Experimental study on the influence of vibration loads and temperatures on the dissolution of dolomite and limestone
-
摘要: 在岩溶地区,列车运行期间的振动会对白云岩和石灰岩的水岩作用过程产生影响,再加上复杂的外界条件,这一影响会更加显著。以桂北岩溶石山地区白云岩和石灰岩为研究对象,利用自主设计的试验装置进行室内模拟试验,分别研究振动荷载及不同温度条件对白云岩和石灰岩的溶蚀的影响规律。研究发现:①常温常压条件下,在静止的酸性溶液中,白云岩的溶蚀速率小于石灰岩;②在H+充足的条件下,随着温度(0~45 ℃)的升高,石灰岩和白云岩的溶蚀速率都会增大,温度变化对于白云岩溶蚀影响更为显著;③白云岩和石灰岩的溶蚀受振动条件的强烈影响,二者的溶蚀量都随着振动次数的增加而增大,且在相同振动条件下石灰岩的溶蚀速率始终大于白云岩。该研究可为桂北岩溶石山地区的工程设计和建设提供理论依据。Abstract:
The dissolution of surface carbonate is a complex physicochemical process constrained by multiple influencing factors. In karst regions, due to the variations in mineralogy and chemical composition of the rock mass, differences in internal structure and pore characteristics, and the influence of external conditions such as the presence of groundwater, temperatures and vibration loads, limestone and dolomite exhibit differential dissolution patterns. Such differential dissolution often damages the completeness of the rock mass, affects its mechanical property and stability, and hence poses huge risk to the safety of buildings and structures on it. With the increasing strength of China's economy and the sustained promotion of development strategies in China's western region, many tunnels and underground engineering projects are being constructed, and the speed and frequency of train operation (high-speed trains and urban rail transit) are significantly increasing. However, the repeated vibrations during train operation can alter the degree and direction of water-rock interaction, leading to the continuous expansion of joints, fractures, and cavities within the rock mass. In addition, the impact of various external factors (temperature, climate, etc.) can accelerate this process, reduce the strength of limestone and dolomite, and thus pose hidden hazards to the safety of train operation. By the self-designed experimental equipment, this study investigates the dissolution behavior of dolomite and limestone in karst mountain areas of northern Guangxi under the influence of vibration loads and different temperature conditions. The experimental setup includes vibration equipment, a constant temperature chamber, a temperature controller, a flow meter, a pH meter, equipment for measuring Ca2+ and Mg2+ ions, and related drugs and reagents. Trains traveling between urban rail transit stations undergo three phases from acceleration to uniform and then deceleration, during which the vibration amplitude changes with the speed. Assuming a train departs every 8 minutes, horizontal and vertical vibrations will be generated during the operation, with vertical vibrations being the primary cause. In the laboratory, vibration conditions were controlled using a shaker sieve machine with an amplitude of 10 mm, a frequency of 2.5 times per second, and approximately 150 impacts per minute. A crossbar was fixed to the upper part of the sieve machine, and a fine cotton thread was used to tie the rock sample to one end of the crossbar to drive the sample vibration. The vibration was conducted every half an hour for 2 to 3 minutes. The results show: (1) Under normal temperature and pressure conditions, the dissolution rate of dolomite is lower than that of limestone in static acidic solutions. (2) With sufficient H+ under different temperature conditions (0℃ to 45℃), the dissolution rates of dolomite and limestone both increases with increasing temperatures, and the effect is more significant on dolomite. At 15℃, the dissolution rate of limestone is 2.496 times that of dolomite, while at 45℃, the dissolution rate of limestone is 1.150 times that of dolomite. (3) The dissolution of dolomite and limestone is strongly affected by vibration conditions and their dissolution rates increase with the increase of vibration frequency. Under the same vibration conditions, the dissolution rate of limestone is always greater than that of dolomite. Vibration loads have a greater impact on the dissolution rates of limestone and dolomite than other factors such as temperatures. This study provides a theoretical basis for engineering design and construction in karst mountain areas of northern Guangxi. -
Key words:
- limestone and dolomite /
- vibration load /
- temperature /
- dissolution characteristics
-
表 1 岩石样品尺寸及规格
Table 1. Size of rock samples
组别 质量/g 厚度/mm 直径/mm 表面积/mm2 体积/mm3 1 白云岩 120.31 68.91 12.17 10 093.18 45 391.46 2 石灰岩 120.49 68.30 12.53 10 017.34 45 913.67 3 白云岩 119.82 68.83 12.35 10 112.29 45 951.51 4 石灰岩 120.27 68.91 12.29 10 118.69 45 830.40 表 2 岩石样品化学成分含量
Table 2. Chemical contents of rock samples
组别 CaO MgO SiO2 其他 烧失量 1 白云岩 32.14 20.27 0.24 1.59 45.76 2 石灰岩 53.65 0.39 0.90 2.54 42.52 3 白云岩 34.27 20.04 0.56 2.01 43.12 4 石灰岩 52.71 0.52 0.71 3.75 42.31 -
[1] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988. [2] 卢耀如. 地质−生态环境与可持续发展—中国西南及邻近岩溶地区发展途径[M]. 南京: 河海大学出版社, 2003. [3] Nomeli M A, Riaz A. Effect of CO2 solubility on dissolution rate of calcite in saline aquifers for temperature range of 50-100 ℃ and pressures up to 600 bar: Alterations of fractures geometry in carbonate rocks by CO2-acidified brines[J]. Environmental Earth Sciences, 2017, 76(9):352. doi: 10.1007/s12665-017-6651-4 [4] Eliwa A A. Kinetics and thermodynamics of carbonate dissolution process of uranium from Abu-Zeniema wet crude uranium concentrates[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312(1):1-11. doi: 10.1007/s10967-017-5207-0 [5] Mutlutuk M, Altindag R, Turk G. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2):237-244. doi: 10.1016/S1365-1609(03)00095-9 [6] 佘敏, 蒋义敏, 胡安平, 吕玉珍, 陈薇, 王永生, 王莹. 碳酸盐岩溶蚀模拟实验技术进展及应用[J]. 海相油气地质, 2020, 25(1): 12-21.SHE Min, JIANG Yimin, HU Anping, LYU Yuzhen, CHEN Wei, WANG Yongsheng, WANG Ying. The progress and application of dissolution simulation of carbonate rock[J]. Marine Origin Petroleum Geology, 2020, 25(1): 12-21. [7] 丁梧秀, 徐桃, 王鸿毅, 陈建平. 水化学溶液及冻融耦合作用下灰岩力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 979-985.DING Wuxiu, XU Tao, WANG Hongyi, CHEN Jianping. Experimental study of mechanical property of limestone under coupled chemical solution and freezing-thawing process[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 979-985. [8] 杨云坤, 刘波, 秦善, 罗平, 张单明, 周明辉, 石开波, 田永净. 基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识[J]. 北京大学学报(自然科学版), 2014, 50(2): 316-322.YANG Yunkun, LIU Bo, QIN Shan, LUO Ping, ZHANG Shanming, ZHOU Minghui, SHI Kaibo, TIAN Yongjing. Re-recognition of deep carbonate dissolution based on the observation of in-situ simulation experiment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(2): 316-322. [9] XIE Wei, GAO Guangyun, SONG Jian, WANG Yu. Ground vibration analysis under combined seismic and high-speed train loads[J]. Underground Space, 2022, 7(3): 363-379. [10] 盛金昌, 李凤滨, 姚德生, 黄青富, 宋会彬, 詹美礼. 渗流–应力–化学耦合作用下岩石裂隙渗透特性试验研究[J]. 岩石力学与工程学报, 2012, 31(5):1016-1025.SHENG Jinchang, LI Fengbin, YAO Desheng, HUANG Qingfu, SONG Huibin, ZHAN Meili. Experimental study of seepage properties in rocks fracture under coupled hydro-mechano-chemical process[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5):1016-1025. [11] 陈功奇. 基于现场测试的列车引起地基振动分析[J]. 岩石力学与工程学报, 2015, 34(3):601-611. doi: 10.13722/j.cnki.jrme.2015.03.018CHEN Gongqi. Ground vibration analysis induced by high-speed train based on in-situ data[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3):601-611. doi: 10.13722/j.cnki.jrme.2015.03.018 [12] 高建文. 酸性溶液对碳酸盐岩溶蚀实验[J]. 辽宁化工, 2016, 45(3):254-256.GAO Jianwen. Experimental simulation of dissolution of carbonate rocks in acid solution[J]. Liaoning Chemical Industry, 2016, 45(3):254-256. [13] ANDRIAMIHAJA Spariharijaona, PADMANABHAN Eswaran, BEN-AWUAH Joel, SOKKALINGAM Rajalingam. 静态条件下碳酸盐岩三维孔隙网络的溶蚀改造及其对孔隙结构的影响[J]. 石油勘探与开发, 2019, 46(2):361-369.ANDRIAMIHAJA Spariharijaona, PADMANABHAN Eswaran, BEN-AWUAH Joel, SOKKALINGAM Rajalingam. Static dissolution-induced 3D pore network modification and its impact on critical pore attributes of carbonate rocks[J]. Petroleum Exploration And Development, 2019, 46(2):361-369. [14] 刘再华, W Dreybrodt. 不同CO2分压条件下的白云岩溶解动力学机理[J]. 中国科学(B辑 化学), 2001(4):377-384. [15] 刘再华, 何师意, 袁道先, 赵景波. 土壤中的CO2及其对岩溶作用的驱动[J]. 水文地质工程地质, 1998(4):44-47. [16] 宋焕荣, 黄尚瑜. 碳酸盐岩化学溶蚀效应[J]. 现代地质, 1993(3):363-371.SONG Huanrong, HUANG Shangyu. Chemical corrosion effect of carbonate rocks[J]. Geoscience, 1993(3):363-371. [17] 陈卫昌, 李黎, 邵明申, 梁行洲, AFOLAGBOY Lekan Olatayo. 酸雨作用下碳酸盐岩类文物的溶蚀过程与机理[J]. 岩土工程学报, 2017, 39(11):2058-2067. doi: 10.11779/CJGE201711014CHEN Weichang, LI Li, SHAO Mingshen, LIANG Xingzhou, AFOLAGBOY Lekan Olatayo. Experimental study on carbonate dissolution and erosion effect under attack of simulated sulphuric acid rain[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11):2058-2067. doi: 10.11779/CJGE201711014 [18] 寿建峰, 佘敏, 沈安江. 深层条件下碳酸盐岩溶蚀改造效应的模拟实验研究[J]. 矿物岩石地球化学通报, 2016, 35(5):860-867, 806.SHOU Jianfeng, SHE Min, SHEN Anjiang. Experimental simulation of dissolution effect of carbonate rock under deep burial condition[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5):860-867, 806. [19] 陈超, 周广胜. 1961-2010年桂林气温和地温的变化特征[J]. 生态学报, 2013, 33(7):2043-2053.CHEN Chao, ZHOU Guangsheng. Analysis on variation characteristics of air temperature and ground temperature in Guilin from 1961 to 2010[J]. Acta Ecologica Sinica, 2013, 33(7):2043-2053. [20] 杨俊杰, 张文正, 黄思静, 黄月明, 刘桂霞, 肖林萍. 埋藏成岩作用的温压条件下, 白云岩溶解过程的实验模拟研究[J]. 沉积学报, 1995, 13(3): 83-88.YANG Junjie, ZHANG Wenzheng, HUANG Sijing, HUANG Yueming, LIU Guixia, XIAO Linping. Experimental simulation of dolomite dissolution under the conditions of burial temperature and pressure[J]. Acta Sedimentologica Sinica, 1995, 13(3): 83-88. [21] 杨俊杰, 黄思静, 张文正, 黄月明, 刘桂霞, 肖林萍. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J]. 沉积学报, 1995, 13(4): 49-54.YANG Junjie, HUANG Sijing, ZHANG Wenzheng, HUANG Yueming, LIU Guixia, XIAO Linping. Experimental simulation of dissolution for carbonate with different compositions under the conditions from epigenesis to buried diagenesis environment[J]. Acta Sedimentologica Sinica, 1995, 13(4): 49-54. [22] 蒋小琼, 王恕一, 范明, 张建勇, 管宏林, 鲍云杰. 埋藏成岩环境碳酸盐岩溶蚀作用模拟实验研究[J]. 石油实验地质, 2008, 30(6): 643-646.JIANG Xiaoqiong, WANG Shuyi, FAN Ming, ZHANG Jianyong, GUAN Honglin, BAO Yunjie. Study of simulation experiment for carbonate rocks dissolution in burial diagenetic environment[J]. Petroleum Geology & Experiment, 2008, 30(6): 643-646. [23] 苏悦, 胡晓农, 曹建华, 黄芬, 吴夏, 王修华. 桂林市毛村流域碳酸盐岩溶蚀实验研究[J]. 煤炭技术, 2019, 38(1):63-65. doi: 10.13301/j.cnki.ct.2019.01.021SU Yue, HU Xiaonong, CAO Jianhua, HUANG Fen, WU Xia, WANG Xiuhua. Experimental research on carbonate rock erosion by Maocun river basin in Guilin[J]. Coal Technology, 2019, 38(1):63-65. doi: 10.13301/j.cnki.ct.2019.01.021 [24] 翁金桃. 方解石和白云石的差异溶蚀作用[J]. 中国岩溶, 1984, 3(1):29-38.WENG Jintao. The differential corrosion of calcites and dolomites[J]. Carsologica Sinica, 1984, 3(1):29-38.