Bo. Groundwater hydrogeochemical characteristics in the up reaches of Chaiwen river, Shandong Province[J]. Environmental Chemistry, 2021, 40(7):2125-2134. doi: 10.7524/j.issn.0254-6108.2020022701 [28] MA Rui, WANG Yanxin, SUN Ziyong, ZHENG Chunmiao, MA Teng, Henning Prommer. Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, Northern China[J]. Applied Geochemistry, 2011, 26(5):884-897. doi: 10.1016/j.apgeochem.2011.02.008 [29] 高宗军, 万志澎, 贺可强, 维克多·库金, 刘久潭. 大汶河流域中上游地区岩溶地下水水化学特征及其控制因素分析[J]. 地质科技通报, 2022, 41(5):264-272.GAO Zongjun, WAN Zhipeng, HE Keqiang, WEIKEDUO Kujin, LIU Jiutan. Hydrochemical characteristics and controlling factors of karst groundwater in middle and upper reaches of Dawen river basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5):264-272. [30] 张春潮, 侯新伟, 李向全, 王振兴, 桂春雷, 左雪峰. 三姑泉域岩溶地下水水化学特征及形成演化机制[J]. 水文地质工程地质, 2021, 299(3):62-71.ZHANG Chunchao, HOU Xinwei, LI Xiangquan, WANG Zhenxing, GUI Chunlei, ZUO Xuefeng. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu spring[J]. Hydrogeology & Engineering Geology, 2021, 299(3):62-71. [31] 彭聪, 何江涛, 廖磊, 张振国. 应用水化学方法识别人类活动对地下水水质影响程度:以柳江盆地为例[J]. 地学前缘, 2017, 24(1):321-331.PENG Cong, HE Jiangtao, LIAO Lei, ZHANG Zhenguo. Research on the influence degree of human activities on groundwater quality by the method of geochemistry: A case study from Liujiang basin[J]. Earth Science Frontiers, 2017, 24(1):321-331. [32] Yang Fan, Liu Sen, Jia Chao, Gao Maosheng, Chang Wenbo, Wang Yujue. Hydrochemical characteristics and functions of groundwater in southern Laizhou bay based on the multivariate statistical analysis approach[J]. Estuarine, Coastal and Shelf Science, 2021, 250:107153. [33] 赵然, 韩志伟, 田永著, 李耕, 曾祥颖, 何守阳. 岩溶流域地表水和地下水硝酸盐来源定量识别[J]. 中国环境科学, 2020, 40(4):1706-1714.ZHAO Ran, HAN Zhiwei, TIAN Yongzhu, LI Geng, ZENG Xiangying, HE Shouyang. Quantitative identification of nitrate source of surface water and groundwater in karst basin[J]. China Environmental Science, 2020, 40(4):1706-1714. [34] 成世才. 济南市新旧动能转换区浅层地下水硝酸盐污染特征[J]. 中国煤炭地质, 2021, 265(2):53-59. doi: 10.3969/j.issn.1674-1803.2021.02.11CHENG Shicai. Shallow groundwater nitrate pollution features in Jinan City zone to replace old growth drivers with new ones[J]. Coal Geology of China, 2021, 265(2):53-59. doi: 10.3969/j.issn.1674-1803.2021.02.11 [35] 张超, 张保祥, 张吉圣, 邸燕. 肥城市岩溶水水化学特征及形成机制[J]. 中国岩溶, 2018, 37(5):698-707.ZHANG Chao, ZHANG Baoxiang, ZHANG Jisheng, DI Yan. Analysis of hydrochemical characteristics and formation mechanism of karst water in Feicheng City[J]. Carsologica Sinica, 2018, 37(5):698-707.