• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同地质背景下北方岩溶作用强度研究

刘文 徐聪聪 于令芹 李海翔 卢茜茜 朱钦锋 柳浩然

刘 文,徐聪聪,于令芹,等. 不同地质背景下北方岩溶作用强度研究[J]. 中国岩溶,2023,42(5):887-897 doi: 10.11932/karst20230502
引用本文: 刘 文,徐聪聪,于令芹,等. 不同地质背景下北方岩溶作用强度研究[J]. 中国岩溶,2023,42(5):887-897 doi: 10.11932/karst20230502
LIU Wen, XU Congcong, YU Lingqin, LI Haixiang, LU Qianqian, ZHU Qinfeng, LIU Haoran. Study on the intensity of boreal karstification under different geological conditions: A case study at the recharge area of Baotu Spring drainage area, Jinan, Northern China[J]. CARSOLOGICA SINICA, 2023, 42(5): 887-897. doi: 10.11932/karst20230502
Citation: LIU Wen, XU Congcong, YU Lingqin, LI Haixiang, LU Qianqian, ZHU Qinfeng, LIU Haoran. Study on the intensity of boreal karstification under different geological conditions: A case study at the recharge area of Baotu Spring drainage area, Jinan, Northern China[J]. CARSOLOGICA SINICA, 2023, 42(5): 887-897. doi: 10.11932/karst20230502

不同地质背景下北方岩溶作用强度研究

doi: 10.11932/karst20230502
基金项目: 山东省地矿局八〇一队科技创新项目:鲁中南岩溶区 “碳中和”潜力调查及关键技术研究(2022JBGS801-13);国家自然科学基金面上项目:多级次地下水流系统对北方岩溶大泉动态的影响机制42272288);山东省地矿局地质勘查与科技创新项目:北方岩溶关键带监测基地建设项目(HJ202110)
详细信息
    作者简介:

    刘文(1985-),男,博士,高级工程师,主要从事岩溶地质相关调查研究工作。E-mail:liuwen37801@163.com

    通讯作者:

    柳浩然(1986-),男,硕士,工程师,从事地下水环境监测研究。E-mail:lhr801@126.com

  • 中图分类号: P642.25

Study on the intensity of boreal karstification under different geological conditions: A case study at the recharge area of Baotu Spring drainage area, Jinan, Northern China

  • 摘要: 岩溶作用过程可形成碳汇是不争的事实,为进一步探索不同地质背景对岩溶作用的影响机制,选取典型北方岩溶泉域−济南趵突泉泉域补给区为研究区,采用标准溶蚀试片法进行野外现场试验。结果表明,下伏岩性为花岗岩、碳酸盐岩、黄土、页岩的各试点平均溶蚀速率分别为:3.49、0.26、0.11、0.09 mg·cm−2·a−1;碳酸盐岩、黄土、页岩分布区溶蚀速率大气 > 地表 > 壤中,且壤中部分呈随深度增加而降低的趋势,而在花岗岩分布区则呈完全相反。分析发现,土壤水与溶蚀速率相关性远高于CO2,是北方岩溶区岩溶作用进行的限制因子。本研究结果有助于认识半湿润气候条件下岩溶碳汇机制,为北方其他岩溶区乃至整个同类型岩溶区相关研究的开展积累了经验。

     

  • 图  1  考虑水−岩−气−生相互作用的碳酸盐风化碳汇模式图[17- 18]

    Figure  1.  Conceptual model for carbonate weathering related carbon sink

    图  2  研究区地理位置及水文地质略图

    Figure  2.  Overview map of geographical location and hydrogeology of the study area

    图  3  试片埋设深度与溶蚀速率的关系

    Figure  3.  Relationship between the burial depth of test tablet and its dissolution rate

    图  4  碳酸盐岩分布区土壤水分含量与溶蚀速率的关系

    Figure  4.  Relationship between water content of soil and dissolution rate in the carbonate rock area

    图  5  碳酸盐岩分布区土壤CO2与溶蚀速率的关系

    Figure  5.  Relationship between CO2 content of soil and dissolution rate in the carbonate rock area

    图  6  土壤有机质含量/×10−3

    Figure  6.  Organic matter content of soil/×10−3

    图  7  土壤无机碳含量

    Figure  7.  Inorganic carbon content of soil

    图  8  pH与溶蚀速率的关系

    Figure  8.  Relationship between pH and dissolution rate

    表  1  标准溶蚀试验点位概况

    Table  1.   Overview of the test sites of standard dissolution

    编号埋放
    日期
    取回
    日期
    埋放
    天数
    土地利用
    类型
    优势
    植被
    伴生
    植被
    基底
    岩性
    地貌
    部位
    坡向/视
    坡度
    LB012017年11月25日2021年11月26日1 462林地槐树构树、灌丛碳酸盐岩山坡135°/20°
    LB022017年11月28日2021年11月25日1 458林地柏树黄荆花岗岩山坡95°/10°
    LB032017年11月28日2021年11月26日1 459林地槐树杂草花岗岩近山顶山坡90°/60°
    LY012017年11月15日2021年12月8日1 484林地、灌丛杨树黄荆、杂草页岩山坡0°/3°
    LY022017年11月16日2021年12月6日1 481林地柏树黄荆、杂草页岩山坡345°/30°
    LY032017年11月16日2021年12月7日1 482林地柏树黄荆、杂草花岗岩山坡270°/8°
    LY042017年11月17日2021年12月3日1 477林地柏树黄荆碳酸盐岩近山顶山坡315°/45°
    XY012017年11月21日2021年12月2日1 472园地核桃树山楂黄土山谷河漫滩180°/1°
    XY022017年11月23日2021年12月1日1 469园地苹果树杂草页岩山谷尾端0°/3°
    XY032017年11月23日2021年12月1日1 469园地苹果树杂草页岩山谷尾端0°/3°
    XY042017年11月24日2021年12月1日1 468林地柏树黄荆碳酸盐岩山坡90°/45°
    XY052017年11月24日2021年12月2日1 469未利用地灌草丛碳酸盐岩山坡225°/30°
    ZG012017年11月25日2021年11月28日1 464林地柏树碳酸盐岩山坡180°/15°
    ZG022017年11月29日2021年11月29日1 461林地柏树杂草碳酸盐岩山坡190°/10°
    下载: 导出CSV

    表  2  按基底岩性分层溶蚀速率表/mg·cm−2·a−1

    Table  2.   Layered dissolution rate of different basement lithology/mg·cm−2·a−1

    层位碳酸盐岩页岩花岗岩黄土
    大气0.791 70.832 50.829 00.761 9
    表层0.473 50.222 41.294 80.328 6
    中间层0.047 22.672 40.040 6
    底层0.051 10.018 4 6.504 10.011 6
    壤中平均0.262 30.093 83.490 40.105 4
    下载: 导出CSV

    表  3  平均溶蚀速率、土壤CO2含量及含水率

    Table  3.   Average dissolution rate, CO2 and water content in soil

    点位平均溶蚀速率/
    mg·cm−2·a−1
    平均CO2含量/
    ×10−6
    含水率/
    %
    LB025.708 62 733.3316.17
    LB031.556 22 750.009.08
    LY033.206 52 783.3317.22
    LY010.073 51 760.0022.52
    LY020.046 84 514.2929.22
    XY020.065 72 100.0037.12
    XY030.189 05 200.0033.70
    LY040.194 41 991.6717.47
    XY040.448 54 587.5021.60
    XY050.461 73 016.6723.77
    ZG010.233 93 333.3322.63
    ZG020.056 54 016.6715.86
    LB010.178 84 225.0011.85
    XY010.105 41 960.0035.81
    注:含水率基于试片埋设和取回时测量的结果进行平均。
    Note: Water content is averaged based on the results measured when the test tablet is buried and retrieved
    下载: 导出CSV

    表  4  不同深度土壤CO2含量/×10−6

    Table  4.   CO2 content of soil in different depths/×10−6

    点位测试层位/cm
    010203040506080壤中平均
    LB023892 0003 2003 0002 733.33
    LB033782 5003 0002 750
    LY033882 4003 3002 6502 783
    LY013851 1001 4002 1002 2002 0001 760
    LY023853 8003 0006 8004 7005 0004 660
    XY023782 2001 8002 3002 100
    XY033785 2005 4005 0005 200
    LB013852 9005 2004 0004 8004 225
    LY043811 6002 1002 8002 0002 125
    XY043812 5504 6004 6006 6004 588
    XY053813 8003 3001 9503 017
    ZG013883 8004 4001 8003 333
    ZG023753 6004 7603 9205 2004 370
    XY013782 4502 2002 0001 6501 5001 960
    平均值3822 9503 0363 8973 1334 2381 9252 8333 257
    下载: 导出CSV
  • [1] YUAN Daoxian. Sensitivity of karst process to environmental change along the Pep II transect[J]. Quaternary International, 1997, 37:105-13. doi: 10.1016/1040-6182(96)00012-2
    [2] 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993(1):1-6. doi: 10.3321/j.issn:1001-7410.1993.01.001

    YUAN Daoxian. Carbon cycle and global karst[J]. Quaternary Research, 1993(1):1-6. doi: 10.3321/j.issn:1001-7410.1993.01.001
    [3] LIU Zaihua, LI Qiang, SUN Hailong, WANG Jinliang. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1):207-223.
    [4] 章程, 肖琼, 孙平安, 高旭波, 郭永丽, 苗迎, 汪进良. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5):190-198.

    ZHANG Cheng, XIAO Qiong, SUN Ping'an, GAO Xubo, GUO Yongli, MIAO Ying, WANG Jinliang. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5):190-198.
    [5] Nicolas Cassar, Edward A Laws, Robert R Bidigare, Brian N Popp. Bicarbonate uptake by Southern Ocean phytoplankton[J]. Global Biogeochemical Cycles, 2004, 18(2):1-10.
    [6] 刘彦, 张金流, 何媛媛, 孙海龙, 刘再华. 单生卵囊藻对DIC的利用及其对CaCO3沉积影响的研究[J]. 地球化学, 2010, 39(2):191-196.

    LIU Yan, ZHANG Jinliu, HE Yuanyuan, SUN Hailong, LIU Zaihua. The utilization of dissolved inorganic carbon by Oocystis solitaria Wittr and its influence on the precipitation of calcium carbonate[J]. Geochemica, 2010, 39(2):191-196.
    [7] LIU Yan, LIU Zaihua, ZHANG Jinliu, HE Yuanyuan, SUN Hailong. Experimental study on the utilization of DIC by Oocystis solitaria Wittr and its influence on the precipitation of calcium carbonate in karst and non-karst waters[J]. Carbonates and Evaporites, 2010, 25(1):21-26. doi: 10.1007/s13146-009-0002-9
    [8] LIU Zaihua, Wolfgang DREYBRODT, WANG Haijing. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3-4):162-172. doi: 10.1016/j.earscirev.2010.03.001
    [9] 张强. 岩溶地质碳汇的稳定性:以贵州草海地质碳汇为例[J]. 地球学报, 2012, 33(6):947-952.

    ZHANG Qiang. The stability of carbon sink effect related to carbonate rock dissolution: A case study of the Caohai lake geological carbon sink[J]. Acta Geoscientica Sinica, 2012, 33(6):947-952.
    [10] 张陶, 李建鸿, 蒲俊兵, 李瑞, 吴飞红, 李丽. 小球藻对岩溶水体Ca2+、HCO3利用效率实验研究[J]. 中国岩溶, 2018, 37(1):81-90.

    ZHANG Tao, LI Jianhong, PU Junbing, LI Rui, WU Feihong, LI Li. Experimental study on the utilization efficiency of Chlorella to Ca2+ and HCO3 in karst water[J]. Carsologica Sinica, 2018, 37(1):81-90.
    [11] 章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4):368-371.

    ZHANG Cheng. Time scale of karst processes and the carbon sink stability[J]. Carsologica Sinica, 2011, 30(4):368-371.
    [12] 金泉. 岩溶区沉水植物无机碳利用策略的研究[D]. 海口: 海南大学, 2019.

    JIN Quan. Study on inorganic carbon utilization strategy of submerged plants in karst area[D]. Haikou: Hainan University, 2019.
    [13] 张春来, 黄芬, 蒲俊兵, 曹建华. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4): 40-52.

    ZHANG Chunlai, HUANG Fen, PU Junbing, CAO Jianhua. Estimation of karst carbon sink fluxes and manual intervention to increase carbon sinks in China[ J]. Geological Survey of China, 2021, 8(4): 40-52.
    [14] SUN Ping'an, HE Shiyi, YUAN Yaqiong, YU Shi, ZHANG Cheng. Effects of aquatic phototrophs on seasonal hydrochemical, inorganic, and organic carbon variations in a typical karst basin, Southwest China[J]. Environmental Science and Pollution Research, 2019, 26(32):32836-32851. doi: 10.1007/s11356-019-06374-6
    [15] YAN Zhuang, SHEN Taiming, LI Wei, CHENG Wenli, WANG Xiayu, ZHU Min, YU Qiwen, XIAO Yutian, YU Longjiang. Contribution of microalgae to carbon sequestration in a natural karst wetland aquatic ecosystem: An in-situ mesocosm study[J]. Science of the Total Environment, 2021, 768:144387. doi: 10.1016/j.scitotenv.2020.144387
    [16] YANG Mingxing, LIU Zaihua, SUN Hailong, ZHAO Min, HE Haibo. Lipid biomarker investigation of the delivery and preservation of autochthonous organic carbon in the Pearl River and its contribution to the carbon sink: Evidence from the water and surface sediment[J]. International Journal of Environmental Research and Public Health, 2022, 19(22):15392. doi: 10.3390/ijerph192215392
    [17] 刘再华. 土壤碳酸盐是一个重要的大气CO2汇吗? [J]. 科学通报, 2011, 56(26): 2209-2211.

    LIU Zaihua. Is pedogenic carbonate an important atmospheric CO2 sink?[J]. Chinese Science Bulletin, 2011, 56(26): 2209-2211. doi: 10.1007/s11434-010-4288-8.
    [18] 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(Suppl.1): 95-102.

    LIU Zaihua. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(Suppl.1): 95–102.
    [19] Gabrovsek Franci. On concepts and methods for the estimation of dissolutional denudation rates in karst areas[J]. Geomorphology, 2009, 106(1-2):9-14. doi: 10.1016/j.geomorph.2008.09.008
    [20] Krklec Kristina, Braucher Regis, Perica Dražen, Domínguez Villar David. Long-term denudation rate of karstic North Dalmatian Plain (Croatia) calculated from 36Cl cosmogenic nuclides[J]. Geomorphology, 2022, 413:108358. doi: 10.1016/j.geomorph.2022.108358
    [21] 徐胜, 刘丛强, FREEMAN Stewart, 郎赟超, SCHNABEL Christoph, 涂成龙, WILCKEN Klaus, 赵志琦. 贵州喀斯特地区碳酸盐岩的宇宙成因核素36Cl侵蚀速率[J]. 科学通报, 2013, 58(19): 1884.

    XU Sheng, LIU Congqiang, FREEMAN Stewart, LANG Yunchao, SCHNABEL Christoph, TU Chenglong, WILCKEN Klaus, ZHAO Zhiqi. In-situ cosmogenic 36Cl denudation rates of carbonates in Guizhou karst area[J]. Chinese Science Bulletin, 2013, 58(19): 1884. DOI: 10.1007/s11434-013-5756-8
    [22] Yuki Matsushi, Kimikazu Sasa, Tsutomu Takahashi, Keisuke Sueki, Yasuo Nagashima, Yukinori Matsukura. Denudation rates of carbonate pinnacles in Japanese karst areas: Estimates from cosmogenic 36Cl in calcite[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7-8):1205-1208.
    [23] 曾成, 赵敏, 杨睿, 刘再华. 岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较:以陈旗岩溶泉域为例[J]. 水文地质工程地质, 2014, 41(1):106-111.

    ZENG Cheng, ZHAO Min, YANG Rui, LIU Zaihua. Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and solute load method: A case study in the Chenqi karst spring system[J]. Hydrogeology & Engineering Geology, 2014, 41(1):106-111.
    [24] 蒋忠诚, 覃小群, 曹建华, 蒋小珍, 何师意, 罗为群. 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 2011, 30(4):363-367. doi: 10.3969/j.issn.1001-4810.2011.04.002

    JIANG Zhongcheng, QIN Xiaoqun, CAO Jianhua, JIANG Xiaozhen, HE Shiyi, LUO Weiqun. Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China[J]. Carsologica Sinica, 2011, 30(4):363-367. doi: 10.3969/j.issn.1001-4810.2011.04.002
    [25] 刘再华. 岩溶作用及其碳汇强度计算的“入渗−平衡化学法”:兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4):379-382.

    LIU Zaihua. "Method of maximum potential dissolution" to calculate the intensity of karst process and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test[J]. Carsologica Sinica, 2011, 30(4):379-382.
    [26] 何江湖, 肖时珍, 曾成, 狄永宁, 刘梦醒, 蓝家程, 肖华, 朱辉, 曾庆睿. 湿润亚热带典型白云岩流域的化学剥蚀速率:以贵州施秉黄洲河流域为例[J]. 地球与环境, 2018, 46(3):274-281.

    HE Jianghu, XIAO Shizhen, ZENG Cheng, DI Yongning, LIU Mengxing, LAN Jiacheng, XIAO Hua, ZHU Hui, ZENG Qingrui. Chemical denudation rate in typical humid subtropical dolomite catchments: A case study in the Huangzhou river basin, Shibing, Guizhou[J]. Earth and Environment, 2018, 46(3):274-281.
    [27] Corbel J. Erosion en terrain calcaire[J]. Annales de Géographie, 1959, 67:97-120.
    [28] 袁道光, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988.
    [29] 孙平安, 肖琼, 郭永丽, 苗迎, 王奇岗, 章程. 混合岩溶流域碳酸盐岩溶蚀速率与岩溶碳汇:以漓江流域上游为例[J]. 中国岩溶, 2021, 40(5):825-384.

    SUN Ping'an, XIAO Qiong, GUO Yongli, MIAO Ying, WANG Qigang, ZHANG Cheng. Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain: Take the upper reaches of the Lijiang river basin as an example[J]. Carsologica Sinica, 2021, 40(5):825-384.
    [30] 闫伟, 曾成, 肖时珍, 蓝家程, 代林玉, 邰治钦, 何江湖, 何春, 狄永宁. 湿润亚热带典型白云岩流域不同土地利用下的试片溶蚀速率及岩溶碳汇[J]. 地球与环境, 2021, 49(5):529-538.

    YAN Wei, ZENG Cheng, XIAO Shizhen, LAN Jiacheng, DAI Linyu, TAI Zhiqin, HE Jianghu, HE Chun, DI Yongning. Dissolution rate and karst carbon sink of different land use in typical dolomite watershed with humid subtropical weather[J]. Earth and Environment, 2021, 49(5):529-538.
    [31] 刘再华. 外源水对灰岩和白云岩的侵蚀速率野外试验研究:以桂林尧山为例[J]. 中国岩溶, 2000, 19(1):3-6.

    LIU Zaihua. Field experimental research on the corrosion kinetics of limestone and dolomite in allogenic water: Case from Yaoshan Mt., Guilin[J]. Carsologica Sinica, 2000, 19(1):3-6.
    [32] Dreybrodt W. Chemical kinetics, speleothem growth and climate[J]. Boreas, 1999, 28(3):347-356.
    [33] 侯满福, 刘雨婷, 张杰, 贺露炎, 梁江弈. 亚热带岩溶森林类型和坡位对碳酸盐岩溶蚀的影响[J]. 中国岩溶, 2023, 42(4): 842-852.

    HOU Manfu, LIU Yuting, ZHANG Jie, HE Luyan, LIANG Jiangyi. Influence of forest types and slope positions on dissolution rate of carbonate rock in karst area in subtropical China[J]. Carsologica Sinica, 2023, 42(4): 842-852.
    [34] 张春潮, 李向全, 王振兴, 侯新伟, 桂春雷, 白占学, 付昌昌. 不同碳酸盐岩岩性试片的溶蚀速率研究:以三姑泉域为例[J]. 水资源与水工程学报, 2018, 29(5):218-223.

    ZHANG Chunchao, LI Xiangquan, WANG Zhenxing, HOU Xinwei, GUI Chunlei, BAI Zhanxue, FU Changchang. Dissolution rate of different carbonate rocks: A case study in Sangu spring basin[J]. Journal of Water Resources & Water Engineering, 2018, 29(5):218-223.
    [35] 章程, 李玉辉, 汪进良, 苗迎, 肖琼, 郭永丽. 云南石林地质公园土岩、土根界面过程和土下溶蚀速率[J]. 地质论评, 2020, 66(4):1019-1030. doi: 10.16509/j.georeview.2020.04.016

    ZHANG Cheng, LI Yuhui, WANG Jinliang, MIAO Ying, XIAO Qiong, GUO Yongli. Interface processes at soil-rock, soil-root contacts and subsoil dissolution rate in Shilin Geopark, Yunnan[J]. Geological Review, 2020, 66(4):1019-1030. doi: 10.16509/j.georeview.2020.04.016
    [36] 黄奇波. 北方半干旱岩溶区岩溶碳汇过程及效应研究[D]. 武汉: 中国地质大学(武汉), 2019.

    HUANG Qibo. The carbon sequestration effect in semi-arid karst area: A case study of Liuling spring catchment, Shanxi Province[D]. Wuhan: China University of Geosciences (Wuhan), 2019.
    [37] 黄奇波, 覃小群, 刘朋雨, 蓝芙宁, 张连凯. 不同岩性试片溶蚀速率差异及意义[J]. 地球与环境, 2015, 43(04): 379-385.

    HUANG Qibo, QIN Xiaoqun, LIU Pengyu, LAN Funing, ZHANG Liankai. Dissolution Rate and It's Significance of Different Lithological Tablets. [J]. Earth and Environment, 2015, 43(04): 379-385.
    [38] 李涛, 赵东兴, 张美良, 曹建华, 朱晓燕. 土壤CO2、土壤水的动态特征及其对岩溶作用的驱动[J]. 热带地理, 2013, 33(5):575-581.

    LI Tao, ZHAO Dongxing, ZHANG Meilang, CAO Jianhua, ZHU Xiaoyan. Dynamic characteristics of the soil CO2 and soil water chemistry, and their driving action on karstification[J]. Tropical Geography, 2013, 33(5):575-581.
    [39] 刘文, 张强, 贾亚男. 气象要素及土壤理化性质对不同土地利用方式下冬夏岩溶作用的影响[J]. 生态学报, 2014, 34(6): 1418-1428.

    LIU Wen, ZHANG Qiang, JIA Ya'nan. The influence of meteorological factors and soil physicochemical properties on karst processes in six land-use patterns in summer and winter in a typical karst valley[J]. Acta Ecologica Sinica , 2014, 34(6): 1418-1428
    [40] 肖琼, 赵丽芳, 陆来谋, 孙平安, 张陶, 郭永丽. 漓江源头大溶江流域土壤理化性质[J]. 中国岩溶, 2021, 40(5):815-824. doi: 10.11932/karst20210508

    XIAO Qiong, ZHAO Lifang, LU Laimou, SUN Ping'an, ZHANG Tao, GUO Yongli. Spatial differences of soil physical and chemical properties in Darongjiang river watershed[J]. Carsologica Sinica, 2021, 40(5):815-824. doi: 10.11932/karst20210508
    [41] 吴夏, 潘谋成, 殷建军, 汪智军, 朱晓燕, 杨会, 曹建华. 桂林典型岩溶区土壤CO2通量及其δ13C-CO2季节性特征[J]. 中国岩溶, 2021, 40(4):592-599.

    WU Xia, PAN Moucheng, YIN Jianjun, WANG Zhijun, ZHU Xiaoyan, YANG Hui, CAO Jianhua. Seasonal variation characteristics of soil respiration release and its isotopic composition in typical karst area, Guilin[J]. Carsologica Sinica, 2021, 40(4):592-599.
    [42] 施晓, 杨琰, 李一冬, 田宁, 叶枝茂, 李建仓, 段军伟. 岩溶关键带土壤–洞穴系统CO2运移的时空变化:以河南鸡冠洞为例[J]. 中国岩溶, 2021, 40(4):580-591.

    SHI Xiao, YANG Yan, LI Yidong, TIAN Ning, YE Zhimao, LI Jiancang, DUAN Junwei. Analysis of temporal and spatial variations of CO2 migration in the soil cave system in karst critical zone: A case study of Jiguan cave, western Henan[J]. Carsologica Sinica, 2021, 40(4):580-591.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  217
  • HTML浏览量:  73
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 录用日期:  2023-08-21
  • 修回日期:  2023-08-18
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回