Chemical characteristics of groundwater in the dispersed drainage system of Yangshui anticline in central Guizhou
-
摘要: 黔中洋水背斜分散排泄系统位于贵州磷矿的主要产地,区域内磷矿山、磷化工、磷石膏堆场集中分布。研究该地区地下水化学特征,对于合理开发利用地下水资源具有重要意义。文章以岩溶地下水系统为研究对象,采集了主要地下水露头样品,运用离子对比法、主要离子比值法等水文地球化学研究方法,对地下水化学组分和离子来源进行深入分析。研究结果显示,研究区的碳酸盐岩岩溶水、基岩裂隙水、矿井水三者的水化学组分存在显著差异。碳酸盐岩岩溶水的主要化学组分来源于白云岩和白云质灰岩的溶滤作用;基岩裂隙水的主要化学组分含量是钙质泥岩溶滤与大气降水共同作用的结果;矿井水的主要化学组分则来源于白云岩、白云质灰岩的溶滤作用和人为工程活动的影响。本研究为该地区地下水资源的合理开发利用提供了科学依据,同时也有助于保护地下水资源和维护区域生态环境。
-
关键词:
- 黔中地区 /
- 地下水化学特征 /
- 洋水背斜分散排泄系统 /
- 水岩作用 /
- 地下水开发利用
Abstract: The dispersed drainage system of Yangshui anticline is located in Jinzhong town, Kaiyang county, Guizhou Province. As one of the main producing areas of phosphate deposits in Guizhou, this area is concentrated with phosphorus mines, phosphorus chemical industry and phosphogypsum storage sites. Therefore, the study on the chemical characteristics of groundwater in this area is of great significance for the rational development, utilization and protection of groundwater resources. This study takes the karst groundwater system, which has relatively independent conditions of groundwater recharge, runoff and discharge, as the research object. The main samples of karst springs, bedrock fissure springs, boreholes and mine drains are collected, and the hydrogeochemical research methods such as ion comparison method and main ion ratio method are used to analyze the chemical components and main ion sources of groundwater. The results show that contents of main cations of K+、Na+、Ca2+ and Mg2+ are listed as: mine drainage>carbonate karst water>bedrock fissure water; contents of ${\rm{HCO}}_3^{-}$ and ${\rm{SO}}_4^{2-}$ in main anions, mine drainage>carbonate karst water>bedrock fissure water; Ion content of Cl−, mine drainage>bedrock fissure water>carbonate karst water; TDS, mine drainage>carbonate karst water>bedrock fissure water. HCO3-Ca·Mg is the main chemical type of karst water in carbonate rocks; the hydrochemical type of bedrock fissure is HCO3-Ca; the chemical type of mine water is mainly SO4-Ca·Mg followed by SO4·HCO3-Ca·Mg. There are significant differences in hydrochemical composition among carbonate karst water, bedrock fissure water and mine water in the study area. The main chemical components of karst water in carbonate rocks come from the leaching of dolomite and dolomitic limestone. The content of the main chemical components of bedrock fissure water is the result of the joint action of calcareous mudstone leaching and atmospheric precipitation. The main chemical components of mine water come from the leaching of dolomite and dolomitic limestone and the foreign ions brought by intensive human engineering activities. This study not only provides a scientific basis for the rational development and utilization of groundwater resources in this area, but also helps to protect groundwater resources and maintain the regional ecological environment. -
表 1 研究区地下水主要离子统计表
Table 1. Statistics of main ions in groundwater of the study area
样品
类型统计组数 主要阳离子/mg·L−1 主要阴离子/mg·L−1 pH/
无量纲TDS/
mg·L−1K+ Na+ Ca2+ Mg2+ ${\rm{HCO}}_3^{-}$ ${\rm{CO}}_3^{2-}$ ${\rm{SO}}_4^{2-}$ Cl− 碳酸盐岩岩溶水 12 最大 4.00 35.5 43.71 27.52 174.1 9.34 200 5.39 8.37 515.5 最小 0.3 0.5 20.17 10.70 98.15 0.00 8 0.55 7.23 121.5 平均 1.52 7.69 33.02 16.86 131.77 1.53 54.18 2.35 7.94 238.3 基岩裂隙水 6 最大 6.98 11 42.33 2.36 69.16 0.00 28 8.11 7.28 79.3 最小 4.66 8.12 35.62 1.52 35.92 0.00 12 5.78 6.95 56.4 平均 5.80 9.52 39.35 1.83 53.87 0.00 17.5 6.88 7.10 72.5 矿井水 20 最大 35.8 115 239.5 326.19 1 294.9 12.61 883 26.48 8.52 2287.5 最小 1.00 5.6 42.86 16.31 60.90 0.00 100 3.43 6.63 317.0 平均 11.0 34.26 128.9 73.84 252.99 1.10 416.3 13.79 7.85 827.3 表 2 地下水异常点主要离子统计表
Table 2. Statistics of main ions in abnormal points of groundwater
编号 类型 采样期 K+ Na+ Ca2+ Mg2+ ${\rm{HCO}}_3^{-}$ ${\rm{CO}}_3^{2-}$ ${\rm{SO}}_4^{2-}$ Cl− H74 矿井水 丰水期 12.7 90 239.54 287.97 1137.75 0.00 100.00 12.13 枯水期 20.6 115 155.49 326.19 1294.96 0.00 883.00 16.18 JC03 岩溶水 丰水期 3.8 55.5 28.58 27.52 110.70 0.00 200.00 4.41 枯水期 4 51.1 20.17 20.39 98.15 0.00 151.00 5.39 注:阴阳离子单位mg·L−1。
Note: cation and anion unit mg·L−1.表 3 地下水TDS含量统计表
Table 3. Statistics of TDS content in groundwater
样品类型 TDS/mg·L−1 丰季 枯季 碳酸盐岩溶水 10 最大值 378.58 10 最大值 322.55 最小值 121.46 最小值 136.99 平均 227.32 平均 232.43 标准差 72.67 标准差 60.53 变异系数 0.32 变异系数 0.26 矿井水 13 最大值 1352.72 13 最大值 2287.48 最小值 316.99 最小值 379.80 平均 760.45 平均 892.71 标准差 303.51 标准差 475.98 变异系数 0.40 变异系数 0.53 基岩裂隙水 最大值 112.6 最大值 121.30 最小值 58.3 最小值 65.80 平均 76.88 平均 82.00 标准差 14.31 标准差 15.33 变异系数 0.19 变异系数 0.19 注:变异系数为无量纲。
Note: variation coefficient is dimensionless. -
[1] 罗维, 杨秀丽, 犹俊, 杨丽君. 浅谈岩溶地区区域地下水质量评价:以贵州鸭池河–构皮滩流域为例[J]. 贵州地质, 2014, 31(2):150-153, 135.LUO Wei, YANG Xiuli, YOU Jun, YANG Lijun. Assessment of regional groundwater quality in karst area: A case study of Yachihe-Goupitan area in Guizhou[J]. Guizhou Geology, 2014, 31(2):150-153, 135. [2] 杨荣康, 罗维, 王诗扬, 宁黎元. 玉屏县朱家场地下水集中开采区地下水数值模型建立及相关问题探讨[J]. 贵州地质, 2017, 34(4):306-312. doi: 10.3969/j.issn.1000-5943.2017.04.014YANG Rongkang, LUO Wei, WANG Shiyang, NING Liyuan. Groundwater digital model construction and relevant questions discussion of dolomite basin in Zhujiachang, Yuping county[J]. Guizhou Geology, 2017, 34(4):306-312. doi: 10.3969/j.issn.1000-5943.2017.04.014 [3] 江峰, 李强, 吉勤克补子, 周亚男. 贵州省岩溶地区饮用天然矿泉水化学特征及其宏量组分来源分析[J]. 贵州地质, 2019, 36(2):173-179. doi: 10.3969/j.issn.1000-5943.2019.02.010JIANG Feng, LI Qiang, JI Qinkebuzi, ZHOU Ya'nan. The chemical characteristics of the potable natural mineral water and its major components source analysis of the karst area in Guizhou Province[J]. Guizhou Geology, 2019, 36(2):173-179. doi: 10.3969/j.issn.1000-5943.2019.02.010 [4] 李雪莲, 朱昱桦, 华兴, 邬晓芳, 姜福. 基于因子分析的岩溶地下水水质影响因素研究:以毕节市大方县南部为例[J]. 贵州地质, 2021, 38(4):449-455.LI Xuelian, ZHU Yuhua, HUA Xing, WU Xiaofang, JIANG Fu. Study on influencing factors of karst groundwater quality based on factor analysis: Take the southern part of Dafang county, Bijie City as an example[J]. Guizhou Geology, 2021, 38(4):449-455. [5] 江峰, 刘汉武, 吉勤克补子, 王若帆, 焦恒. 单因子水质标识指数法在贵州省洋水河流域地下水水质评价中的应用[J]. 四川地质学报, 2021, 41(1):151-153, 176.JIANG Feng, LIU Hanwu, JI Qinkebuzi, WANG Ruofan, JIAO Heng. The application of single factor water quality identification index method to the evaluation of groundwater quality in the Yangshuihe river basin[J]. Acta Geologica Sichuan, 2021, 41(1):151-153, 176. [6] 丁航航, 丁坚平, 董雪研. 贵州龙井湾堆场渗漏污染预测[J]. 贵州大学学报(自然科学版), 2016, 33(5):25-28, 57.DING Hanghang, DING Jianping, DONG Xueyan. Phosphogypsum yard leakage pollution prediction and seepage prevention of Guizhou Longjingwan[J]. Journal of Guizhou University (Natural Sciences), 2016, 33(5):25-28, 57. [7] 淘小郎, 张旭. 贵州开阳县明泥湾磷矿矿区水文地质特征及治理前景[J]. 西部资源, 2019(5):121-122. doi: 10.3969/j.issn.1672-562X.2019.01.052 [8] 廖 驾, 朱振华, 彭 毅, 韦珊瑚, 罗朝晖, 刘状, 徐强强, 谢亘. 湘西北地区岩溶地下水水化学与氘氧同位素特征分析[J]. 中国岩溶, 2023, 42(3):1-12.LIAO Jia, ZHU Zhenhua, PENG Yi, WEI Shanhu, LUO Zhaohui, LIU Zhuang, XU Qiangqiang, XIE Gen. Analysis on D/18O and hydrochemical characteristics of karst groundwater in northwestern Hunan Province[J]. Carsologica Sinica, 2023, 42(3):1-12. [9] 管清花, 李福林, 王爱芹, 冯平, 田婵娟, 陈学群, 刘丹. 济南市岩溶泉域地下水化学特征与水环境演化[J]. 中国岩溶, 2019, 38(5):653-662.GUAN Qinghua, LI Fulin, WANG Aiqin, FENG Ping, TIAN Chanjuan, CHEN Xuequn, LIU Dan. Hydrochemistry characteristics and evolution of karst spring groundwater system in Jinan[J]. Carsologica Sinica, 2019, 38(5):653-662. [10] 刘再华, 袁道先, 何师意. 岩溶动力系统水化学动态变化规律分析[J]. 中国岩溶, 1999, 18(2):103-108.LUI Zhaihua, YUAN Daoxian, HE Shiyi. Analysis on the variation of hydrochemistry in karst dynamic system[J]. Carsologica Sinica, 1999, 18(2):103-108. [11] 王若帆, 吉勤克补子, 李强, 赵良杰, 焦恒, 易瑞. 贵州六志岩溶大泉系统地下水化学及同位素特征[J]. 西部探矿工程, 2020, 32(6):186-192. [12] 王若帆, 赵翠, 焦恒, 等. 贵州省1: 5万水文地质调查报告养龙司幅(G48E005020)、开阳县幅(G48E006020)[R]. 2020. [13] 雷灵芳. 贵州开阳磷矿东翼矿区磷矿石类型及其特征[J]. 化工矿产地质, 2019, 41(3):158-162. doi: 10.3969/j.issn.1006-5296.2019.03.006LEI Lingfang. The types and characteristics of phosphate ores in Dongyi mining area of Kaiyang phosphate mine, Guizhou Province[J]. Geology of Chemical Minerals, 2019, 41(3):158-162. doi: 10.3969/j.issn.1006-5296.2019.03.006 [14] 苏春利, 张雅, 马燕华, 刘文波. 贵阳市岩溶地下水水化学演化机制: 水化学和锶同位素证据[J]. 地球科学, 2019, 44(9): 2829-2838.SU Chunli, ZHANG Ya, MA Yanhua, LIU Wenbo. Hydrochemical evolution processes of karst groundwater in Guiyang City: Evidences from hydrochemistry and 87Sr/86Sr ratios[J]. Earth Science, 2019, 44(9): 2829-2838. [15] Marandi A, Shand P. Groundwater chemistry and the Gibbs Diagram[J]. Applied Geochemistry, 2018, 91(1):209-212. [16] 刘伟江, 袁祥美, 张雅, 马燕华, 苏春利. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技通报, 2018, 37(6):245-251.LIU Weijiang, YUAN Xiangmei, ZHANG Ya, MA Yanhua, SU Chunli. Hydrochemical characteristics and evolution of karst groundwater in Guiyang City[J]. Geological Science and Technology Information, 2018, 37(6):245-251. [17] 侯俊华, 谢春雷, 张冬. 东滩矿奥陶系灰岩地下水水化学特征与成因[J]. 山东煤炭科技, 2021, 39(10):177-180. doi: 10.3969/j.issn.1005-2801.2021.10.060HOU Junhua, XIE Chunlei, ZHANG Dong. Hydrochemical characteristics and genesis of underground water of Ordovician limestone in Dongtan Mine[J]. Shandong Coal Science and Technology, 2021, 39(10):177-180. doi: 10.3969/j.issn.1005-2801.2021.10.060 [18] 韩行瑞, 鲁荣安, 李庆松, 等. 岩溶水系统: 山西岩溶大泉研究[M]. 北京: 地质出版社, 1993: 211-229. [19] 乔小娟, 李国敏, 都洁, 周金龙, 杜成元, 孙中惠, 巫润建, 周鹏鹏. 太原市西山岩溶水系统水文地球化学特征分析[J]. 中国岩溶, 2008, 27(4):353-358. doi: 10.3969/j.issn.1001-4810.2008.04.010QIAO Xiaojuan, LI Guomin, DU Jie, ZHOU Jinlong, DU Chengyuan, SUN Zhonghui, WU Runjian, ZHOU Pengpeng. Hydrochemical features of Xishan karst groundwater system in Taiyuan[J]. Carsologica Sinica, 2008, 27(4):353-358. doi: 10.3969/j.issn.1001-4810.2008.04.010 [20] 张贵, 胡文君, 李倩, 刘晶晶, 王枫, 邹磊. 金沙江河谷巧家段地下水化学特征[J]. 中国岩溶, 2017, 36(3):339-345. doi: 10.11932/karst20170307ZHANG Gui, HU Wenjun, LI Qian, LIU Jingjing, WANG Feng, ZOU Lei. Groundwater chemical characteristics of the Qiaojia district in Jinshajiang river valley, Yunnan, China[J]. Carsologica Sinica, 2017, 36(3):339-345. doi: 10.11932/karst20170307