• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泰安旧县水源地地下水位动态特征及可开采量研究

魏凯 王延岭 赵志伟 吴亚楠 翟代廷 闫佰忠

魏 凯,王延岭,赵志伟,等. 泰安旧县水源地地下水位动态特征及可开采量研究[J]. 中国岩溶,2023,42(5):940-955 doi: 10.11932/karst20230507
引用本文: 魏 凯,王延岭,赵志伟,等. 泰安旧县水源地地下水位动态特征及可开采量研究[J]. 中国岩溶,2023,42(5):940-955 doi: 10.11932/karst20230507
WEI Kai, WANG Yanling, ZHAO Zhiwei, WU Yanan, ZHAI Daiting, YAN Baizhong. Dynamic characteristics of groundwater level and exploitable amount of groundwater source in Jiuxian county, Tai'an[J]. CARSOLOGICA SINICA, 2023, 42(5): 940-955. doi: 10.11932/karst20230507
Citation: WEI Kai, WANG Yanling, ZHAO Zhiwei, WU Yanan, ZHAI Daiting, YAN Baizhong. Dynamic characteristics of groundwater level and exploitable amount of groundwater source in Jiuxian county, Tai'an[J]. CARSOLOGICA SINICA, 2023, 42(5): 940-955. doi: 10.11932/karst20230507

泰安旧县水源地地下水位动态特征及可开采量研究

doi: 10.11932/karst20230507
基金项目: 泰安市科技创新发展项目(2020NS291);国家自然科学基金项目(42002251)
详细信息
    作者简介:

    魏凯(1986-),男,高级工程师,主要从事水工环地质工作。E-mail:183114050@163.com

    通讯作者:

    王延岭(1978-),男,高级工程师,主要从事水工环地质工作。E-mail:728116520@qq.com

  • 中图分类号: P641.8

Dynamic characteristics of groundwater level and exploitable amount of groundwater source in Jiuxian county, Tai'an

  • 摘要: 泰安市城区水资源供需矛盾突出,地下水资源开采引发了岩溶塌陷等地质环境问题,亟需查明岩溶塌陷生态水位约束下水源地的允许开采量,确定水源地最优取水方案。以旧县水源地1980—2021年的地下水位、年降水量、地下水开采量、岩溶塌陷等数据为基础,探讨人类活动对水源地地下水位的演变的影响因素,分析发生岩溶塌陷的地下水临界水位。基于Modflow-GWM软件构建泰安城区−旧县岩溶水系统流动与管理耦合模拟模型,探讨防止岩溶塌陷发生的地下水允许开采的资源量。结果表明:(1)孔隙水水位年内动态受降水影响明显,呈现“降水−补给”型特点;岩溶水水位变化呈“枯低丰高”的特征,水位动态变化属降水入渗−开采型;(2)旧县水源地地下水位自1980—1990年呈现大幅下降,1990—2003年岩溶地下水位基本呈现波动下降,2004年后水源地地下水位上升较为明显;(3)研究水位动态与岩溶塌陷关系得出,防止发生岩溶塌陷的水源地临界水位为108 m,处于岩溶含水层顶板以上2 m;(4)通过地下水管理模型,确定在临界水位时模拟区岩溶水可开采量为8.2~8.5 万md−1,其中旧县水源地可开采资源量为3.2~3.5万md−1

     

  • 图  1  旧县水源地区域地质图

    Figure  1.  Geology of the groundwater source area in Jiuxian county

    图  2  2021年旧县孔隙水296监测孔年内地下水位动态−降雨量曲线

    Figure  2.  Annual groundwater level dynamics-precipitation curve of No.296 monitoring hole for observing pore water in Jiuxian county in 2021

    图  3  旧县孔隙水296监测孔1990—2021年年际地下水位动态−降雨量曲线

    Figure  3.  Interannual groundwater level dynamics-precipitation curve of No.296 monitoring hole for observing pore water in Jiuxian county from 1990 to 2021

    图  4  2021年旧县岩溶水225监测孔年内地下水位动态−降雨量曲线

    Figure  4.  Annual groundwater level dynamics-precipitation curve of No.256 monitoring hole for observing karst water in Jiuxian county in 2021

    图  5  旧县水源地监测点岩溶水1991—2021年年际地下水位动态−降雨量曲线

    Figure  5.  Interannual groundwater level dynamics-precipitation curve of karst water at the observation point of groundwater source area in Jiuxian county from 1990 to 2021

    图  6  旧县水源地岩溶塌陷发育特征与水位关系(吴亚楠,2017年)

    Figure  6.  Relationship between the development characteristics of karst collapse and groundwater level in the groundwater source area of Jiuxian county (WU Yanan, 2017)

    图  7  模拟范围及边界条件概化

    Figure  7.  Generalization of simulation scope and boundary conditions

    图  8  2016年6月孔隙水等水位线图

    Figure  8.  Groundwater level contour map of pore water in June, 2016

    图  9  2016年6月岩溶水等水位线图

    Figure  9.  Groundwater level contour map of karst water in June, 2016

    图  10  识别验证期孔隙水QS8观测孔实测地下水位与计算地下水位拟合曲线

    Figure  10.  Fitting curve of measured and calculated groundwater level of pore water at QS8 observation hole in identification and verification period

    图  11  识别验证期岩溶水225观测孔实测地下水位与计算地下水位拟合曲线

    Figure  11.  Fitting curve of measured and calculated groundwater levels of karst water at No. 225 observation hole in identification and verification period

    图  12  识别验证期(2021年12月)孔隙水流场拟合图

    Figure  12.  Fitting diagram of pore groundwater flow field during the identification and validation period in December, 2021

    图  13  识别验证期(2021年12月)岩溶水流场拟合图

    Figure  13.  Fitting diagram of karst water flow field during the identification and validation period in December, 2021

    图  14  模拟区数值模拟结构示意图

    Figure  14.  Numerical simulation structure in the simulated area

    图  15  模拟区大气降水入渗系数分区

    Figure  15.  Zoning of atmospheric precipitation infiltration coefficient in the simulated area

    图  16  模拟区孔隙水渗透系数和给水度分区

    Figure  16.  Partition of pore groundwater permeability coefficient and water yield in the simulated area

    图  17  模拟区岩溶水渗透系数和储水系数分区

    Figure  17.  Partition of permeability coefficient and storage coefficient of karst water in the simulated area

    图  18  旧县水源地优化开采至2030年地下水流场预测图

    Figure  18.  Prediction of groundwater flow field from optimized exploitation of water resources in Jiuxian county till 2030

    图  19  旧县水源地14#水源井处水位预测曲线

    Figure  19.  Prediction curve of groundwater level at No.14 well in the groundwater source area of Jiuxian county

    图  20  旧县水源地4#水源井处水位预测曲线

    Figure  20.  Prediction curve of groundwater level at No.4 well in the groundwater source area of Jiuxian county

    图  21  旧县水源地9#水源井处水位预测曲线

    Figure  21.  Prediction curve of groundwater level at No.9 well in the groundwater source area of Jiuxian county

    图  22  旧县水源16#水源井处水位预测曲线

    Figure  22.  Prediction curve of groundwater level at No.16 well in the groundwater source area of Jiuxian county

    表  1  识别验证后模拟区降水入渗系数取值一览表

    Table  1.   Values for precipitation infiltration coefficient in the simulated area after identification and verification

    参数分区参数分区参数分区描述
    10.12山前基岩裸露区
    20.20丘陵山前地带,岩性为砂质黏土夹砾石粉砂,厚度薄
    30.30牟汶河河道两侧,岩性为砂含砾石
    40.14基岩裸露区
    50.25位于牟汶河西侧,土地类型主要为农耕地、林地,植被覆盖率较高
    60.22位于泰安城区及以西,岩性主要为粉质黏土夹中粗砂
    70.22分布于城区水源地周边
    80.21丘陵山前地带
    下载: 导出CSV

    表  2  识别验证后模拟区孔隙水渗透系数和给水度赋值

    Table  2.   Pore groundwater permeability coefficient and yield value in the simulated area after identification and verification

    分区水平K/m·d−1垂向/m·d−1给水度分区水平K/m·d−1垂向K/m·d−1给水度
    10.150.000 100.04083.000.000 300.23
    20.150.000 100.04090.850.000 150.30
    32.800.000 180.070100.750.000 150.30
    43.000.000 300.230113.000.000 500.35
    515.501.500 000.200120.500.000 100.25
    60.150.000 150.045135.000.000 500.35
    73.000.000 300.230
    下载: 导出CSV

    表  3  识别验证后模拟区岩溶水渗透系数和贮水系数赋值

    Table  3.   Values of permeability coefficient and storage coefficient of karst water in the simulated area after identification and verification

    分区水平K/m·d−1垂向K/m·d−1弹性储水率/m−1
    015.0104.006.0×10−4
    15.00.505.0×10−4
    24.50.453.0×10−4
    32.50.252.5×10−4
    42.80.283.0×10−5
    52.00.205.5×10−4
    62.30.213.5×10−5
    74.00.405.0×10−5
    84.50.809.5×10−5
    94.00.205.0×10−5
    下载: 导出CSV

    表  4  模拟开采10年地下水量均衡分析表

    Table  4.   Equilibrium analysis of groundwater amount in simulated mining for 10 years

    均衡项流入流出量/万m3·d−1流入流出量/万m3·年−1百分比/%
    补给项孔隙水降水入渗量6.802 482.0083.64
    河流入渗量0.28102.203.44
    灌溉入渗量0.85310.2510.46
    侧向流入量0.2073.002.46
    小计8.132 967.45100
    岩溶水降雨入渗量0.58211.706.61
    河道渗漏量2.55930.7529.04
    侧向径流量0.65237.257.40
    越流补给量5.001 825.0056.95
    小计8.783 204.70100
    排泄项孔隙水农业开采量1.50547.5023.08
    越流排泄量5.001 825.0076.92
    小计6.502 372.50100
    岩溶水水源地集中开采量3.501 277.5041.18
    分散开采量5.001 825.0058.82
    小 计8.503 102.50100
    孔隙水补排差1.63594.95/
    岩溶水补排差0.28102.20/
    下载: 导出CSV
  • [1] 闫佰忠, 孙丰博, 李晓萌, 王玉清, 范成博, 陈佳琦. 气候变化与人类活动对石家庄市藁城区地下水位埋深的影响[J]. 吉林大学学报(地球科学版), 2021, 51(3):854-863. doi: 10.13278/j.cnki.jjuese.20200147

    YAN Baizhong, SUN Fengbo, LI Xiaomeng, WANG Yuqing, FAN Chengbo, CHEN Jiaqi. Impact of climate change and human activities on groundwater depth of Gaocheng district in Shijiazhuang City[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3):854-863. doi: 10.13278/j.cnki.jjuese.20200147
    [2] 胡振通, 王亚华. 华北地下水超采综合治理效果评估:以冬小麦春灌节水政策为例[J]. 干旱区资源与环境, 2019, 33(5):101-106.

    HU Zhentong, WANG Yahua. Effectiveness assessment on comprehensive governance of groundwater over-exploition in North China Plain: The policy of winter wheat's water-saving by reducing spring irrigation[J]. Journal of Arid Land Resources and Environment, 2019, 33(5):101-106.
    [3] 戴长雷, 王羽, 王美玉, 韩心宇. 区域地下水水位水量双控管理研究[J]. 黑龙江大学工程学报, 2021, 12(1):1-8. doi: 10.13524/j.2095-008x.2021.01.001

    DAI Changlei, WANG Yu, WANG Meiyu, HAN Xinyu. Study on dual control management of regional groundwater level and groundwater volume[J]. Journal of Engineering of Heilongjiang University, 2021, 12(1):1-8. doi: 10.13524/j.2095-008x.2021.01.001
    [4] 吴亚楠. 泰安市城区−旧县水源地岩溶地面塌陷历程及影响因素分析[J]. 中国岩溶, 2020, 39(2):225-231.

    WU Ya'nan. Process and influencing factors of karst ground collapse in the water sources of Tai'an-Jiuxian[J]. Carsologica Sinica, 2020, 39(2):225-231.
    [5] 吴亚楠. 泰安市城区−旧县水源地岩溶塌陷演化过程分析[J]. 中国岩溶, 2017, 36(1):94-100. doi: 10.11932/karst20170112

    WU Ya'nan. Analysis of karst collapse development in Tai'an-Jiuxian water source area[J]. Carsologica Sinica, 2017, 36(1):94-100. doi: 10.11932/karst20170112
    [6] 周博文, 李华明, 常宝成. 额仁淖尔水源地靶区地下水可开采潜力分析及可增加开采量评价[J]. 世界核地质科学, 2022, 39(2):364-373. doi: 10.3969/j.issn.1672-0636.2022.02.020

    ZHOU Bowen, LI Huaming, CHANG Baocheng. Analysis on exploitable groundwater potential and evaluation of exploitable augmentation in Erennur water source target area[J]. World Nuclear Geoscience, 2022, 39(2):364-373. doi: 10.3969/j.issn.1672-0636.2022.02.020
    [7] 李若怡, 王旭升, 尹立河, 张俊, 王晓勇. 基于生态约束模拟评价浩勒报吉水源地的地下水可开采量[J]. 工程勘察, 2021, 49(3):36-42, 78.

    LI Ruoyi, WANG Xusheng, YIN Lihe, ZHANG Jun, WANG Xiaoyong. Simulation and assessment on allowable groundwater exploitation in the Haolebaoji well field based on ecological constraint[J]. Geotechnical Investigation & Surveying, 2021, 49(3):36-42, 78.
    [8] Vimalav. Groundwater management strategy for the sustainability of quality water resources in Coimbatore: A case study[J]. Asian Journal of Multidimensional Research, 2018, 7(1):115-128.
    [9] Alfaro P, Liesch T, Goldscheider N. Modelling groundwater over-extraction in the southern Jordan Valley with scarce data[J]. Hydrogeology Journal, 2017, 25(5):1319-1340. doi: 10.1007/s10040-017-1535-y
    [10] 马雄德, 黄金廷, 李吉祥, 宁世雄. 面向生态的矿区地下水位阈限研究[J]. 煤炭学报, 2019, 44(3):675-680. doi: 10.13225/j.cnki.jccs.2018.6050

    MA Xiongde, HUANG Jinting, LI Jixiang, NING Shixiong. Groundwater level threshold under the constrain of ecology security in mining area[J]. Journal of China Coal Society, 2019, 44(3):675-680. doi: 10.13225/j.cnki.jccs.2018.6050
    [11] 付晓刚, 唐仲华, 刘彬涛, 蔺林林,卜华, 闫佰忠. 基于模拟−优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3):784-796. doi: 10.13278/j.cnki.jjuese.20180083

    FU Xiaogang, TANG Zhonghua, LIU Bintao, LIN Linlin, BU Hua, YAN Baizhong. Study on exploitable groundwater resources of Yangzhuang basin in Shandong Province by using simulation-optimization model[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3):784-796. doi: 10.13278/j.cnki.jjuese.20180083
    [12] 陈伟清, 王延岭. 山东省泰安市城区−旧县岩溶水系统地下水资源潜力评价[J]. 中国岩溶, 2014, 33(1):9-14.

    CHEN Weiqing, WANG Yanling. Evaluation of the potential groundwater resources in Tai'an urban-Jiuxian karst water system, Shandong Province[J]. Carsologica Sinica, 2014, 33(1):9-14.
    [13] 山东省地矿局第一地质大队. 山东省泰安市水资源管理模型报告[R]. 1990.
    [14] 高宗军, 孙文广, 唐蒙生, 武新岭, 刘明, 韩云龙, 程锡良. 泰安−旧县水源区岩溶水开采与地质环境的关系[J]. 山东地质, 2001, 17(3):86-91.

    GAO Zongjun, SUN Wenguang, TANG Mengsheng, WU Xinling, LIU Ming, HAN Yunlong, CHENG Xiliang. Relation between karstic water exploitation and geological environment in Tai'an-Jiuxian water source area[J]. Shandong Geology, 2001, 17(3):86-91.
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  160
  • HTML浏览量:  62
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 录用日期:  2023-07-28
  • 修回日期:  2023-07-28
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回