Research on the response mechanism of groundwater level to rainfall in the western suburb of Jinan based on wavelet analysis
-
摘要: 降雨是地下水的主要补给来源,准确掌握地下水位对降雨的响应机制对地下水资源的科学管理具有重要意义。文章利用济南市西郊2010—2019年月降水资料及第四系和岩溶地下水月水位资料进行季节特征统计及小波分析,结果表明:①济南市秋季地下水位最高,第四系和岩溶平均水位分别为30.28 m和29.74 m;春季地下水位最低,第四系和岩溶平均水位分别为29.44 m和28.78 m;②连续小波变换分析得出降雨的主震荡周期为0.98~1.17 a,第四系地下水的主震荡周期为0.73~1.16 a和1.17~1.74 a,岩溶地下水的主震荡周期为0.87~1.09 a和0.46~1.23 a,主震荡周期并不完全一致,反映出济南市西郊地下水动态不仅受降雨的影响,同时还受人类活动等其它因素的影响;③交叉小波变换分析表明降雨与地下水位的主共振周期均为1 a左右;第四系和岩溶含水层水位动态分别落后于降雨144.14 d和172.62 d,两者仅相差28.48 d,水力联系较为密切。以上结论说明,济南市西郊地下水动态对降雨的响应是显著和稳定的。Abstract:
With the rapid development of social economy, karst groundwater in Jinan City keeps facing various problems such as water resource shortage and water pollution, which seriously threatens the protection of springs and the utilization of groundwater resources. The western suburb of Jinan City is located at the northeast edge of Jinan spring catchment; the Yufu river and Shahe river abundant in groundwater are important recharge sources for Jinan spring catchment. Therefore, it is very important to accurately reveal the response mechanism of groundwater to precipitation in the western suburb, which can help to improve the potential of groundwater exploitation and spring protection. In this study, the monthly precipitation data from 2010 to 2019 in the western suburb of Jinan City and the monthly water level data of Quaternary and karst groundwater are used to carry out seasonal statistical characteristics and wavelet analysis. Results show that, (1) According to the seasonal statistical characteristics of precipitation and groundwater, the precipitation in the western suburb of Jinan City mainly concentrates in summer, accounting for about 67.5% of the annual precipitation. The groundwater level is the highest in autumn, with the average water levels of the Quaternary and karst being 30.28 m and 29.74 m, respectively. The groundwater level is the lowest in spring, with the average water levels of the Quaternary and karst being 29.44 m and 28.78 m, respectively. Seasonal fluctuation of groundwater dynamics in the study area is the coupling effect of human and natural factors. Since the beginning of spring in March, precipitation has decreased and the amount of evaporation has increased along with the rise of temperature. At the same time, a large amount of groundwater has been extracted for agricultural irrigation, resulting in a drop in the groundwater level. Although the precipitation is relatively abundant after the beginning of summer, the infiltration of precipitation into the aquifer has a certain lag (generally about 2–5 months), resulting in the fact that the highest groundwater level occurs in autumn. (2) Through continuous wavelet transform analysis, it can be concluded that the main oscillation period of precipitation is 0.98–1.17 a and it passed the 95% red noise test from April 2011 to October 2018, indicating that it has significant periodic characteristics. The main oscillation period of Quaternary groundwater is 0.73–1.16 a and 1.17–1.74 a and it passed the 95% red noise test from April 2011 to January 2015. The main oscillation period of karst groundwater is 0.87–1.09 a and 0.46–1.23 a, but it passed the 95% red noise test only from March 2013 to October 2014 and from June 2016 to October 2018. The main oscillations periods are not completely consistent with groundwater level and precipitation, reflecting that the dynamics of groundwater in the study area is not only affected by precipitation, but also by other factors such as human activities. (3) Cross wavelet transform analysis shows that the main resonance period of precipitation and groundwater level is about 1 year. The groundwater level dynamics of Quaternary and karst aquifers lag behind precipitation by 144.14 d and 172.62 d, respectively, with the difference of only 28.48 d, which may reveal that the hydraulic connection between Quaternary and karst aquifer is very close. The dynamic curves of the Quaternary and karst groundwater level show that the dynamic changes of the two are relatively consistent, although the dynamics of the karst groundwater level lags behind, but with relative short lagging time, which further indicates that these two aquifers have a good complementary relationship. In addition, the drilling data of monitoring wells in the study area show that there is no obvious water-resisting layer between the Quaternary and the karst aquifer, and the karst aquifer has well-developed fissures, strong water-abundance, and is cut by faults, with strong water-conducting capacity. All the above results show that the response of groundwater level to precipitation is significant and stable. -
Key words:
- the western suburb of Jinan /
- precipitation /
- groundwater level /
- wavelet analysis /
- response mechanism
-
表 1 2010-2019年降雨量分季节统计特征(mm)
Table 1. Seasonal statistical characteristics of precipitation from 2010 to 2019 (mm)
时段 年均值 最大雨量 最小雨量 标准差 春季 107.16 232.10 57.60 54.43 夏季 489.52 795.80 309.30 154.18 秋季 96.85 201.90 48.60 44.88 冬季 31.19 85.40 7.90 23.98 表 2 2010—2019年地下水位分季节统计特征/m
Table 2. Seasonal statistical characteristics of groundwater levels from 2010 to 2019/m
含水层 时段 年均 最高值 最低值 标准差 第四系 春季 29.44 30.91 28.07 0.93 夏季 30.26 31.40 28.65 0.94 秋季 30.28 31.45 28.62 1.11 冬季 29.98 31.40 28.69 1.01 岩溶 春季 28.78 29.91 27.48 0.78 夏季 29.59 30.54 28.10 0.79 秋季 29.74 30.67 27.92 0.87 冬季 29.18 30.08 27.74 0.78 表 3 降雨与地下水水位交叉小波变换统计表
Table 3. Statistics of cross-wavelet transform of precipitation and groundwater level
点组 通过95%红噪声检验时段 相位差/rad 滞后时间/d 第四系含水层 2011年1月—2015年7月
2016年10月—2018年10月2.48±0.084 144.14±4.88 岩溶含水层 2011年7月—2018年11月 2.97±0.102 172.62±5.96 -
[1] 冯亚伟, 陈洪年, 贾德旺. 山东省岩溶地下水系统划分及构造模式[J]. 水文, 2020, 40(6):83-88.FENG Yawei, CHEN Hongnian, JIA Dewang. Division and structural pattern of karst groundwater system in Shandong Province[J]. Journal of China Hydrology, 2020, 40(6):83-88. [2] 王志恒, 梁永平, 申豪勇, 赵春红, 唐春雷. 自然与人类活动叠加影响下晋祠泉域岩溶地下水动态特征[J]. 吉林大学学报(地球科学版), 2021, 51(6):1823-1837.WANG Zhiheng, LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, TANG Chunlei. Dynamic characteristics of karst groundwater in Jinci spring under superimposed influence of natural and human activities[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(6):1823-1837. [3] 王瑞青. 济南趵突泉泉域岩溶地下水污染风险识别及防控区划研究[D]. 长春: 吉林大学, 2021.WANG Ruiqing. Study on risk identification and zoning prevention and control of karst groundwater pollution in Baotu Spring area of Jinan[D]. Changchun: Jilin University, 2021. [4] 赵一, 邹胜章, 申豪勇, 周长松, 樊连杰. 会仙湿地岩溶地下水系统水位动态特征与均衡分析[J]. 中国岩溶, 2021, 40(2):325-333.ZHAO Yi, ZOU Shengzhang, SHEN Haoyong, ZHOU Changsong, FAN Lianjie. Dynamic characteristics and equilibrium of water level of the karst groundwater system beneath the Huixian wetland[J]. Carsologica Sinica, 2021, 40(2):325-333. [5] 王大伟, 乔小娟, 高波, 贾小军. 山西龙子祠岩溶泉流量动态特征与影响因素分析[J]. 中国岩溶, 2021, 40(3):420-429.WANG Dawei, QIAO Xiaojuan, GAO Bo, JIA Xiaojun. Dynamic characteristics and influence factors of discharge of the Longzici karst spring in Shanxi Province[J]. Carsologica Sinica, 2021, 40(3):420-429. [6] 孟庆晗, 王鑫, 邢立亭, 董亚楠, 朱恒华, 武朝军. 济南四大泉群补给来源差异性研究[J]. 水文地质工程地质, 2020, 47(1):37-45.MENG Qinghan, WANG Xin, XING Liting, DONG Ya'nan, ZHU Henghua, WU Chaojun. A study of the difference in supply sources of the four groups of springs in Jinan[J]. Hydrogeology & Engineering Geology, 2020, 47(1):37-45. [7] 徐军祥, 邢立亭. 济南泉域岩溶水数值预报与供水保泉对策[J]. 地质调查与研究, 2008, 31(3):209-213.XU Junxiang, XING Liting. Numerical prediction for the karst groundwater and spring protection in Jinan karst spring region[J]. Geological Survey and Research, 2008, 31(3):209-213. [8] 邢立亭, 周娟, 宋广增, 邢学睿. 济南四大泉群泉水补给来源混合比探讨[J]. 地学前缘, 2018, 25(3):260-272.XING Liting, ZHOU Juan, SONG Guangzeng, XING Xuerui. Mixing ratios of recharging water sources for the four largest spring groups in Jinan[J]. Earth Science Frontiers, 2018, 25(3):260-272. [9] Adebayo T S, Oladipupo S D, Adeshola I, Rjoub H. Wavelet analysis of impact of renewable energy consumption and technological innovation on CO2 emissions: Evidence from Portugal[J]. Environmental Science and Pollution Research, 2022, 29(16):23887-23904. doi: 10.1007/s11356-021-17708-8 [10] Afzal P, Ahmadi K, Rahbar K. Application of fractal-wavelet analysis for separation of geochemical anomalies[J]. Journal of African Earth Sciences, 2017, 128:27-36. doi: 10.1016/j.jafrearsci.2016.08.017 [11] Li Q F, He P F, He Y C, Han X Y, Zeng T S, Lu G B, Wang H J. Investigation to the relation between meteorological drought and hydrological drought in the upper Shaying river basin using wavelet analysis[J]. Atmospheric Research, 2020, 234:104743-104752. doi: 10.1016/j.atmosres.2019.104743 [12] Bouri E, Shahzad S J H, Roubaud D, Kristoufek L, Lucey B. Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis[J]. The Quarterly Review of Economics and Finance, 2020, 77:156-164. doi: 10.1016/j.qref.2020.03.004 [13] Lyashenko V V. Wavelet analysis of cytological preparations image in different color systems[J]. Open Access Library Journal, 2017, 4(7):1-9. [14] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 [15] Walnut D F. An introduction to wavelet analysis[M]. Berlin: Springer Science & Business Media, 2013. [16] 侯新宇, 邢立亭, 孙蓓蓓, 李常锁. 济南市岩溶水系统分级及市区与东西郊的水力联系[J]. 济南大学学报(自然科学版), 2014, 28(4):300-305.HOU Xinyu, XING Liting, SUN Beibei, LI Changsuo. Karst water system classification in Jinan and hydraulic connection between downtown and east and west suburbs[J]. Journal of University of Jinan (Science & Technology), 2014, 28(4):300-305. [17] 徐军祥, 邢立亭, 佟光玉, 范立芹. 济南泉域地下水环境演化与保护[J]. 水文地质工程地质, 2004(6):69-73.XU Junxiang, XING Liting, TONG Guangyu, FAN Liqin. Groundwater environment evolution and its conservation in Jinan spring catchment[J]. Hydrogeology & Engineering Geology, 2004(6):69-73. [18] 商广宇. 济南泉水与东、西郊地下水关系研究[J]. 水文地质工程地质, 1988(3):52.SHANG Guangyu. Study on the relationship between Jinan spring and groundwater in the eastern and western suburbs[J]. Hydrogeology & Engineering Geology, 1988(3):52. [19] 管清花, 汪玉静, 陈学群, 曾桂华, 辛光明. 济南玉符河重点渗漏带岩溶地下水补给特征与保护[J]. 中国岩溶, 2023, 42(2):233-244.GUAN Qinghua, WANG Yujing, CHEN Xuequn, ZENG Guihua, XIN Guangming. Recharge characteristics and protection of karst groundwater in major leakage area of Yufu river in Jinan[J]. Carsologica Sinica, 2023, 42(2):233-244. [20] 迟光耀, 邢立亭, 侯新宇, 黄林显, 杨奕. 基于小波分析与Mann-Kendall法的岩溶大泉动态研究[J]. 中国岩溶, 2018, 37(4):515-526.CHI Guangyao, XING Liting, HOU Xinyu, HUANG Linxian, YANG Yi. Study of large karst springs using the wavelet analysis and Mann-Kendall methods[J]. Carsologica Sinica, 2018, 37(4):515-526. [21] 李传生, 祁晓凡, 王雨山, 安永会, 邢立亭. 我国北方典型岩溶地下水位对降水及气象指数的响应特征:以鲁中地区为例[J]. 中国岩溶, 2019, 38(5):643-652.LI Chuansheng, QI Xiaofan, WANG Yushan, AN Yonghui, XING Liting. Response characteristics of typical karst groundwater levels of central Shandong Province to precipitation and climatic index[J]. Carsologica Sinica, 2019, 38(5):643-652. [22] 宋书克, 魏立巍, 辛星召, 娄渊知. 基于小波变换分析小浪底大坝渗流监测数据[J]. 人民黄河, 2013(2):95-97.SONG Shuke, WEI Liwei, XIN Xingzhao, LOU Yuanzhi. Analysis on dam seepage monitoring data for Xiaolangdi project based on wavelet transformation[J]. Yellow River, 2013(2):95-97.