• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

济南四大泉群附近补给路径及补给比例研究

李常锁 高帅 殷延伟 逄伟 孙斌 柳浩然 陈奂良 刚什婷 邢立亭 耿付强

李常锁,高 帅,殷延伟,等. 济南四大泉群附近补给路径及补给比例研究[J]. 中国岩溶,2023,42(5):875-886 doi: 10.11932/karst20230501
引用本文: 李常锁,高 帅,殷延伟,等. 济南四大泉群附近补给路径及补给比例研究[J]. 中国岩溶,2023,42(5):875-886 doi: 10.11932/karst20230501
LI Changsuo, GAO Shuai, YIN Yanwei, PANG Wei, SUN Bin, LIU Haoran, CHEN Huanliang, GANG Shenting, XING Liting, GENG Fuqiang. Research on recharge paths and recharge ratios near the four major spring groups in Jinan[J]. CARSOLOGICA SINICA, 2023, 42(5): 875-886. doi: 10.11932/karst20230501
Citation: LI Changsuo, GAO Shuai, YIN Yanwei, PANG Wei, SUN Bin, LIU Haoran, CHEN Huanliang, GANG Shenting, XING Liting, GENG Fuqiang. Research on recharge paths and recharge ratios near the four major spring groups in Jinan[J]. CARSOLOGICA SINICA, 2023, 42(5): 875-886. doi: 10.11932/karst20230501

济南四大泉群附近补给路径及补给比例研究

doi: 10.11932/karst20230501
基金项目: 国家自然科学基金项目(42272288;42202294);山东省自然科学基金项目(ZR2021QD084)
详细信息
    作者简介:

    李常锁(1976-),男,研究员,研究方向:水文地质、环境地质等领域研究工作。E-mail:lics120@163.com

    通讯作者:

    高帅(1990-),男,工程师,研究方向:地下水循环演化、地下岩体渗流等领域研究。E-mail:shuaigao90@126.com

  • 中图分类号: P641.8

Research on recharge paths and recharge ratios near the four major spring groups in Jinan

  • 摘要: 济南地区岩溶大泉是集供水、旅游、生态等功能于一体的重要自然资源,但随着经济社会的快速发展,人类活动影响不断增强,各岩溶大泉受到水质劣化、流量衰减的威胁。为了明确济南四大泉群附近主要补给路径,更加科学合理的保护泉水资源,文章采用流速流向定量分析、地下水流场分析、水化学同位素分析、聚类分析、三端元混合比计算等研究方法,分析了济南四大泉群主要补给路径,定量计算了各泉群补给路径贡献比例。研究表明,四大泉群的主要补给路径可划分为西部、南部、东南部补给路径,每个泉群受到不同补给路径的混合补给作用,其中趵突泉、黑虎泉、五龙潭、珍珠泉泉群的主要补给来源分别为南部补给路径(流量占比40.21%)、东南部补给路径(流量占比47.42%)、西部补给路径(流量占比47.13%)、南部补给路径(流量占比51.04%),研究工作可为我国北方岩溶大泉成因机制和生态保护提供参考。

     

  • 图  1  趵突泉泉域和研究区地质构造略图

    Figure  1.  Geological map of Baotu Spring area and research area

    图  2  流速流向测试原理图

    Figure  2.  Schematic diagram of flow direction and velocity test

    图  3  岩溶地下水流速流向风玫瑰图

    Figure  3.  Wind-rose diagram of flow direction and velocity test of karst groundwater

    图  4  岩溶地下水等水位线图

    Figure  4.  Water level contour map of karst groundwater

    图  5  泉群及补给路径的水化学Piper三线图和Schoeller图

    Figure  5.  Hydrochemical Piper trilinear chart and Schoeller chart of spring groups and recharge paths

    图  6  四大泉群谱系图及氢氧同位素分布图

    Figure  6.  Dendrogram of spring groups and plot of hydrogen and oxygen isotopes

    图  7  不同补给路径对泉群的补给比例

    Figure  7.  Recharge ratio of different flow paths for spring groups

    表  1  泉水与岩溶地下水水化学组分、同位素组分统计表

    Table  1.   Statistics of chemical and isotopic components of spring and karst groundwater

    分区统计
    参数
    pHTDS/
    mg·L−1
    K+/
    mg·L−1
    Na+/
    mg·L−1
    Ca2+/
    mg·L−1
    Mg2+/
    mg·L−1
    Cl/
    mg·L−1
    ${\rm{SO}}_4^{2-}$/
    mg·L−1
    ${\rm{HCO}}_3^{-}$/
    mg·L−1
    δ18O/
    δD/
    水化学类型
    趵突泉泉群均值7.80523.331.1525.57126.7822.7956.14100.50272.11−8.11−58.15HCO3·SO4−Ca
    最大值7.80525.001.1726.19127.1923.0556.37101.39275.00−8.10−57.98
    最小值7.80520.001.1124.73125.9722.4156.0299.81269.22−8.12−58.34
    黑虎泉泉群均值7.47543.671.5037.26119.5022.9364.17110.17269.22−7.94−58.24HCO3·SO4−Ca
    最大值7.50610.001.6942.74134.8725.0474.45124.30292.37−7.83−57.53
    最小值7.40495.001.3430.85111.0221.1554.9596.88257.64−8.04−58.91
    五龙潭泉群均值7.53473.330.9818.49116.6721.2249.4087.10263.43−8.20−58.81HCO3−Ca
    最大值7.60490.000.9919.72120.1621.7352.1290.78266.32−8.18−58.55
    最小值7.50460.000.9717.06112.8920.7646.4482.95260.53−8.22−59.03
    珍珠泉泉群均值7.50446.001.2720.92105.2119.9446.4480.55248.95−8.08−59.01HCO3−Ca
    最大值7.50450.001.3021.30105.8120.1346.4480.69254.74−8.08−58.95
    最小值7.50442.001.2420.54104.6119.7446.4480.40243.16−8.08−59.06
    西部路径均值7.85329.002.0833.2656.2716.8351.0549.69205.53−8.27−59.97HCO3−Ca·Mg
    HCO3·Cl-Ca·Na
    最大值7.90390.002.9946.9556.8317.7475.5156.82214.21−7.94−57.24
    最小值7.80268.001.1619.5755.7115.9226.5942.55196.85−8.59−62.70
    南部路径均值7.75562.501.0433.03126.1620.7866.65121.11276.46−7.54−55.41HCO3·SO4−Ca
    最大值7.90620.001.6433.55143.8921.3984.02123.00306.85−7.43−54.75
    最小值7.60505.000.4432.51108.4220.1749.28119.21246.06−7.64−56.06
    东南部路径均值7.36772.001.0964.04164.8929.17103.66173.52337.53−7.66−55.86HCO3·SO4−Ca
    HCO3·SO4−Ca·Na
    HCO3·SO4·Cl-Ca·Na
    最大值7.50940.001.9398.34218.0436.34119.48208.93425.53−7.43−54.66
    最小值7.10600.000.5435.58141.2819.8182.25143.18254.74−7.91−57.28
    下载: 导出CSV
  • [1] 袁道先. 我国北方岩溶研究的形势和任务[J]. 中国岩溶, 2010, 29(3):219-221.

    YUAN Daoxian. The situation and tasks for northern karst research of our country[J]. Carsologica Sinica, 2010, 29(3):219-221.
    [2] 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015: 2-4.

    HAN Xingrui. Karst hydrogeology[M]. Beijing: Science Press, 2015: 2-4.
    [3] Wu X, Li C, Sun B, Geng F, Gao S, Lv M, Ma X, Li H, Xing L. Groundwater hydrogeochemical formation and evolution in a karst aquifer system affected by anthropogenic impacts[J]. Environmental Geochemistry and Health, 2019, 42(9):2609-2626.
    [4] Gao Shuai, Li Changsuo, Jia Chao, Zhang Hailin, Lv Minghui, Sun Bin, Chen Huanliang, Gang Shiting, Meng Fanqi. Hydrochemical and stable isotope (δ2H and δ18O) characteristics and hydrogeochemical processes in the Baotu Spring basin, Eastern China[J]. Arabian Journal of Geosciences, 2021, 14(20): 2084.
    [5] 隋海波, 康凤新, 李常锁, 韩建江, 邢立亭. 水化学特征揭示的济北地热水与济南泉水关系[J]. 中国岩溶, 2017, 36(1):49-58.

    SUI Haibo, KANG Fengxin, LI Changsuo, HAN Jianjiang, XING Liting. Relationship between north Jinan geothermal water and Jinan spring water revealed by hydrogeochemical characteristics[J]. Carsologica Sinica, 2017, 36(1):49-58.
    [6] Wang Jiale, Jin Menggui, Jia Baojie, Kang Fengxin. Hydrochemical characteristics and geothermometry applications of thermal groundwater in northern Jinan, Shandong, China[J]. Geothermics, 2015, 57(1):185-195. doi: 10.1016/j.geothermics.2015.07.002
    [7] Qin Dajun, Zhao Zhanfeng, Guo Yi, Liu Wencai, Haji Muhammed, Wang Xiaohong, Xin Baodong, Li Yu, Yang Yong. Using hydrochemical, stable isotope, and river water recharge data to identify groundwater flow paths in a deeply buried karst system[J]. Hydrological Processes, 2017, 31(24):4297-4314. doi: 10.1002/hyp.11356
    [8] 武东强, 邢立亭, 兰晓荀, 孟庆晗, 侯玉松, 赵振华, 孙斌, 袁学圣. 济南岩溶含水介质孔隙结构特征[J]. 中国岩溶, 2021, 40(4): 680-688.

    WU Dongqiang, XING Liting, LAN Xiaoxun, MENG Qinghan, HOU Yusong, ZHAO Zhenhua, SUN Bin, YUAN Xuesheng. Pore structure characteristics of karst water-bearing media in Jinan[J]. Carsologica Sinica, 2021, 40(4): 680-688.
    [9] Guo Y, Qin D J, Sun J, Li L, Li F L, Huang J W. Recharge of river water to karst aquifer determined by hydrogeochemistry and stable isotopes[J]. Water, 2019, 11(3):479. doi: 10.3390/w11030479
    [10] 管清花, 汪玉静, 陈学群, 曾桂华, 辛光明. 济南玉符河重点渗漏带岩溶地下水补给特征与保护[J]. 中国岩溶, 2023, 42(2): 233-244.

    GUAN Qinghua, WANG Yujing, CHEN Xuequn, ZENG Guihua, XIN Guangming. Recharge characteristics and protection of karst groundwater in major leakage area of Yufu river in Jinan[J]. Carsologica Sinica, 2023, 42(2): 233-244.
    [11] 祁晓凡, 李文鹏, 李传生, 杨丽芝, 马瑜宏. 济南岩溶泉域地下水位与降水的趋势性与持续性[J]. 灌溉排水学报, 2015, 34(11):98-104.

    QI Xiaofan, LI Wenpeng, LI Chuansheng, YANG Lizhi, MA Yuhong. Trends and persistence of groundwater table and precipitation of Jinan karst springs watershed[J]. Journal of Irrigation and Drainage, 2015, 34(11):98-104.
    [12] 祁晓凡, 李文鹏, 李海涛, 杨丽芝. 济南岩溶泉域地下水位、降水、气温与大尺度气象模式的遥相关[J]. 水文地质工程地质, 2015, 42(6):18-28.

    QI Xiaofan, LI Wenpeng, LI Haitao, YANG Lizhi. Teleconnections between groundwater levels, precipitation, air temperature of the Jinan karst springs watershed and large scale climatic patterns[J]. Hydrogeology & Engineering Geology, 2015, 42(6):18-28.
    [13] 迟光耀, 邢立亭, 主恒祥, 侯新宇, 相华, 邢学睿. 大气降水与济南泉水动态变化的定量关系研究[J]. 地下水, 2017, 39(1):8-11. doi: 10.3969/j.issn.1004-1184.2017.01.002

    CHI Guangyao, XING Liting, ZHU Hengxiang, HOU Xinyu, XIANG Hua, XING Xuerui. The study of quantitative relationship between the spring water and the dynamic change of the atmospheric precipitation in Jinan[J]. Ground Water, 2017, 39(1):8-11. doi: 10.3969/j.issn.1004-1184.2017.01.002
    [14] 迟光耀, 邢立亭, 侯新宇, 黄林显, 杨 奕, 张文静. 基于小波分析与Mann-Kendall法的岩溶大泉动态研究[J]. 中国岩溶, 2018, 37(4):515-526.

    CHI Guangyao, XING Liting, HOU Xinyu, HUANG Linxian, YANG Yi, ZHANG Wenjing. Study of large karst springs using the wavelet analysis and Mann-Kendall methods[J]. Carsologica Sinica, 2018, 37(4):515-526.
    [15] 郭艺, 秦大军, 王枫, 甘甫平, 闫柏琨. 基于时间序列分析法的岩溶泉水位预测[J]. 中国岩溶, 2021, 40(4): 689-697.

    GUO Yi, QIN Dajun, WANG Feng, GAN Fuping, YAN Baikun. Prediction of karst spring water level based on the time series analysis method[J]. Carsologica Sinica, 2021, 40(4): 689-697.
    [16] 孙斌, 彭玉明. 济南泉域边界条件、水循环特征及水环境问题[J]. 中国岩溶, 2014, 33(3):272-279.

    SUN Bin, PENG Yuming. Boundary condition, water cycle and water environment changes in the Jinan spring region[J]. Carsologica Sinica, 2014, 33(3):272-279.
    [17] Hosono T, Hossain S, Shimada J. Hydrobiogeochemical evolution along the regional groundwater flow systems in volcanic aquifers in Kumamoto, Japan[J]. Environmental Earth Sciences, 2020, 79:410. doi: 10.1007/s12665-020-09155-4
    [18] Geravand F, Hosseini S M, Maghsoudi M, Yamani M. Characterization of karst springs from Zagros Mountain in Southwestern Iran[J]. Environmental Earth Sciences, 2022, 81:529. doi: 10.1007/s12665-022-10645-w
    [19] Shah R A, Jeelani G, Yadav J S, Rai S K. Hydrogeochemical and stable isotopic evidence to different water origins of karst springs in the western Himalayas, India[J]. Environmental Earth Sciences, 2022, 81:297. doi: 10.1007/s12665-022-10397-7
    [20] 蒋文豪, 周宏, 李玉坤, 刘伟, 龚冲, 郭绪磊. 基于钻孔内地下水流速和流向的岩溶裂隙介质渗透性研究[J]. 安全与环境工程, 2018, 25(6):1-7, 18.

    JIANG Wenhao, ZHOU Hong, LI Yukun, LIU Wei, GONG Chong, GUO Xulei. Permeability measurement of karst fractured media based on groundwater velocity and direction within a borehole[J]. Safety and Environmental Engineering, 2018, 25(6):1-7, 18.
    [21] 奚德荫, 孙斌, 秦品瑞. 济南泉水研究[M]. 济南: 济南出版社, 2017: 30-40.

    XI Deyin, SUN Bin, QIN Pinrui. Research on Jinan springs[M]. Jinan: Jinan Press, 2017: 30-40.
    [22] 徐军祥, 李常锁, 邢立亭. 济南泉水及其保护[M]. 北京: 地质出版社, 2020: 10-20.
    [23] Piper A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Transactions American Geophysical Union, 1944, 25(6):914-923. doi: 10.1029/TR025i006p00914
    [24] Gao Zongjun, Han Cong, Yuan Shuyu, Liu Jiutan, Peng Yuming, Li Changsuo. Assessment of the hydrochemistry, water quality, and human health risk of groundwater in the northwest of Nansi lake catchment, North China[J]. Environmental Geochemistry and Health, 2022, 44(3):961-977. doi: 10.1007/s10653-021-01011-z
    [25] Schoeller H. Qualitative evaluation of groundwater resources (in methods and techniques of groundwater investigation and development)[J]. Water Resource Series, 1967, 33:44-52.
    [26] Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters[J]. Science, 1961, 133(3467):1833-1834. doi: 10.1126/science.133.3467.1833
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  231
  • HTML浏览量:  74
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 录用日期:  2023-08-04
  • 修回日期:  2023-08-03
  • 网络出版日期:  2023-11-29
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回