Service assessment of carbon storage of typical karst peak-cluster depressions in Guilin
-
摘要: 为了揭示不同发展模式下土地利用变化对碳储量的影响,以桂林市阳朔县兴坪镇西塘村的岩溶峰丛洼地为对象,采用InVEST模型对岩溶峰丛洼地的碳储量进行评估,并模拟2种情境(生态保护模式、经济发展模式)下植被类型对碳储量的影响。结果表明:研究区碳储量总量是16 641.68 t,碳密度是221.30 t·hm−2,经济总价值是1 997.00 万元,单位面积价值是26.56 万元·hm−2;人工林、自然林、经济林生态系统碳储量分别是339.38 t·hm−2、261.79 t·hm−2、150.34 t·hm−2,经济价值分别是40.72 万元·hm−2、31.42万元·hm−2、18.04万元·hm−2,且土壤碳储量是生态系统中最大碳库;自然林和经济林中土壤是最大的碳汇,而人工林中土壤和地上植被的碳汇较大;生态保护模式下研究区碳储量经济价值是2 252.14 万元,相比于现状增加了254.89 万元;经济发展模式下研究区碳储量经济价值是1 595.30 万元,相比于现状损失了401.95 万元。该研究成果为桂林漓江风景名胜区核心景区和桂林喀斯特世界自然遗产地确定未来发展模式和石漠化治理提供参考。Abstract:
To reveal the impact of land use change on carbon storage under different development modes, this study took the karst peak-cluster depression in Xitang village, Xingping town, Yangshuo county, Guilin City as an example. Based on the field survey data in 2020, the study used InVEST model to evaluate the carbon storage of karst peak-cluster depression, and simulated the impact of vegetation types on carbon storage under two development scenarios (ecological protection model and economic development model). The study showed the following results, (1) The total carbon storage of the study area was 16,641.68 t with the carbon density of 221.30 t·hm−2. Its total economic value was 19.97 million yuan, and the economic value per unit area was 265,600 yuan·hm−2. The low value area was mainly concentrated in the north side of the hill slope, while the high value area was mainly distributed in the west and south side of the hill slope. (2) The proportions of the steep slope of natural forest, the gentle slope of natural forest and the gentle slope of economic forest to the total carbon storage of ecosystem were 51.96%, 16.04% and 10.44%, respectively. These three land types were the main sources of carbon storage. The carbon storage capacity per unit area of steep slopes of plantation and gentle slopes of natural forest was the strongest. (3) The amounts of carbon storage of artificial forest, natural forest and economic forest were 244.35 t, 12,215.17 t and 4,182.36 t, accounting for 1.47%, 73.40% and 25.13% of the total carbon storage of the ecosystem, respectively. Natural forest is the main carbon sink of the ecosystem. The carbon densities of artificial forest, natural forest and economic forest were 339.38 t·hm−2, 261.79 t/ha and 150.34 t·hm2, and the economic value per unit area was 407,200 yuan·hm−2, 314,200 yuan·hm−2, and 180,400 yuan·hm−2, respectively. Not only soil in natural forest and economic forest but also soil and above-ground vegetation in artificial forest are the largest carbon sink. (4) The carbon densities of soil, above-ground vegetation, underground vegetation and litter were 184.24 t·hm−2, 29.94 t·hm−2, 7.05 t·hm−2 and 0.06 t·hm−2, respectively. The proportion of soil carbon sink to ecosystem carbon sink was 83.25%, and soil carbon storage was the largest carbon pool in the ecosystem. Soil in both natural forest and economic forest is the largest carbon sink, and soil and above-ground vegetation in artificial forest have the largest carbon sink. (5) The carbon reserves of current situation, ecological protection mode and economic development mode were 19.9725 million yuan, 22.5214 million yuan and 15.9530 million yuan, respectively. Under the ecological protection mode, the natural forest and artificial forest increased by 8.74 hm2 and 4.78 hm2, respectively; the economic value of carbon storage increased by 2.5489 million yuan. Under the economic development mode, the area of economic forest increased by 45.99 hm2, and the economic value of carbon storage lost 4.0195 million yuan. The study indicates the impacts of different development modes on land use and carbon storage service function of karst ecosystem, which can provide reference for determining the future development mode of the core scenic area of Lijiang River Scenic Area in Guilin and the Karst World Natural Heritage Site in Guilin and the control of rocky desertification. -
Key words:
- carbon storage /
- InVEST model /
- karst peak-cluster depression /
- scenario simulation /
- land use
-
图 1 研究区概况图
1-自然林陡坡山坡 2-经济林陡坡山坡 3-人工林陡坡山坡 4-自然林缓坡山坡 5-经济林缓坡山坡 6-自然林陡坡坡麓 7-经济林陡坡坡麓 8-自然林缓坡坡麓9-经济林缓坡坡麓 10-人工林缓坡坡麓 11-自然林陡坡洼地 12-经济林陡坡洼地 13-自然林缓坡洼地 14-经济林缓坡洼地
Figure 1. Overview of the study area
1. steep slope of natural forest 2. steep slope of economic forest 3. steep slope of artificial forest 4. gentle slope of natural forest 5. gentle slope of economic forest 6. steep footslope of natural forest 7. steep footslope of economic forest 8. gentle footslope of natural forest 9. gentle footslope of economic forest 10. gentle footslope of artificial forest 11. steep slope depression of natural forest 12. steep slope depression of economic forest 13. gentle slope depression of natural forest 14. gentle slope depression of economic forest
表 1 土地类型分类
Table 1. Classification of land types
一级分类 二级分类 土地类型 面积/hm2 微地貌 坡度 植被 山坡 陡坡 自然林 自然林陡坡山坡 34.14 经济林 经济林陡坡山坡 6.02 人工林 人工林陡坡山坡 0.66 缓坡 自然林 自然林缓坡山坡 9.03 经济林 经济林缓坡山坡 13.20 坡麓 陡坡 自然林 自然林陡坡坡麓 0.45 经济林 经济林陡坡坡麓 0.64 一级分类 二级分类 土地类型 面积/hm2 微地貌 坡度 植被 坡麓 缓坡 自然林 自然林缓坡坡麓 1.13 经济林 经济林缓坡坡麓 5.33 人工林 人工林缓坡坡麓 0.06 洼地 陡坡 自然林 自然林陡坡洼地 0.76 经济林 经济林陡坡洼地 0.25 缓坡 自然林 自然林缓坡洼地 1.15 经济林 经济林缓坡洼地 2.38 表 2 生态系统碳储量的空间分布(t·hm−2)
Table 2. Spatial distribution of carbon storage in ecosystem (t·hm−2)
土地类型 土壤碳密度 地上植被碳密度 地下植被碳密度 凋落物碳密度 自然林陡坡山坡 225.84(89.18) 20.60(8.14) 6.72(2.65) 0.07(0.03) 经济林陡坡山坡 164.15(78.29) 41.51(19.80) 3.89(1.86) 0.11(0.05) 人工林陡坡山坡 184.19(53.42) 144.84(42.01) 15.66(4.54) 0.11(0.03) 自然林缓坡山坡 205.08(69.37) 73.51(24.87) 16.94(5.73) 0.08(0.03) 经济林缓坡山坡 116.83(88.77) 12.18(9.25) 2.55(1.94 ) 0.05(0.04) 自然林陡坡坡麓 174.10(65.79) 73.51(27.78) 16.94(6.40) 0.09(0.03) 经济林陡坡坡麓 117.72(88.31) 11.20(8.40) 4.39(3.29) 0(0) 自然林缓坡坡麓 181.45(66.70) 73.51(27.02) 16.94(6.23) 0.14(0.05) 经济林缓坡坡麓 110.90(88.35) 13.01(10.36) 1.62(1.29) 0(0) 人工林缓坡坡麓 123.49(44.13) 142.50(50.93) 13.82(4.94) 0(0) 自然林陡坡洼地 184.17(60.54) 98.30(32.31) 21.66(7.12) 0.09(0.03) 经济林陡坡洼地 91.40(91.34) 6.69(6.68) 1.98(1.98) 0(0) 自然林缓坡洼地 120.82(57.16) 73.51(34.78) 16.94(8.02) 0.08(0.04) 经济林缓坡洼地 160.58(94.69) 6.89(4.06) 2.11(1.24) 0(0) 平均 184.24(83.25) 29.94(13.53) 7.05(3.19) 0.06(0.03) 注:括号内数据为该层碳储量占生态系统碳储量的百分比。
Note: The data in parentheses is the percentage of carbon storage of this layer to that of the ecosystem.表 3 各土地类型的碳储量
Table 3. Carbon storage of each land type
土地类型 面积/hm−2 碳储量/t 占比/% 碳密度/t.hm−2 经济价值/万元 单位面积价值量/万元.hm−2 自然林陡坡山坡 34.14 8646.33 51.96 253.22 1037.56 30.39 经济林陡坡山坡 6.02 1262.06 7.58 209.66 151.45 25.16 人工林陡坡山坡 0.66 225.85 1.36 344.79 27.10 41.37 自然林缓坡山坡 9.03 2669.59 16.04 295.61 320.35 35.47 经济林缓坡山坡 13.20 1737.39 10.44 131.61 208.49 15.79 自然林陡坡坡麓 0.45 117.84 0.71 264.63 14.14 31.76 经济林陡坡坡麓 0.64 85.35 0.51 133.31 10.24 16.00 自然林缓坡坡麓 1.13 307.91 1.85 272.03 36.95 32.64 经济林缓坡坡麓 5.33 669.17 4.02 125.52 80.30 15.06 人工林缓坡坡麓 0.06 16.71 0.10 279.81 2.01 33.58 自然林陡坡洼地 0.76 231.69 1.39 304.22 27.80 36.51 经济林陡坡洼地 0.25 24.97 0.15 100.06 3.00 12.01 自然林缓坡洼地 1.15 242.63 1.46 211.35 29.12 25.36 经济林缓坡洼地 2.38 404.19 2.43 169.58 48.50 20.35 总计 75.20 16641.68 100.00 221.30 1997.00 26.56 表 4 不同植被类型下碳储量
Table 4. Carbon storage under different vegetation types
植被类型 面积/hm2 碳密度/t·hm−2 碳储量/t 占比/% 碳储量价值/万元 单位面积价值量/万元·hm−2 经济林 27.82 150.34 4 182.36 25.13 501.87 18.04 人工林 0.72 339.38 244.35 1.47 29.32 40.72 自然林 46.66 261.79 12 215.17 73.40 1 466.06 31.42 总计 75.20 221.30 16 641.68 100.00 1 997.00 26.56 表 5 不同情景下的碳储量评估
Table 5. Carbon storage assessment under different scenarios
情景模拟 现状情况 生态保护模式 经济发展模式 碳储量/万元 1 997.25 2 252.14 1 595.30 -
[1] Kasper J, Weigel R, Walentowski H, Gröning A, Petritan A M, Leuschner C. Climate warming-induced replacement of mesic beech by thermophilic oak forests will reduce the carbon storage potential in aboveground biomass and soil[J]. Annals of Forest Science, 2021, 78-89. [2] Pielke R, Wigley T, Green C. Dangerous assumptions[J]. Nature, 2008, 452(7187):531-532. doi: 10.1038/452531a [3] Wang B, Waters C, Anwar MR, Cowie A, Liu L, Summers D, Paul K, Feng P. Future climate impacts on forest growth and implications for carbon sequestration through reforestation in southeast Australia[J]. Journal of Environmental Management, 2022, 302:113964. [4] 时明芝. 全球气候变化对中国森林影响的研究进展[J]. 中国人口·资源与环境, 2011, 21(7):68-72. doi: 10.3969/j.issn.1002-2104.2011.07.012SHI Mingzhi. The influence of the global climate change on forests in China[J]. China Population Resources and Environment, 2011, 21(7):68-72. doi: 10.3969/j.issn.1002-2104.2011.07.012 [5] IPCC. Climate Change 2007: The Physical Science Basis[R]. IPCC Secretariat, 2007. [6] Shilong Piao, Jingyun Fang, Philippe Ciais, Philippe Peylin, Yao Huang, Stephen Sitch, Tao Wang. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241):1009-1014. doi: 10.1038/nature07944 [7] Hu Zeyin, Wang Shijie, Bai Xiaoyong, Luo Guangjie, Li Qin, Wu Luhua, Yang Yujie, Tian Shiqi, Li Chaojun, Deng Yuanhong. Changes in ecosystem service values in karst areas of China[J]. Agriculture, Ecosystems and Environment, 2020, 301. [8] 徐森, 李思亮, 钟君. 西南喀斯特流域土地利用对河流溶解无机碳及其同位素的影响[J]. 环境科学, 2022, 43(2):752-761. doi: 10.13227/j.hjkx.202106198XU Sen, LI Siliang, ZHONG Jun. Effects of land use on riverine dissolved inorganic carbon (DIC) and δ13CDIC in a karst river basin, Southwestern China[J]. Environmental Science, 2022, 43(2):752-761. doi: 10.13227/j.hjkx.202106198 [9] Zhou Guoqing, Jia Bin, Tao Xiaodong, Yan Hongbo. Estimation of karst carbon sink and its contribution to CO2 emissions over a decade using remote sensing imagery[J]. Applied Geochemistry, 2020, 121:104689. doi: 10.1016/j.apgeochem.2020.104689 [10] Zhao Haijuan, Jiang Yongjun, Xiao Qiong, Zhang Cheng, Behzad Hamid M. Coupled carbon-nitrogen cycling controls the transformation of dissolved inorganic carbon into dissolved organic carbon in karst aquatic systems[J]. Journal of Hydrology, 2021, 592, 125764. [11] 白晓永, 王世杰, 刘秀明, 容丽, 苏以荣, 周运超, 宋同清. 中国石漠化地区碳流失原因与固碳增汇技术原理探讨[J]. 生态学杂志, 2015, 34(6):1762-1769.BAI Xiaoyong, WANG Shijie, LIU Xiuming, RONG Li, SU Yirong, ZHOU Yunchao, SONG Tongqing. Carbon loss reasons and carbon sequestration technology of karst rocky desertification region in China[J]. Chinese Journal of Ecology, 2015, 34(6):1762-1769. [12] 史晨璐. 喀斯特断陷盆地生态系统生产力对土地利用及石漠化治理措施时空变化的响应[D]. 北京: 北京林业大学, 2020SHI Chenlu. The response of ecosystem productivity in karst fault basin to the spatial and temporal changes of land use and rock desertification control measures[D]. Beijing: Beijing Forestry University, 2020. [13] Huang X F, Wang S J, Zhou Y C. Soil organic carbon change relating to the prevention and control of rocky desertification in Guizhou Province, SW China[J]. International Journal of Global Warming, 2018, 15(3):315-332. doi: 10.1504/IJGW.2018.093123 [14] Hu N, Lan J C. Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in Southwest China[J]. Journal of Soils and Sediments, 2020, 20(4):1264-1275. [15] Hu Peilei, Liu Shujuan, Ye Yingying, Zhang Wei, Wang Kelin, Su Yirong. Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration[J]. Land Degradation & Development, 2018, 29(3):387-397. [16] 卢立华, 农友, 李华, 杨予静, 明安刚, 雷丽群, 何日明, 陈琳. 植被恢复模式对石漠化生态系统碳储量的影响[J]. 生态学报, 2019, 39(19):7229-7236.LU Lihua, NONG You, LI Hua, YANG Yujing, MING Angang, LEI Liqun, HE Riming, CHEN Lin. Effect of vegetation restoration patterns on the carbon storage in a rocky desertification ecosystem[J]. Acta Sinica, 2019, 39(19):7229-7236. [17] 田大伦, 王新凯, 方晰, 闫文德, 宁晓波, 王光军. 喀斯特地区不同植被恢复模式幼林生态系统碳储量及其空间分布[J]. 林业科学, 2011, 47(9):7-14.TIAN Dalun, WANG Xinkai, FANG Xi, YAN Wende, NING Xiaobo, WANG Guangjun. Carbon storage and spatial distribution in different vegetation restoration patterns in karsts area, Guizhou Province[J]. Scientia Silvae Sinicae, 2011, 47(9):7-14. [18] 张斯屿. 典型喀斯特峡谷区生态系统服务时空演变规律: 以贵州省晴隆县为例[D]. 北京: 中国科学院大学, 2015.ZHANG Siyu. Spatial-temporal evolution of ecosystem services in typical karst gorge area: A case study in Qinglong county, Guizhou Province[D]. Beijing: University of Chinese Academy of Sciences, 2015. [19] 张靖宙, 吴秀芹, 肖桂英. 云南省建水县不同石漠化治理模式下碳储量功能评估[J]. 北京林业大学学报, 2018, 40(8):72-81.ZHANG Jingzhou, WU Xiuqin, XIAO Guiying. Evaluation on carbon storage function under different rocky desertificati on control models in Jianshui county of Yunnan Province, Southwestern China[J]. Journal of Beijing Forestry University, 2018, 40(8):72-81. [20] 李义平. 基于地表覆被变化的黔东南碳储量时空动态变化研究[D]. 贵阳: 贵州大学, 2020.LI Yiping. Spatiotemporal dynamic change of carbon storage in southeast Guizhou based on surface cover change[D]. Guiyang: Guizhou University, 2020. [21] 白义鑫, 盛茂银, 胡琪娟, 赵楚, 吴静, 张茂莎. 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响[J]. 应用生态学报, 2020, 31(5): 1607-1616.BAI Yixin, SHENG Maoyin, HU Qijuan, ZHAO Chu, WU Jing, ZHANG Maosha. Effects of land use change on soil organic carbon and its components in karst rocky desertification of Southwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1607-1616. [22] 黄先飞, 周运超, 张珍明. 喀斯特石漠化区不同土地利用方式下土壤有机碳分布特征[J]. 水土保持学报, 2017, 31(5):215-221.HUANG Xianfei, ZHOU Yunchao, ZHANG Zhenming. Distribution characteristicas of soil organic carbon under different land uses in a karst rocky desertification area[J]. Journal of Soil and Water Conservation, 2017, 31(5):215-221. [23] 黄先飞, 周运超, 张珍明. 土地利用方式下土壤有机碳特征及影响因素:以后寨河喀斯特小流域为例[J]. 自然资源学报, 2018, 33(6):1056-1067. doi: 10.31497/zrzyxb.20170436HUANG Xianfei, ZHOU Yunchao, ZHANG Zhenming. Characteristics and affecting factors of soil organic carbon under land uses: A case study in Houzhai river basin[J]. Journal of Natural Resources, 2018, 33(6):1056-1067. doi: 10.31497/zrzyxb.20170436 [24] 龙花楼, 刘永强, 李婷婷, 王静, 刘爱霞. 生态用地分类初步研究[J]. 生态环境学报, 2015, 24(1):1-7.LONG Hualou, LIU Yongqiang, LI Tingting, WANG Jing, LIU Aixia. A primary study on ecological land use classification[J]. Ecology and Environmental Sciences, 2015, 24(1):1-7. [25] 申元村. 土地类型研究的意义、功能与学科发展方向[J]. 地理研究, 2010, 29(4):575-583.SHEN Yuancun. Studies on land types: Academic significance, function and prospect[J]. Geographical Research, 2010, 29(4):575-583. [26] 陈瑶. 马山县综合自然区划研究[D]. 南宁: 广西师范学院, 2014CHEN Yao. Study on the comprehensive physical regionalization of Mashan[D]. Nanning: Nanning Normal University, 2014. [27] 牛志君. 涞源县土地类型划分与结构分析研究[D]. 保定: 河北农业大学, 2018NIU Zhijun. Study on the classification and structure analysis of land types in Laiyuan county[D]. Baoding: Hebei Agricultural University, 2018. [28] 林清山, 洪伟, 吴承祯, 林勇明, 陈灿. 永春县柑橘林生态系统的碳储量及其动态变化[J]. 生态学报, 2010, 30(2):309-316.LIN Qingshan, HONG Wei, WU Chengzhen, LIN Yongming, CHEN Chan. Organic carbon storage and its dynam ic change in citrus ecosystem in Yongchun, China[J]. Acta Ecologica Sinica, 2010, 30(2):309-316. [29] 汪珍川, 杜虎, 宋同清, 彭晚霞, 曾馥平, 曾昭霞, 张浩. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13):4462-4472.WANG Zhenchuan, DU Hu, SONG Tongqing, PENG Wanxia, ZENG Fuping, ZENG Zhaoxia, ZHANG Hao. Allometric models of major tree species and forest biomass in Guangxi[J]. Acta Ecologica Sinica, 2015, 35(13):4462-4472. [30] 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000(5):518-522. doi: 10.3321/j.issn:1005-264X.2000.05.002ZHOU Yurong, YU Zhenliang, ZHAO Shidong. Carbon storage and budget of major chinese forest types[J]. Chinese Journal of Plant Ecology, 2000(5):518-522. doi: 10.3321/j.issn:1005-264X.2000.05.002 [31] Wen Y G, Sun D J, Zhu H G, Liu J T. Changes in aboveground biomass and diversity between different stages of secondary succession of a karst vegetation in Guangxi, China[C]//Advances in Biomedical Engineering—Proceedings of 2011 International Conference on Agricultural and Biosystems Engineering (ICABE 2011), 2011: 420-423. [32] Jin Zhao, Dong Yunshe, Wang Yunqiang, Wei Xiaorong, Wang Yafeng, Cui Buli, Zhou Weijian. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China[J]. Science of the Total Environment, 2014, 485-486:615-623. doi: 10.1016/j.scitotenv.2014.03.105 [33] 杜虎, 宋同清, 曾馥平, 王克林, 彭晚霞, 付威波, 李莎莎. 喀斯特峰丛洼地不同植被类型碳格局变化及影响因子[J]. 生态学报, 2015, 35(14):4658-4667.DU Hu, SONG Tongqing, ZENG Fuping, WANG Kelin, PENG Wanxia, FU Weibo, LI Shasha. Carbon storage and its controlling factors under different vegetation types in depressions between karst hills, Southwest China[J]. Acta Ecologica Sinica, 2015, 35(14):4658-4667. [34] Zhang Zhenming, Zhou Yunchao, Wang Shijie, Huang Xianfei. The soil organic carbon stock and its influencing factors in a mountainous karst basin in P. R. China[J]. Carbonates and Evaporites, 2019, 34(3):1031-1043. doi: 10.1007/s13146-018-0432-3 [35] 张珍明, 周运超, 黄先飞, 田潇. 喀斯特小流域土壤有机碳密度空间异质性及影响因素[J]. 自然资源学报, 2018, 33(2):313-324. doi: 10.11849/zrzyxb.20161390ZHANG Zhenming, ZHOU Yunchao, HUANG Xianfei, TIAN Xiao. Spatial distribution of soil organic carbon density and the influencing factors in a karst mountainous basin[J]. Journal of Natural Resources, 2018, 33(2):313-324. doi: 10.11849/zrzyxb.20161390 [36] 钟聪, 李小洁, 何园燕, 邱微文, 李杰, 张新英, 胡宝清. 广西土壤有机质空间变异特征及其影响因素研究[J]. 地理科学, 2020, 40(3): 478-485ZHONG Cong, LI Xiaojie, HE Yuanyan, QIU Weiwen, LI Jie, ZHANG Xinying, HU Baoqing. Spatial variation of soil organic matter and its influencing factors in Guangxi, China[J]. Scientia Geographica Sinica, 2020, 40(3): 478-485. [37] 陈香碧, 何寻阳, 胡亚军, 苏以荣. 喀斯特典型生态系统土壤有机碳积累特征与稳定机制[J]. 农业现代化研究, 2018, 39(6):907-915.CHEN Xiangbi, HE Xunyang, HU Yajun, SU Yirong. Characteristics and mechanisms of soil organic carbon cccumulation and stability in typical karst ecosystems[J]. Research of Agricultural Modernization, 2018, 39(6):907-915. [38] 李杨, 苏以荣, 何寻阳, 王嫒华, 郑华, 黎蕾, 邱虎森, 赵次娴. 桂西北棕色石灰土和红壤有机碳矿化特征和差异[J]. 农业现代化研究, 2012, 33(5):632-635. doi: 10.3969/j.issn.1000-0275.2012.05.026LI Yang, SU Yirong, HE Xunyang, WANG Aihua, ZHENG Hua, LI Lei, QIU Husen, ZHAO Cixian. Characteristics and discrepancies of soil organic carbon mineralization for brown limestone soil and red soil in northwest Guangxi[J]. Research of Agricultural Modernization, 2012, 33(5):632-635. doi: 10.3969/j.issn.1000-0275.2012.05.026 [39] 陶玉华, 白丽荣. 喀斯特风水林和荒山生态系统碳储量的研究[J]. 广西植物, 2018, 38(8):1062-1069.TAO Yuhua, BAI Lirong. Carbon storage of ecosystems in holly hill and barren hill karst area[J]. Guihaia, 2018, 38(8):1062-1069.