• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于“三源模式”的岩溶地下河区污染场地修复治理

易世友 焦恒 周长松 高峰 陈涛

易世友,焦 恒,周长松,等. 基于“三源模式”的岩溶地下河区污染场地修复治理−以遵义坪桥地下河系统为例[J]. 中国岩溶,2023,42(4):648-661 doi: 10.11932/karst202304y02
引用本文: 易世友,焦 恒,周长松,等. 基于“三源模式”的岩溶地下河区污染场地修复治理−以遵义坪桥地下河系统为例[J]. 中国岩溶,2023,42(4):648-661 doi: 10.11932/karst202304y02
YI Shiyou, JIAO Heng, ZHOU Changsong, GAO Feng, CHEN Tao. Remediation of polluted sites in the typical area of karst underground river based on 'Three-Source Model': A case study in the Pingqiao underground river system, Zunyi, China[J]. CARSOLOGICA SINICA, 2023, 42(4): 648-661. doi: 10.11932/karst202304y02
Citation: YI Shiyou, JIAO Heng, ZHOU Changsong, GAO Feng, CHEN Tao. Remediation of polluted sites in the typical area of karst underground river based on "Three-Source Model": A case study in the Pingqiao underground river system, Zunyi, China[J]. CARSOLOGICA SINICA, 2023, 42(4): 648-661. doi: 10.11932/karst202304y02

基于“三源模式”的岩溶地下河区污染场地修复治理——以遵义坪桥地下河系统为例

doi: 10.11932/karst202304y02
基金项目: 生态环境部地下水污染防治项目(ZKGSF-20212258号);贵州省地质勘查基金项目(DKJJ2021-01);中国地质调查局地质调查项目(DD20230081、DD20221758);中国地质科学院岩溶地质研究所基本科研业务费项目(2021013)
详细信息
    作者简介:

    易世友(1983-),男,高级工程师,长期从事水文地质、地热地质及地下水污染防治工作。E-mail:justwo01@163.com

    通讯作者:

    周长松(1987-),男,副研究员,主要从事岩溶水文地质环境地质科研工作。E-mail:zhouchangsongsx@163.com

  • 中图分类号: X52

Remediation of polluted sites in the typical area of karst underground river based on "Three-Source Model": A case study in the Pingqiao underground river system, Zunyi, China

  • 摘要: 在分析岩溶地下河系统范围内水源、污染源特性的基础上,建立了双源调查、源汇追踪和源头阻控为主要内容的岩溶地下河污染修复治理模式——三源模式。以遵义市坪桥地下河系统为例,利用三源模式对该地下河污染进行修复治理实践。结果表明:研究区分布有各类水点25处,以钻孔、岩溶泉点、地下河出口为主,特征污染物为以NH$_4^{+}$、${\rm{NO}}_3^{-}$、${\rm{SO}}_4^{2-}$、Mn2+、Se2+为主;分布有各类污染源点15处,以工业废渣堆放场为主,主要分布在地下河系统下游坪桥工业园区一带,特征污染物同样为以NH$_4^{+}$、${\rm{NO}}_3^{-}$、${\rm{SO}}_4^{2-}$、Mn2+、Se2+为主;地下河系统范围内有3条地下水污染通道,均分布在地下河出口与坪桥工业园区Z1(1#、2#)废渣处置场之间;通过对2#废渣处置场排洪竖井-地下河出口这一污染通道上游段进行帷幕工程修复后,地下河出口可减排污水排放量47 244 m3·a−1,NH$_4^{+}$、Mn2+浓度可降低66%~78%,其中NH$_4^{+}$最低削减量为16 250 kg·a−1,Mn2+最低削减量为10 960 kg·a−1。研究结果可为类似地区岩溶地下河系统污染修复治理提供参考。

     

  • 图  1  岩溶地下河污染修复治理“三源模式”概念模型

    Figure  1.  Conceptual model of the "Three-Source Model" for pollution remediation of karst underground rivers

    图  2  研究区地理位置图

    Figure  2.  Location of the study area

    图  3  研究区水源和污染源分布图

    Figure  3.  Distribution of water sources and pollution sources in the study area

    图  4  研究区丰枯季节地下水Mn2+质量分级图

    Figure  4.  Quality grading of groundwater Mn2+in the study area during the rainy and dry seasons

    图  5  研究区丰枯季节地下水NH$_4^{+}$质量分级图

    Figure  5.  Quality grading of groundwater NH$_4^{+}$in the study area during the rainy and dry seasons

    图  6  研究区双源氮氧同位素分布图

    Figure  6.  Distribution of dual-source δ15N and δ18O in the study area

    图  7  坪桥地下河系统下游污染通道分布示意图

    Figure  7.  Distribution of downstream pollution channels in the Pingqiao underground river

    图  8  钻孔揭露岩溶发育情况剖面图

    Figure  8.  Profile of karst development exposed by boreholes

    图  9  透水性综合分区图

    Figure  9.  Comprehensive zoning of permeability

    图  10  地下水帷幕工程平面布置图

    Figure  10.  Layout plan of groundwater curtain engineering

    图  11  地下水帷幕工程剖面图

    1-地层代号 2-地层产状 3-灰岩 4-泥灰岩 5地层界线 6-地下水帷幕界线 7-地下水位 8-方向 9-钻孔深度(m) 10-地下水帷幕蓄水区 11-上游注浆孔 12-下游注浆孔

    Figure  11.  Profile of groundwater curtain engineering

    1-stratigraphic code 2-attitude of stratum 3-limestone 4-muddy limestone 5-stratigraphic boundary 6-groundwater curtain limit 7-groundwater level 8-direction 9-drilling depth(m) 10-groundwater curtain reservoir 11-upstream grouting hole 12-downstream grouting hole

    图  12  近源截排工程实施前后地下水水位变化剖面图

    Figure  12.  Profile of groundwater level changes before and after the implementation of the project of near-source interception and drainage

    图  13  抽排井抽水前后地下河出口Mn2+、NH$_4^{+}$含量随时间变化曲线

    Figure  13.  Time variation curves of Mn2+and NH$_4^{+}$contents at the outlet of the underground river before and after pumping from the drainage well

  • [1] Weedon C M. Compact vertical flow constructed wetland systems first two years performance[J]. Water Science and Technology, 2003, 48(5):15-23. doi: 10.2166/wst.2003.0269
    [2] 李娜. 香溪河流域岩溶热水成因模式及水文地质参数反演研究: 以湖北省兴山县南阳温泉为例[D]. 武汉: 中国地质大学, 2020.

    LI Na. The formation mechanism and hydrogeological parameters of karst thermal water: A case study of Nanyang thermal spring in Xingshan county of Hubei Province, Xiangxi river basin[J]. Wuhan: China University of Geosciences, 2020.
    [3] 李玉辉, 章程, 庄晓东, 丁文荣, 俞筱押. 中国岩溶研究进展的哲学认知与展望[J]. 中国岩溶, 2022, 41(3):401-413.

    LI Yuhui, ZHANG Cheng, ZHUANG Xiaodong, DING Wenrong, YU Xiaoya. Philosophical cognition and prospect of karst research in China[J]. Carsologica Sinica, 2022, 41(3):401-413.
    [4] 章程, 蒋忠诚, Chris Groves, 袁道先. 岩溶IGCP国际合作30年与岩溶关键带研究展望[J]. 中国岩溶, 2019, 38(3):301-306.

    ZHANG Cheng, JIANG Zhongcheng, GROVES Chris, YUAN Daoxian. 30 years international cooperation with IGCP and perspectives of karst critical zone research[J]. Carsologica Sinica, 2019, 38(3):301-306.
    [5] 李耕, 韩志伟, 申春华, 曾祥颖. 曾祥颖典型岩溶小流域水体中硝酸盐分布特征及成因:以普定后寨河流域为例[J]. 地球科学, 2019, 44(9):2899-2908.

    LI Geng, HAN Zhiwei, SHEN Chunhua, ZENG Xiangying. Distribution characteristics and causes of nitrate in waters of typical small karst catchment: A case of the Houzhai river catchment[J]. Earth Science, 2019, 44(9):2899-2908.
    [6] 李军, 邹胜章, 赵一, 赵瑞科, 党志文, 潘民强, 朱丹尼, 周长松. 会仙岩溶湿地地下水主要离子特征及成因分析[J]. 环境科学, 2021, 42(4):1750-1760.

    LI Jun, ZOU Shengzhang, ZHAO Yi, ZHAO Ruike, DANG Zhiwen, PAN Minqiang, ZHU Danni, ZHOU Changsong. Major ionic characteristics and factors of karst groundwater at Huixian karst wetland, China[J]. Environmental Science, 2021, 42(4):1750-1760.
    [7] 任坤, 杨平恒, 江泽利, 王尊波, 师阳, 王凤康, 李晓春. 降雨期间岩溶城镇区地下河水重金属变化特征及来源解析[J]. 环境科学, 2015, 36(4):1270-1276. doi: 10.13227/j.hjkx.2015.04.018

    REN Kun, YANG Pingheng, JIANG Zeli, WANG Zunbo, SHI Yang, WANG Fengkang, LI Xiaochun. Variation characteristics and sources of heavy metals in an urban karst groundwater system during rainfall event[J]. Environmental Science, 2015, 36(4):1270-1276. doi: 10.13227/j.hjkx.2015.04.018
    [8] Vukosav Petra, Mlakar Marina, Cukrov Neven, Kwokal Željko, Pižeta Ivanka, Pavlus Natalija, Špoljarić Ivanka, Vurnek Maja, Brozinčević Andrijana, Omanović Dario. Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia)[J]. Environmental Science and Pollution Research, 2014, 21(5):3826-3839. doi: 10.1007/s11356-013-2377-3
    [9] Dautovic Jelena, Fiket Zeljka, Baresic Jadranka, Ahel Marijan, Mikac Nevenka. Sources, distribution and behavior of major and trace elements in a complex karst lake system[J]. Aquatic Geochemistry, 2014, 20(1):19-38. doi: 10.1007/s10498-013-9204-9
    [10] Zhou Changsong, Zou Shengzhang, Zhu Danni, XIE Hao, CHEN Hongfeng, WANG Jia. Pollution pattern of underground river in karst area of the Southwest China[J]. Journal of Groundwater Science and Engineering, 2018, 6(2):71-83.
    [11] 陈俭友, 易世友, 顾和孝. 坪桥工业矿废渣影响下的典型裸露型岩溶水文地球化学特征与控制因素研究[J]. 地下水, 2021, 43(5):43-49. doi: 10.19807/j.cnki.DXS.2021-05-014

    CHEN Jianyou, YI Shiyou, GU Hexiao. Hydrogeochemical characteristics and concrol factors of typical exposed karst affected by Ping bridge industrial mine waste[J]. Ground Water, 2021, 43(5):43-49. doi: 10.19807/j.cnki.DXS.2021-05-014
    [12] 曹玉婷. 建设用地土壤污染风险管控制度完善研究[D]. 武汉: 中南财经政法大学, 2021.

    CAO Yuting. Study on the improvement of soil pollution risk control system of construction land[D]. Wuhan: Zhongnan University of Economics and Law, 2021.
    [13] 王雨旸, 杨平恒, 张洁茹. 重庆市老龙洞地下河流域硝酸盐来源和生物地球化学过程的识别[J]. 环境科学, 2022, 43(10):4470-4479.

    WANG Yuyang, YANG Pingheng, ZHANG Jieru. Sources and biogeochemical processes of nitrate in the Laolongdong karst underground river basin, Chongqing[J]. Environmental Science, 2022, 43(10):4470-4479.
    [14] Nestler Angelika, Berglund Michael, Accoe Frederik, Duta Steluta, Xue Dongmei, Boeckx Pascal, Taylor Philip. Isotopes for improved management of nitrate pollution in aqueous resources: Review of surface water field studies[J]. Environmental Science and Pollution Research, 2011, 18(4):519-533. doi: 10.1007/s11356-010-0422-z
    [15] 盛婷. 基于氮氧同位素和IsoSource模型的农业区地下河硝酸盐来源研究[D]. 重庆: 西南大学, 2019.

    SHENG Ting. Nitrate-nitrogen pollution sources of an underground river in karst agricultural area uing 15N and 18O isotope technique and isosource model[D]. Chongqing: Southwest University, 2019.
    [16] 申春华. 喀斯特地下暗河流域水体中硝酸盐的来源、运移过程及转化机制研究[D]. 贵阳: 贵州大学, 2019.

    SHEN Chunhua. Study on the source, migration and transformation mechanism of Nitrate in karst underground river catchment[D]. Guiyang: Guizhou University, 2019.
    [17] 易世友, 周长松, 朱丹尼, 等. 长江经济带西南裸露型岩溶山区遵义市坪桥地下河系统污染防治试点项目(一期)水文地质详细调查报告[R]. 遵义: 贵州省地矿局第二工程勘察院有限公司, 2021.
    [18] 冯海明. 压水试验在岩溶路基注浆效果评价中的应用研究[J]. 中国岩溶, 2020, 39(2):243-250. doi: 10.11932/karst20200214

    FENG Haiming. Application of pressure water tests to evaluation of grouting effects on the karst roadbed[J]. Carsologica Sinica, 2020, 39(2):243-250. doi: 10.11932/karst20200214
    [19] 汤振, 蒋小珍, 陈立根, 雷明堂, 马骁, 吴晟堂. 龙门县某石灰岩采石场帷幕止水工程及注浆效果评价[J]. 中国岩溶, 2022, 41(1):47-58.

    TANG Zhen, JIANG Xiaozhen, CHEN Ligen, LEI Mingtang, MA Xiao, WU Shengtang. Groundwater sealing by grouting curtain technique and its grouting effect evaluation of a limestone quarry in Longmen county[J]. Carsologica Sinica, 2022, 41(1):47-58.
    [20] 樊科峰. 城镇污水厂雨季截流污水强化二级处理消纳能力研究[D]. 重庆: 重庆大学, 2020.

    FAN Kefeng. Study on the capacity of secondary treatment of intercepted sewage in urban sewage plant in rainy season[D]. Chongqing: Chongqing University, 2020.
  • 加载中
图(13)
计量
  • 文章访问数:  342
  • HTML浏览量:  46
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-18
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回