Hydrogeochemical characteristics and formation mechanism of the karst thermal reservoir at the northern edge of the Luzhong Uplift
-
摘要: 通过研究鲁中隆起北缘岩溶热储地热水水化学特征,分析岩溶热储地热水的形成机理。以鲁中隆起北缘地热区内32个地热井为研究对象,采用Piper图解、Schoeller图解、离子组分比率特征、同位素特征、Na−K−Mg平衡图解、矿物饱和指数计算与评价等方法,研究地热水的补给来源、水岩作用过程、运移途径、循环演化特征和形成机理。结果表明:在岩溶地下水向地热田径流方向上,岩溶地下水的水化学类型与地热水的明显不同,岩溶水的TDS含量呈增加趋势,而${\rm{HCO}}_3^{-}$含量百分比呈现降低趋势;同一地热田区段的地热水水化学成分相似、水化学类型相同。研究区地下热水中微量组分F、Li、Sr、偏硅酸等含量表现出增加的趋势。通过使用玉髓地热温标计算的地热区岩溶热储温度为39~70 ℃,地热水的循环深度为856~1 877 m,结合测温曲线特征分析,确定研究区地热系统为对流−传导型。水文地球化学演化、离子组分比率、同位素等多种分析方法,揭示出岩溶热储地热水的补给来源为地热区南部泰山北麓山区晚更新世寒冷气候条件下古大气降水的入渗;大气降水入渗补给岩溶含水层后,经地下水深循环径流运移,在大地热流、地下水运移传导−对流加热作用下形成地热水。Abstract:
The geothermal area in the northern edge of the Luzhong Uplift is located between Mount Tai and the northwest plain of Shandong. In terms of the geotectonic division, the study area is located in the Luzhong Uplift of the Luxi Uplift in the North China Plate, which is fan-shaped with the arc facing north in the plane, and it is a monoclinal structure with the stratum tilting gently to the north. There is a very thick layer of Cambrian-Ordovician carbonate strata in the northern edge of the Luzhong Uplift, which has the geothermal geological conditions for the formation of a large karst geothermal field. Under the influence of the collision of the Pacific Plate and Eurasian Plate, especially the tectonic activity on the rim of the Pacific Plate since the Mesozoic, NW and NE oriented fracture structures have been widely developed in the study area. This combination of tectonic structures with different ages and properties provides the preconditions for the formation of karst geothermal resources characterized by the convection-conduction between low and medium temperatures in this area. The main aquifer in the study area is the Cambrian and Ordovician carbonate aquifer, which is directly or indirectly replenished by atmospheric precipitation in the exposed karst area in the upper and middle reaches. Some of the precipitation is concentrated and flows out in a small area, and the remaining water continues to flow to form a karst water enrichment zone in the downstream piedmont, intermountain basins and hidden limestone distribution areas in the valleys. The karst thermal reservoirs in the northern edge of the Luzhong Uplift in Shandong Province are rich in low-and medium-temperature geothermal resources, which are characterized by a large water yield and easy recharge. Thus, we can study the hydrogeochemical characteristics of the geothermal water to analyze the formation mechanism of the geothermal resources, which is of great significance in promoting the effective development and utilization of geothermal resources. In this study, 32 geothermal wells in the geothermal area in the northern edge of the Luzhong Uplift are studied, and the Piper diagram, Schoeller diagram, ion component ratio characteristics, isotopic characteristics, Na-K-Mg ternary diagram, mineral saturation index and SiO2 geothermal temperature scale are used to analyze the recharge source, water-rock interactions, transport pathway, and cyclic evolution characteristics of the geothermal water. The results show that in the evolution of karst groundwater into geothermal water, the hydrogeochemical types gradually change from HCO3·SO4-Ca and HCO3-Ca to SO4·Cl-Na·Ca, SO4·Cl-Ca·Na, SO4·HCO3-Ca, HCO3·SO4-Ca and Cl·SO4-Na·Ca, and the TDS content increases successively. The contents of ${\rm{SO}}_4^{2-}$, Ca2+, Na+, F−, Li, Sr and H2SiO3 increase continuously, while the percentage of ${\rm{HCO}}_3^{-}$ content decreases. The temperatures, chemical compositions, and ion contents and characteristics of the karst water formed in different sections of the geothermal field are different, which proves that the recharge sources, circulation depths, and circulation paths of the karst water at different depths and in different sections of the geothermal field are different. The karst water with a lower temperature comes from the shallow and middle circulation flow system, while the geothermal water with a higher temperature in the deep part comes from the deep circulation with a larger circulation depth and a longer path of the cycle. The aquifers of the carbonate reservoirs in the study area are composed of limestone and dolomite deposited in a marine environment. The metamorphic coefficient (γNa/γCl), Cl/Br ratio, and desulfurization coefficient indicate that the aquifers of the carbonate reservoirs in the study area are poorly sealed, and the atmospheric precipitation gradually leaches the rock salt-bearing strata, so the geothermal water shows its characteristics of dissolved water. According to the Na-K-Mg equilibrium diagram, the hydrothermal water in the carbonate reservoir in the geothermal area at the northern edge of the Luzhong Uplift is in a non-equilibrium area and is not saturated. That is, the water-rock interaction has not reached the equilibrium state, and the dissolution is still in progress. The temperature of karst thermal reservoir in the geothermal area is 39–70 ℃, and the circulation depth of geothermal water is 856–1,877 m. By calculating the thermal storage temperature and the circulation depth of the geothermal water and combining with the analysis of the characteristics of the temperature measurement curve, it was determined that there is not only a conduction-type geothermal system but also a convection-conduction-type system in the study area. The geothermal water samples from the study area are distributed near the regional precipitation line, and the stable hydrogen and oxygen isotope compositions are similar to those of modern atmospheric precipitation, indicating direct or indirect recharge via the infiltration of atmospheric precipitation. According to the 14C ages of the geothermal water at the northern edge of the Ludong Uplift and the significantly negative hydrogen and oxygen isotope compositions of the geothermal water, the main source of the geothermal water supply is paleo-atmospheric precipitation in the southern mountainous area under the cold climate conditions during the Late Pleistocene, and after infiltration, the subsurface runoff is heated by the Earth's heat flow through deep circulation. -
表 1 研究区岩溶热储地下热水、岩溶地下冷水样品信息
Table 1. Sample information of karst geothermal water and underground cold water in the study area
水样类型 地热田 样品序号 采样位置 井深/m 热储顶板埋深/m 取样时间 岩溶地
下热水聊东地热田 BY1 聊城地震水化站 2 337.72 826.00 2017.01 BY2 聊城单官屯海润温泉 1 035.00 897.00 2006.06.04 BY3 聊城昌华温泉酒店 1 378.53 845.00 2015.08.29 济
北
地
热
田南部边界 BY4 齐河东盟国际生态城 1 907.25 746.00 2017.06.28 BY5 齐河李家岸 653.41 246.55 2022.03.05 近济南岩体北缘地热异常区 BY6 齐河油房赵村 643.64 194.00 2013.04.08 西段 BY7 齐河古城苑 2 210.00 1 500.00 2022.03.05 BY8 济南桑梓店村 419.10 210.47 2013.10.12 BY9 济南北郊林场 904.95 770.10 2022.03.09 BY10 济南大马庄 1 312.34 1 078.00 2013.11.29 BY11 齐河省地热基地 1 601.57 1 306.53 2022.03.05 BY12 齐河开发区国科温泉 1 734.19 1 444.00 2004.06.14 BY13 济南天桥祝家村 1 532.06 960.00 2021.01.04 中段 BY14 济阳高官屯村 1 800.56 1 152.00 2013.01.10 东段桃园—坝子 BY15 济南坝子村 576.90 293.00 2022.03.05 BY16 济南桃园村 782.77 413.00 2022.03.05 BY17 济南荷花温泉 806.30 404.90 2022.03.05 东段 BY18 济阳韩家村 1 401.62 1 065.00 2020.12.16 BY19 济南大李家村 1 601.00 976.00 2022.03.14 BY20 济南马家村 1 123.55 649.00 2017.06.28 BY21 济南济钢温泉 706.00 616.20 2016.10.26 BY22 济南鸭旺口村 777.13 672.70 2013.01.11 BY23 济南鸭旺口村 792.78 537.20 2004.08.24 BY24 济南温泉小区 1 802.00 600.00 2022.03.05 章丘地热田 BY25 济南章丘区枣园镇史家 428.77 378.31 2009.12.06 BY26 济南章丘宁家埠镇小桑 1 511.10 950.00 2017.10.17 淄博地热田 BY27 淄博桓台盛圆国际酒店 1 703.60 1 398.00 2018.12 BY28 淄博张店焦化煤气公司 1 500.07 1 178.00 2012.05.24 BY29 淄博张店黄金国际小区 2 003.68 1 333.37 2009.08.17 BY30 淄博张店黄金国际小区 1 800.18 1 335.00 2008.08.11 BY31 淄博张店黄金国际小区 1 804.00 1 323.56 2010.06.07 BY32 张店地矿家园- 1 801.70 1 363.00 2014.05.29 岩溶地下冷水 L1 洪范池 2020.09.21 L2 平阴杨河村 2017.09 L3 归德沙河辛村 2020.09.22 L4 大涧沟 2014.11.09 L5 趵突泉 2022.06.07 L6 黑虎泉 2022.06.07 L7 边庄 2020.09.22 L8 刘智远东北 2018.10.05 L9 滩头 2017.09 L10 白泉 2022.06.08 L11 百脉泉 2019.03.28 L12 章丘蒲黄 2020.04.03 L13 孝直北十里铺村 2017.09 L14 淄博淄川邹家村 2018.12 L15 淄博淄川转道村 2018.12 表 2 研究区岩溶热储地下热水、岩溶地下冷水水质分析一览表/mg·L−1
Table 2. Analysis of water quality of karst geothermal water and underground cold water in the study area/mg·L−1
地热田 样品序号 pH 水温/℃ Ca2+ Mg2+ Na+ K+ ${\rm{HCO}}_3^{-}$ ${\rm{SO}}_4^{2-}$ Cl− F− Br− TDS Li Sr SiO2 偏硅酸 水化学类型 聊东地热田 BY1 7.0 59.0 735.47 164.03 760.00 54.00 176.96 1 738.69 1 598.80 3.12 2.70 5 161.65 0.73 8.96 11.25 14.63 SO4·Cl-Na·Ca BY2 6.8 62.0 701.10 154.00 834.70 57.68 160.40 1 680.20 1 657.40 3.90 2.08 5 292.70 0.94 15.14 31.98 41.57 SO4·Cl-Na·Ca BY3 7.5 60.0 719.29 153.88 775.00 53.50 164.82 1 778.32 1 574.40 3.40 2.60 5 170.17 0.37 6.67 8.50 11.05 SO4·Cl-Na·Ca 济
北
地
热
田南部边界 BY4 7.9 41.0 128.66 38.16 44.99 6.57 292.12 311.44 37.49 1.20 <0.10 881.50 0.01 7.51 20.34 26.44 SO4·HCO3-Ca BY5 7.4 34.0 112.00 31.90 55.00 5.52 285.10 246.00 35.70 0.78 <0.10 655.00 / 3.74 20.10 26.13 HCO3·SO4-Ca 近济南岩体北
缘地热异常区BY6 7.7 38.0 234.71 62.55 88.00 9.40 218.22 684.04 97.41 1.60 0.25 1 418.53 / / 19.04 24.75 HCO3·SO4-Ca 西段 BY7 7.2 46.0 500.00 86.30 99.00 13.60 229.92 1 290.00 146.00 2.67 <0.10 2 271.00 / 6.27 17.04 22.15 HCO3·SO4-Ca BY8 7.8 33.0 453.60 106.80 121.80 14.51 181.76 1 430.19 126.19 1.99 0.15 2 364.81 0.19 9.74 17.77 23.10 SO4·Cl-Ca·Na BY9 7.7 43.2 590.00 120.00 187.00 20.10 211.53 1 943.00 240.00 2.67 0.40 3 235.00 / 13.08 25.13 32.67 SO4·Cl-Ca·Na BY10 7.1 43.0 637.42 141.78 135.75 18.43 178.03 2 094.49 122.91 2.68 0.46 3 279.99 0.23 11.72 21.20 27.56 SO4·HCO3-Ca·Mg BY11 7.3 57.0 634.00 125.00 242.00 22.90 217.66 1 807.00 381.00 3.00 0.55 3 357.00 / 13.10 31.53 40.99 SO4·Cl-Ca·Na BY12 7.1 55.5 640.86 138.07 140.50 19.08 174.10 2 006.87 136.36 2.89 0.12 3 284.15 0.22 12.76 24.65 32.04 SO4·HCO3-Ca·Na BY13 7.2 50.1 635.00 129.00 156.00 21.62 163.05 1 990.00 183.00 2.62 / 3 218.00 0.57 13.20 26.56 34.53 SO4·Cl-Ca·Na 中段 BY14 7.4 56.0 556.77 121.89 350.00 28.00 166.30 2 006.20 274.90 3.50 0.60 3 537.56 1.08 8.78 24.95 32.44 SO4·Cl-Ca·Na 东段桃园—坝子 BY15 8.0 35.7 235.00 20.40 175.00 14.30 257.51 476.00 244.00 2.18 <0.10 1 318.00 / 4.23 20.47 26.61 SO4·Cl-Ca·Na BY16 7.3 33.0 282.00 58.90 229.00 17.60 263.65 661.00 335.00 2.25 0.25 1 739.18 / 4.96 20.56 26.73 SO4·Cl-Ca·Na BY17 7.4 38.0 382.00 77.90 307.00 22.60 239.12 1 010.00 505.00 2.30 0.45 2 449.00 / 6.25 20.36 26.47 SO4·Cl-Ca·Na 东段 BY18 7.8 49.0 961.00 141.00 1 322.00 69.10 150.00 2 146.00 2 396.00 2.05 / 7 135.37 / / 22.87 29.73 Cl·SO4-Na·Ca BY19 6.9 45.0 887.00 141.00 1 257.00 61.40 49.05 2 297.00 2 184.00 2.07 0.55 6 862.00 / 17.05 2.07 2.69 SO4·Cl-Na·Ca BY20 7.4 45.0 863.65 138.81 1 234.50 63.36 100.93 2 242.00 2 384.11 1.20 4.50 7 057.77 0.01 7.51 20.34 26.44 Cl·SO4-Na·Ca BY21 7.3 43.0 878.20 129.10 1 314.00 70.84 103.98 2 309.40 2 439.82 2.74 3.16 7 277.04 2.04 16.13 24.94 32.42 Cl·SO4-Na·Ca BY22 7.4 41.0 834.15 140.18 1 166.67 33.33 106.60 2 261.54 1 961.17 2.00 / 6 475.06 / / 17.92 23.30 SO4·Cl-Na·Ca BY23 7.3 39.0 863.05 149.99 1 400.00 70.00 110.65 2 276.20 2 369.24 3.00 3.88 7 273.14 0.05 2.12 26.00 33.80 Cl·SO4-Na·Ca BY24 8.6 52.0 670.00 132.00 1 244.00 68.40 42.92 1 905.00 1 914.00 1.97 0.65 5 974.00 / 16.80 13.39 17.41 Cl·SO4-Na·Ca 章丘地热田 BY25 7.6 41.0 673.82 95.83 747.51 67.28 205.88 2 320.04 798.63 2.17 1.45 4 830.00 1.48 13.09 23.77 30.90 SO4·Cl-Na·Ca BY26 7.1 45.5 852.83 141.65 1 054.00 55.84 191.71 2 324.72 1 809.72 2.41 3.10 6 602.05 1.53 15.93 14.82 19.26 SO4·Cl-Na·Ca 淄博地热田 BY27 7.5 36.0 245.43 37.21 800.00 / 255.06 1 684.02 481.14 1.60 0.73 3 421.49 1.55 10.09 29.60 38.48 SO4·Cl-Na·Ca BY28 7.9 44.0 622.55 81.63 812.50 85.88 309.23 2 503.76 695.42 3.50 / 5 166.86 / / 25.18 32.73 SO4·Cl-Na·Ca BY29 6.8 53.0 432.06 61.25 890.00 62.50 296.03 2 003.81 691.31 2.74 1.58 4 469.32 1 9.75 26.48 34.43 SO4·Cl-Na·Ca BY30 6.8 60.0 586.00 74.30 935.00 102.00 362.00 2 495.00 800.00 1.12 1.00 5 020.00 <0.74 7.00 30.62 39.80 SO4·Cl-Na·Ca BY31 7.6 55.0 493.79 58.70 893.00 80.75 344.65 2 163.27 726.08 5.00 / 4 628.71 1.48 5.96 30.01 39.01 SO4·Cl-Na·Ca BY32 7.3 44.1 383.16 60.41 775.00 30.91 199.44 1 700.69 635.89 1.50 0.75 3 719.02 2.46 9.37 24.86 32.32 SO4·Cl-Na·Ca 岩溶地下冷水 L1 7.8 137.00 15.60 14.80 0.74 249.53 125.00 31.80 0.33 <0.10 522.75 0.007 0.36 13.91 18.08 HCO3·SO4-Ca L2 7.2 110.00 13.30 14.30 0.50 279.00 50.80 22.60 0.38 <0.10 419.00 / 0.36 7.50 9.75 HCO3-Ca L3 7.7 104.00 17.10 16.20 0.78 273.88 44.90 43.40 0.44 <0.10 440.23 0.009 0.36 16.58 21.55 HCO3-Ca L4 8.0 102.56 19.76 7.14 0.43 273.15 70.16 27.03 0.40 / 422.83 0.007 0.38 14.85 19.31 HCO3-Ca L5 7.6 131.00 21.20 28.70 1.22 292.00 109.00 59.80 0.23 <0.1 559.37 0.015 0.41 15.95 20.74 HCO3·SO4-Ca L6 7.7 146.00 23.90 43.70 1.35 326.00 128.00 77.60 0.23 <0.1 653.90 0.016 0.40 16.91 21.98 HCO3·SO4-Ca L7 8.1 103.00 22.80 22.50 0.99 228.40 92.90 51.10 0.26 / 459.67 0.012 0.45 13.68 17.78 HCO3-Ca L8 7.6 162.40 32.25 28.48 0.70 356.99 147.52 60.89 0.30 0.37 676.77 0.007 0.31 15.49 20.14 HCO3·SO4-Ca L9 7.2 108.00 26.80 14.50 0.70 281.00 71.30 46.60 0.39 / 498.00 / 0.64 13.33 17.33 HCO3-Ca L10 7.9 120.00 24.60 14.20 0.95 307.00 72.80 37.60 0.32 / 472.68 0.016 0.46 15.05 19.57 HCO3-Ca L11 7.5 136.67 26.62 17.36 0.96 326.61 130.16 26.59 0.15 / 560.00 / / 12.02 15.63 HCO3·SO4-Ca L12 7.5 94.30 23.00 40.30 3.45 284.28 96.80 29.00 0.23 / 478.00 / / 11.67 15.17 HCO3-Ca L13 7.2 218.00 37.00 32.40 0.45 388.00 121.00 112.00 0.32 / 895.00 / 0.74 15.69 20.40 HCO3·SO4-Ca L14 7.5 171.00 24.40 28.30 1.10 301.00 187.00 65.60 <0.02 / 726.00 / 0.30 9.31 12.10 HCO3·SO4-Ca L15 7.7 130.65 24.88 15.40 0.65 299.80 89.26 45.97 0.21 / 546.40 / / 13.18 17.13 HCO3-Ca 表 3 研究区地热水离子组分比率系数一览表
Table 3. Ratio coefficients of ion components of the geothermal water in the study area
地热田 样品编号 γNa/γCl Cl/Br 100×γSO$_4^{2}$/γCl− [γC1−/(γ${\rm{HCO}}_3^{-}$+γ${\rm{CO}}_3^{2-}$)] TDS/mg·L−1 聊城地热田 BY1 0.73 592.15 40.16 15.55 5 161.65 BY2 0.78 796.83 37.44 17.78 5 292.70 BY3 0.76 605.54 41.71 16.44 5 253.00 济
北
地
热
田南部边界 BY4 1.85 − 306.79 0.22 881.50 BY5 2.37 − 254.48 0.22 655.00 近济南岩体北缘地热异常区 BY6 1.39 389.64 259.33 0.77 1 418.53 西段 BY7 1.05 − 326.30 1.09 2 271.00 BY8 1.49 841.27 418.55 1.19 2 364.81 BY9 1.20 600.00 298.98 1.95 3 235.00 BY10 1.70 − 629.32 1.19 3 279.99 BY11 0.98 692.73 175.15 3.01 3 357.00 BY12 1.59 1 136.33 543.52 1.35 3 284.15 BY13 1.31 − 401.59 1.93 3 218.00 中段 BY14 1.96 458.17 269.51 2.84 3 537.56 东段桃园—坝子 BY15 1.11 − 72.04 1.63 1 318.00 BY16 1.05 1 340.00 72.87 2.19 1 739.18 BY17 0.94 1 122.22 73.86 3.63 2 449.00 东段 BY18 0.85 − 33.08 27.48 7 135.37 BY19 0.89 3 970.91 38.84 76.61 6 862.00 BY20 0.80 529.80 34.73 40.64 7 057.77 BY21 0.83 772.09 34.96 40.37 7 277.04 BY22 0.92 − 42.59 31.65 6 475.06 BY23 0.91 610.63 35.48 36.84 7 273.14 BY24 1.00 2 944.62 36.76 76.73 5 974.00 章丘地热田 BY25 1.44 550.78 107.28 6.67 4 830.00 BY26 0.90 583.78 47.44 16.24 6 602.05 淄博地热田 BY27 2.56 2 405.70 129.26 3.25 3 421.49 BY28 1.80 − 132.96 3.87 5 166.86 BY29 1.98 437.54 107.04 4.02 4 469.32 BY30 1.80 800.00 115.18 3.80 5 020.00 BY31 1.90 − 110.03 3.62 4 628.71 BY32 1.88 847.85 98.77 5.49 3 719.02 表 4 研究区地热水、岩溶地下冷水水样同位素测试结果
Table 4. Isotope composition of the geothermal water and underground cold water samples in the study area
样品编号 地热田 δD/(SMOW, ‰) T/TU δ13C/‰ pMC/% 14C/ka BP 14C校正/ka BP δ18O/(SMOW, ‰) BY1 聊东地热田 −72.80 <0.5 −9.40 5.19±0.40 24.45±0.64 19.47 −9.20 BY2 −80.67 − − 3.22±0.48 28.39±1.22 − −9.46 BY4 济
北
地
热
田南部边界 −71.30 − −6.50 4.20±0.10 25.42 19.37 −10.10 BY5 −68.40 − −7.00 14.00±0.10 15.81 10.25 −9.40 BY6 近济南岩体北
缘地热异常区−68.00 11.48±2.14 − 9.02±1.01 19.89±0.92 − −9.70 BY8 西段 − − − 9.81±3.45 19.19±2.91 − − BY9 −76.20 6.83±2.21 − 3.97±0.70 26.68±1.45 − −10.00 BY11 −75.40 0.67±1.90 −5.40 0.40±0.00 44.23 36.24 −10.20 BY14 中段 −76.00 8.80±1.00 − − − − −10.50 BY15 东段桃园—坝子 −66.50 − −4.32±0.25 22.27±0.17 12.07±0.06 7.40 −9.20 BY16 −62.80 6.76±2.06 − − − − −9.20 BY17 −72.00 12.98±2.01 −3.77±0.36 5.89±0.07 22.75±0.09 11.93 −9.80 BY19 东段 − − −3.77±0.19 2.37±0.044 30.08±0.15 19.05 − BY21 −73.00 1.51±2.07 −3.83±0.33 0.72±0.04 39.64±0.41 29.24 −9.80 BY25 章丘地热田 −75.00 − − 12.85±1.55 16.96±1.00 − −9.90 BY29 淄博地热田 −74.00 − − 2.11±0.59 31.89±2.29 − −9.80 L2 岩溶地下冷水 −65.00 − −9.60 66.83±1.47 3.33±0.19 − −8.80 L4 −57.30 − − − − − −8.10 L5 −54.60 − − − − − −7.80 L6 −60.00 − − − − − −8.60 L9 −58.90 − − − − − −9.10 L10 −57.80 − −7.63±0.41 73.48±0.25 2.48±0.03 − −8.00 表 5 研究区地热水矿物饱和指数计算结果
Table 5. Indexes of the mineral saturation of geothermal water samples from the study area
样品
编号硬石膏 文石 方解石 玉髓 蛇纹石 白云石 萤石 石膏 岩盐 O2(g) 石英 钾盐 滑石 CaSO4 CaCO3 CaCO3 SiO2 Mg6[Si4O10](OH)8 CaMg(CO3)2 CaF2 CaSO4·2H2O NaCl SiO2 KCl 3MgO·4SiO2·H2O BY1 −0.02 0.33 0.45 −0.04 −2.21 0.63 0.15 −0.03 −5.73 −29.72 0.31 −6.53 1.78 BY2 −0.14 0.05 0.18 0.10 −3.59 0.03 0.11 0.01 −4.24 −34.37 0.48 −5.23 0.50 BY6 −0.03 0.38 0.51 0.08 −3.05 0.64 0.20 0.06 −4.35 −32.86 0.45 −5.28 1.05 BY7 −0.10 0.25 0.38 0.10 −3.91 0.40 0.12 0.03 −4.96 −34.06 0.48 −5.53 0.18 BY8 −0.17 0.41 0.53 0.02 −3.38 0.62 −0.16 −0.16 −4.94 −30.56 0.37 −5.78 0.69 BY9 −0.03 0.49 0.61 −0.41 −2.08 0.99 0.07 −0.07 −4.66 −28.91 −0.07 −5.52 1.20 BY11 −0.02 0.46 0.58 0.02 −0.97 0.91 0.22 −0.09 −4.61 −28.10 0.35 −5.49 3.18 BY14 −0.76 0.04 0.18 0.07 −4.40 0.20 −0.51 −0.60 −6.70 −34.98 0.47 −7.30 −0.38 BY17 −1.37 −0.15 −0.01 0.07 −5.40 −0.14 −1.23 −1.16 −7.32 −36.23 0.47 −7.91 −1.45 BY18 −0.39 0.06 0.20 0.05 −4.72 0.15 −0.13 −0.17 −6.48 −36.55 0.46 −7.01 −0.81 BY19 −0.13 0.23 0.36 0.08 −3.33 0.43 0.37 −0.02 −5.96 −33.40 0.46 −6.59 0.76 BY20 −0.07 0.38 0.51 −0.04 −4.57 0.53 −0.93 −0.03 −4.73 −34.23 0.31 −6.64 1.72 BY22 −0.90 0.01 0.15 0.06 −5.31 0.02 −0.24 −0.69 −5.94 −36.39 0.47 −6.64 −1.37 BY23 −0.22 0.17 0.31 0.04 −4.44 0.31 0.69 0.00 −4.75 −36.55 0.44 −5.66 −0.56 BY25 −0.29 0.20 0.33 0.02 −4.23 0.33 −0.09 −0.13 −5.05 −34.98 0.41 −5.89 −0.32 BY27 −0.35 0.11 0.25 0.66 −5.58 0.00 −0.24 0.00 −5.67 −40.91 1.11 −6.16 −0.63 BY28 −0.34 −0.06 0.09 0.47 −6.48 −0.39 0.53 0.01 −4.68 −40.91 0.92 −5.52 −1.90 BY29 −0.30 0.12 0.27 0.36 −6.53 −0.08 0.53 0.05 −4.95 −40.91 0.80 −5.48 −2.18 BY30 −0.49 −0.02 0.13 0.38 −6.77 −0.32 0.21 −0.13 −4.90 −40.91 0.83 −5.61 −2.38 BY31 −0.33 0.16 0.31 0.44 −6.49 −0.01 −0.49 0.02 −4.83 −40.91 0.89 −5.35 −1.97 BY32 −0.17 0.80 0.93 0.28 −6.21 1.51 −0.59 −0.06 −4.93 −40.12 0.65 −5.08 −1.86 表 6 运用地球化学温标计算的热储温度
Table 6. Thermal reservoir temperatures calculated by geochemical temperature scales
样品编号 井深/m pH K/
mg·L−1Na/
mg·L−1Mg/
mg·L−1SiO2/
mg·L−1地球化学温标计算结果 井口水温/℃ S1/℃ S2/℃ S3/℃ S4/℃ BY2 1 035.00 6.8 57.68 834.70 154.00 31.98 82.1 82.0 50.9 70.0 62.0 BY4 1 907.25 7.9 6.57 44.99 38.16 20.34 64.1 66.5 32.0 53.1 41.0 BY5 653.41 7.4 5.52 55.00 31.90 20.10 63.6 66.1 31.6 52.7 34.0 BY6 643.64 7.7 9.40 88.00 62.55 19.04 61.6 64.3 29.5 50.8 38.0 BY7 2 210.00 7.2 13.60 99.00 86.30 17.04 57.5 60.7 25.2 47.0 46.0 BY8 419.10 7.8 14.51 121.80 106.80 17.77 59.1 62.1 26.8 48.4 33.0 BY9 904.95 7.7 20.10 187.00 120.00 25.13 72.3 73.6 40.5 60.8 43.2 BY10 1 312.34 7.1 18.43 135.75 141.78 21.20 65.6 67.8 33.7 54.6 43.0 BY11 1 601.57 7.3 22.90 242.00 125.00 31.53 81.5 81.5 50.2 69.4 57.0 BY12 1 734.19 7.1 19.08 140.50 138.07 24.65 71.5 72.9 39.7 60.1 55.5 BY13 1 532.06 7.2 21.62 156.00 129.00 26.56 74.5 75.5 42.9 62.9 50.1 BY14 1 800.56 7.4 28.00 350.00 121.89 24.95 72.0 73.3 40.3 60.5 56.0 BY15 576.90 8.0 14.30 175.00 20.40 20.47 64.3 66.7 32.3 53.4 35.7 BY16 782.77 7.3 17.60 229.00 58.90 20.56 64.5 66.8 32.5 53.5 33.0 BY17 806.30 7.4 22.60 307.00 77.90 20.36 64.1 66.5 32.1 53.2 38.0 BY18 1 401.62 7.8 69.10 1 322.00 141.00 22.87 68.6 70.4 36.7 57.3 49.0 BY20 1 123.55 7.4 63.36 1 234.50 138.81 20.34 64.1 66.5 32.0 53.1 45.0 BY21 706.00 7.3 70.84 1 314.00 129.10 24.94 71.9 73.3 40.2 60.5 43.0 BY22 777.13 7.4 33.33 1 166.67 140.18 17.92 59.4 62.3 27.1 48.7 41.0 BY23 792.78 7.3 70.00 1 400.00 149.99 26.00 73.6 74.7 42.0 62.1 39.0 BY24 1 802.00 8.6 68.40 1 244.00 132.00 13.39 49.0 53.2 16.5 39.0 52.0 BY25 428.77 7.6 67.28 747.51 95.83 23.77 70.1 71.7 38.3 58.7 41.0 BY26 1 511.10 7.1 55.84 1 054.00 141.65 14.82 52.5 56.3 20.1 42.3 45.5 BY27 1 703.60 7.5 0.00 800.00 37.21 29.60 78.9 79.3 47.5 67.0 36.0 BY28 1 500.07 7.9 85.88 812.50 81.63 25.18 72.3 73.6 40.6 60.9 44.0 BY29 2 003.68 6.8 62.50 890.00 61.25 26.48 74.3 75.4 42.7 62.7 53.0 BY30 1 800.18 6.8 102.00 935.00 74.30 30.62 80.2 80.5 48.9 68.3 60.0 BY31 1 804.00 7.6 80.75 893.00 58.70 30.01 79.4 79.8 48.1 67.5 55.0 BY32 1 801.70 7.3 30.91 775.00 60.41 24.86 71.8 73.2 40.1 60.4 44.1 表 7 研究区碳酸盐岩热储地热水的循环深度估算结果
Table 7. Estimation of the circulation depth of geothermal water in the carbonate reservoirs in the study area
地热
田样品
编号井深/m 灰岩热储顶
板埋深/m井口水
温/℃地温梯度℃/
100 m计算的热
储温度/℃热水最大循
环深度/m聊东地热田 BY2 1 035.00 897.00 62.0 4.73 70.0 1 877 济北地热田 南部边界 BY4 1 907.25 746.00 41.0 1.42 53.1 1 317 BY5 653.41 246.55 34.0 3.12 52.7 1 303 近济南岩体北
缘地热异常区BY6 643.64 194.00 38.0 3.81 50.8 1 240 西段 BY8 419.10 210.47 33.0 4.71 48.4 1 160 BY9 904.95 770.10 43.2 3.27 60.8 1 572 BY10 1 312.34 1 078.00 43.0 2.22 54.6 1 366 BY11 1 601.57 1 306.53 57.0 2.70 69.4 1 859 BY12 1 734.19 1 444.00 55.5 2.41 60.1 1 548 BY13 1 532.06 960.00 50.1 2.37 62.9 1 641 中段 BY14 1 800.56 1 152.00 56.0 2.34 60.5 1 563 东段桃园—坝子 BY15 576.90 293.00 35.7 3.86 53.4 1 324 BY16 782.77 413.00 33.0 2.46 53.5 1 330 BY17 806.30 404.90 38.0 3.02 53.2 1 318 东段 BY18 1 401.62 1 065.00 49.0 2.52 57.3 1 457 BY20 1 123.55 649.00 45.0 2.79 53.1 1 317 BY21 706.00 616.20 43.0 4.20 60.5 1 562 BY22 777.13 672.70 41.0 3.54 48.7 1 180 BY23 792.78 537.20 39.0 3.20 62.1 1 624 章丘地热田 BY25 428.77 378.31 41.0 6.56 58.7 1 514 BY26 1 511.10 950.00 45.5 2.10 42.3 966 淄博地热田 BY27 1 703.60 1 398.00 36.0 1.31 67.0 1 787 BY28 1 500.07 1 178.00 44.0 2.03 60.9 1 584 BY29 2 003.68 1 333.37 53.0 1.97 62.7 1 647 BY30 1 800.18 1 335.00 60.0 2.59 68.3 1 831 BY31 1 804.00 1 323.56 55.0 2.30 67.5 1 805 BY32 1 801.70 1 363.00 44.1 1.69 60.4 1 569 -
[1] 王贵玲, 刘彦广, 朱喜, 张薇. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1):1-9.WANG Guiling, LIU Yanguang, ZHU Xi, ZHANG Wei. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1):1-9. [2] 刘春华, 王威, 卫政润. 山东省水热型地热资源及其开发利用前景[J]. 中国地质调查, 2018, 5(2):51-56.LIU Chunhua, WANG Wei, WEI Zhengrun. Analysis of hydrothermal geothermal resources and its prospect of development and utilization in Shandong[J]. Geological Survey of China, 2018, 5(2):51-56. [3] PANG Zhonghe, KONG Yanlong, PANG Jumei, HU Shengbiao, WANG Jiyang. Geothermal resources and development in Xiong'an New Area[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(11):1224-1230. [4] 杨询昌, 周世海, 王成明. 山东省深部岩溶热储埋藏分布及岩溶发育特征[J]. 山东国土资源, 2013, 29(4):8-12.YANG Xunchang, ZHOU Shihai, WANG Chengming. Distribution of deep karst thermal reservoir and karst development characteristics in Shandong Province[J]. Shandong Land and Resources, 2013, 29(4):8-12. [5] 李常锁, 武显仓, 孙斌, 隋海波, 耿付强, 齐欢, 马雪莹. 济南北部地热水水化学特征及其形成机理[J]. 地球科学, 2018, 43(Suppl.1):313-325.LI Changsuo, WU Xiancang, SUN Bin, SUI Haibo, GENG Fuqiang, QI Huan, MA Xueying. Hydrochemical characteristics and formation mechanism of geothermal water in northern Jinan[J]. Earth Science, 2018, 43(Suppl.1):313-325. [6] 王奎峰. 山东省聊城市东部地热田地热资源特征[J]. 中国地质, 2009, 36(1):194-202. doi: 10.3969/j.issn.1000-3657.2009.01.018WANG Kuifeng. Geothermal resources in the eastern Liaocheng geothermal field of Shandong Province[J]. Geology in China, 2009, 36(1):194-202. doi: 10.3969/j.issn.1000-3657.2009.01.018 [7] 张保建, 徐军祥, 马振民, 沈照理, 亓麟. 运用氢氧同位素资料分析地下热水的补给来源:以阳谷−齐河凸起为例[J]. 地质通报, 2010, 29(4):603-608.ZHANG Baojian, XU Junxiang, MA Zhenmin, SHEN Zhaoli, QI Lin. Analysis on groundwater supply sources using hydrogen and oxygen isotope data: A case study of Yanggu−Qihe salient northwestern Shandong, China[J]. Geological Bulletin of China, 2010, 29(4):603-608. [8] 刘明亮, 何曈, 吴启帆, 郭清海. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6):2221-2231.LIU Mingliang, HE Tong, WU Qifan, GUO Qinghai. Hydrogeochemistry of geothermal water from Xiong'an New Area and its indicating significance[J]. Earth Science, 2020, 45(6):2221-2231. [9] Pasvanolu S. Geochemistry and conceptual model of thermal waters from Ercis-Zilan Valley, Eastern Turkey[J]. Geothermics, 2020, 86: 101803. [10] 汪新伟, 王婷灏, 张瑄, 毛翔, 罗璐, 王迪, 武明辉. 太原盆地西温庄地热田的成因机制[J]. 地球科学, 2019, 44(3):1042-1056.WANG Xinwei, WANG Tinghao, ZHANG Xuan, MAO Xiang, LUO Lu, WANG Di, WU Minghui. Genetic mechanism of Xiwenzhuang geothermal field in Taiyuan basin[J]. Earth Science, 2019, 44(3):1042-1056. [11] 黄琴辉, 张华, 康晓波, 王波, 刘海峰, 柴金龙, 黄钊, 王燕. 滇西陇川断陷盆地地热水化学特征及循环过程[J]. 中国岩溶, 2020, 39(6):793-801.HUANG Qinhui, ZHANG Hua, KANG Xiaobo, WANG Bo, LIU Haifeng, CHAI Jinlong, HUANG Zhao, WANG Yan. Chemical characteristics and circulation process of geothermal water be-neath Longchuan basin, western Yunnan[J]. Carsologica Sinica, 2020, 39(6):793-801. [12] 毛翔, 汪新伟, 郭世炎, 鲍志东. 高阳地热田及邻区地热资源形成机制[J]. 中国岩溶, 2021, 40(2):273-280.MAO Xiang, WANG Xinwei, GUO Shiyan, Bao Zhidong. Genetic mechanism of geothermal resources in the Gaoyang geothermal field and adjacent areas[J]. Carsologica Sinica, 2021, 40(2):273-280. [13] 余杰, 毛绪美, 彭慧, 文美霞, 王辛, 范威, 汤伟. 岩溶热储高矿化度地热流体成因机制研究: 以巴东县盐场河地热田为例[J]. 中国岩溶, 2023, 42(4): 795-808.YU Jie, MAO Xumei, PENG Hui, WEN Meixia, WANG Xin, FAN Wei, TANG Wei. Mechanism of high salinity geothermal fluid in karst thermal system: A case study in Yanchang river geothermal field[J]. Carsologica Sinica, 2023, 42(4): 795-808. [14] 常海宾, 肖江, 皮景. 湖南省地热水水文地球化学特征[J]. 中国岩溶, 2021, 40(2):298-309. doi: 10.11932/karst20210213CHANG Haibin, XIAO Jiang, PI Jing. Hydrogeochemical characteristics of geothermal water in Hunan Province[J]. Carsologica Sinica, 2021, 40(2):298-309. doi: 10.11932/karst20210213 [15] 庞忠和, 庞菊梅, 孔彦龙, 郭世炎, 王树芳, 黄永辉, 罗霁, 胡圣标. 大型岩溶热储识别方法与规模化可持续开采技术[J]. 科技促进发展, 2020, 16(3-4):299-306.PANG Zhonghe, PANG Jumei, KONG Yanlong, GUO Shiyan, WANG Shufang, HUANG Yonghui, LUO Ji, HU Shengbiao. Large-scale karst thermal storage identification method and large-scale sustainable mining technology[J]. Science and Technology for Development, 2020, 16(3-4):299-306. [16] 康凤新, 隋海波, 郑婷婷. 山前岩溶热储聚热与富水机理:以济南北岩溶热储为例[J]. 地质学报, 2020, 94(5):1606-1624. doi: 10.3969/j.issn.0001-5717.2020.05.018KANG Fengxin, SUI Haibo, ZHENG Tingting. Heat accumulation and water enrichment mechanism of piedmont karstic geothermal reservoirs: A case study of northern Jinan[J]. Acta Geologica Sinica, 2020, 94(5):1606-1624. doi: 10.3969/j.issn.0001-5717.2020.05.018 [17] 隋海波, 康凤新, 李常锁, 韩建江, 邢立亭. 水化学特征揭示的济北地热水与济南泉水关系[J]. 中国岩溶, 2017, 36(1):49-58. doi: 10.11932/karst20170106SUI Haibo, KANG Fengxin, LI Changsuo, HAN Jianjiang, XING Liting. Relationship between north Jinan geothermal water and Jinan spring water revealed by hydrochemical characteristics[J]. Carsologica Sinica, 2017, 36(1):49-58. doi: 10.11932/karst20170106 [18] 史启朋, 宋帅良, 孟甲, 郑慧铭. 山东省菏泽凸起地热田岩溶地热水水化学水平演化特征[J]. 中国岩溶, 2021, 40(2):310-318. doi: 10.11932/karst20210209SHI Qipeng, SONG Shuailiang, MENG Jia, ZHENG Huiming. Hydrochemical evolution of karst geothermal water in the Heze uplift geothermal field, Shandong Province[J]. Carsologica Sinica, 2021, 40(2):310-318. doi: 10.11932/karst20210209 [19] Manan Shah, Anirbid Sircar, Vrutang Shah, Yashraj Dholakia. Geochemical and geothermometry study on hot-water springs for understanding prospectivity of low enthalpy reservoirs of Dholera geothermal field, Gujarat, India[J]. Solid Earth Sciences, 2021(6):297-312. [20] 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 1-189. [21] Edmunds W M, Ma J Z, Aeschbach Hertig W, Kipfer R, Darbyshire DPF. Groundwater recharge history and hydrogeochemical evolution in the Minqin basin, North West China[J]. Applied Geochemistry, 2006, 21(12):2148-2170. doi: 10.1016/j.apgeochem.2006.07.016 [22] 马致远, 王心刚, 苏艳, 余娟. 陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J]. 地质通报, 2008, 27(6):888-894. doi: 10.3969/j.issn.1671-2552.2008.06.018MA Zhiyuan, WANG Xingang, SU Yan, YU Juan. Oxygen and hydrogen isotope exchange and its controlling factors in subsurface geothermal waters in the central Guanzhong basin, Shaanxi, China[J]. Geological Bulletin of China, 2008, 27(6):888-894. doi: 10.3969/j.issn.1671-2552.2008.06.018 [23] 杨吉龙, 柳富田, 贾志, 袁海帆, 胥勤勉, 胡云壮. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J]. 地球学报, 2018, 39(1):71-78.YANG Jilong, LIU Futian, JIA Zhi, YUAN Haifan, XU Qinmian, HU Yunzhuang. The hydrogeochemical and δ2H-δ18O characteristics of two geothermal fields in Niutuozhen of Hebei Province and Tianjin and their environmental significance[J]. Acta Geoscientica Sinica, 2018, 39(1):71-78. [24] Aggarwal P K, Gat J R, Froehlich K. Isotopes in the water cycle: Past, present and future of a developing science[J]. Isotopes in the Water Cycle: Past, 2005. 10.1007/1-4020-3023-1. [25] 柳鉴容, 宋献方, 袁国富, 孙晓敏, 刘鑫, 王仕琴. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22):3521-3531.LIU Jianrong, SONG Xianfang, YUAN Guofu, SUN Xiaomin, LIU Xin, WANG Shiqin. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2009, 54(22):3521-3531. [26] 郑淑慧, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 13:801-806. [27] 董海洲, 陈建生, 陈亮. 水岩相互作用中δD、δ18O漂移成因分析及应用[C]//中国地球物理学会第十九届年会论文集. 南京: 南京师范大学出版社, 2003: 662-663. [28] CHEN Zongyu, QI Jixiang, XU Jianming, XU Jiaming, YE Hao, NAN Yunju. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China Plain[J]. Applied Geochemistry, 2003, 18(7):997-1009. doi: 10.1016/S0883-2927(02)00206-8 [29] 陈宗宇, 齐继祥, 张兆吉. 北方典型盆地水文地质学同位素方法应用[M]. 北京: 科学出版社, 2010: 1-461. [30] 王家乐. 济南岩溶水系统多级次循环模式分析及识别方法硏究[D]. 武汉: 中国地质大学(武汉), 2016.WANG Jiale. Analysis and identification of hierarchical groundwater flow system in Jinan[D]. Wuhan: China University of Geosciences (Wuhan), 2016. [31] 朱喜, 王贵玲, 马峰, 张薇, 张庆莲, 张汉雄. 太行山–雄安新区蓟县系含水层水文地球化学特征及意义[J]. 地球科学, 2021, 46(7):2594-2608.ZHU Xi, WANG Guiling, MA Feng, ZHANG Wei, ZHANG Qinglian, ZHANG Hanxiong. Hydrogeochemistry of geothermal waters from Taihang Mountain-Xiong'an New Area and its indicating significance[J]. Earth Science, 2021, 46(7):2594-2608. [32] Navarre-Sitchler Alexis, Jung Heewon. Complex coupling of fluid transport and geochemical reaction rates: Insights from reactive transport models[J]. Procedia Earth & Planetary Science, 2017, 17: 5-8. [33] Arnórsson S, Gunnlaugsson E, Svavarsson H. The chemistry of geothermal waters in iceland. 2. Mineral equilibria and independent variables controlling water compositions[R]. Geochimica et Cosmochimica Acta, 1983, 47(3): 547-566. [34] Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1-4):41-50. doi: 10.1016/0375-6505(77)90007-4 [35] 颜玉聪. 鲜水河断裂带温泉水文地球化学地震短临前兆异常特征研究[D]. 北京: 中国地震局地震预测研究所, 2022.YAN Yucong. Investigation of hydrogeochemical precursors of several strong earthquakes in springs within the Xianshuihe fault zone[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2022. [36] Kong Yanlong, Pang Zhonghe, Pang Jumei, Luo Lu, Luo Ji, Shao Habing, Kolditz Olaf. Deep groundwater cycle in Xiongxian geothermal field[C]//Proceedings World Geothermal Congress, 2015. [37] 孙红丽. 关中盆地地热资源赋存特征及成因模式研究[D]. 北京: 中国地质大学(北京), 2015.SUN Hongli. Occurrence characteristics and genetic model of geothermal resources in Guanzhong basin[D]. Beijing: China University of Geosciences (Beijing), 2015. [38] 张保建, 沈照理, 乔增宝, 亓麟. 聊城市东部岩溶地热田地下热水水化学特征及成因分析[J]. 中国岩溶, 2009, 28(3):263-268.ZHANG Baojian, SHEN Zhaoli, QIAO Zengbao, QI Lin. Analysis on hydro-chemical features and origin of the hot spring in karst geothermal field, east Liaocheng City[J]. Carsologica Sinica, 2009, 28(3):263-268. [39] 崔洋, 康凤新, 钟振楠, 杨询昌, 隋海波, 赵强. 鲁西北平原地热热源机制的气体同位素约束[J]. 地球学报, 2023, 44(1):93-106.CUI Yang, KANG Fengxin, ZHONG Zhennan, YANG Xunchang, SUI Haibo, ZHAO Qiang. Gas isotope constraints on the geothermal heat source mechanism in northwest Shandong plain[J]. Acta Geoscientica Sinica, 2023, 44(1):93-106. [40] 邱楠生, 胡圣标, 何丽娟. 沉积盆地地热学[M]. 东营: 中国石油大学出版社, 2019: 1-90.QIU Nansheng, HU Shengbiao, HE Lijuan. Geothermics in Sedimentary Basins[M]. Dongying: China University of Petroleum Press, 2019: 1-90.