Comprehensive analysis and evaluation of the multi-information on the underground river system in construction of a pumped-storage hydropower station in Hubei
-
摘要: 岩溶发育特征是岩溶区水电工程建设中必须查明的水文地质条件,岩溶渗漏问题更是工程建设成败的关键。湖北某抽水蓄能电站上水库位于岩溶洼地区,工程区地下水系统边界不清、条件不明,可能面临严重的岩溶渗漏问题,本次研究将区域构造分析、地貌成因识别、地下河追踪溯源、微动态自动化监测等多种技术手段有机结合,提取多元信息综合分析,对工程区地下河系统进行了有效识别。结果表明:上水库周边不存在隔水层及阻水构造,子良坪背斜控制了地下水系统的基本格局;地下河岩溶管道具有单支管道状结构特征,南北向岩溶管道不发育,上水库存在向南西侧发生管道式渗漏的风险;上水库内垂向溶蚀作用强烈,建议进行库底土工膜全库盆防渗处理,工程蓄水后应防范可能发生的不均匀沉降和岩溶塌陷问题。Abstract:
China is steadfast in promoting green and low-carbon energy transformation. Playing a pivotal role in the power industry, hydropower is at the forefront of energy transformation. Developing hydropower has always been an important strategic policy for China's energy and electricity industry. The southwest area, a main karst distribution region, is mostly concentrated with water energy resources in China. With the rapid development of water conservancy and hydropower construction, reservoir engineering in karst areas is often constructed. The characteristics of karst development are hydrogeological conditions that must be identified in the construction of hydropower projects in karst areas. What’s more solving the problem of karst leakage is the key to the success of engineering construction. A pumped-storage power station in Hubei Province is prone to serious karst leakage because its upper reservoir is located in the karst depression and the boundaries, where conditions of the groundwater system are not clear. Taking the upper reservoir of the power station as a research object, this study integrates different technical methods such as regional structural analysis, identification of geomorphic causes, tracing of underground rivers and micro-dynamic automation monitoring to extract multi-information for effective identification of the underground river system in the engineering area and to conduct a comprehensive analysis of the impact mechanism of karst development on the engineering. Firstly, geological structures control the formation and movement of groundwater, as well as the direction and pattern of karst development. On the one hand, under the transformation of neotectonic movements, karst development in the study area has typical characteristics of vertical zoning, with surface karst zones, vertical karst development zones, and horizontal runoff zones developed from top to bottom. On the other hand, the secondary tension fractures at the turning point of the anticline provide space for groundwater to migrate in depth, and the wide and gentle distribution of strata at the sampe place increases the catchment area of groundwater. These two actions jointly provide conditions for the development of karst pipelines along the axis of the anticline. Secondly, the regional terrain and topography can roughly reflect the movement trend and direction of groundwater. Especially, the form, quantity, and scale of karst negative landforms are important bases for characterizing the development of underground karst. Through ground investigation and tracing, the distribution characteristics of underground karst pipelines can be basically obtained. Finally, the boundary and structural characteristics of the underground river system can be further clarified through high-precision tracing experiments, drilling, and verification of geophysical exploration. The analysis results indicate, (1) There are no aquitards or water blocking structures around the upper reservoir. The vertical and secondary fractures with tensile properties in the axis of the Ziliangping anticline control the basic pattern of the groundwater system, and the secondary cracks generated in the axis of the anticline play a dominant role in karst development. (2) The upper reservoir is located in the supply area of the Dongzhushui underground river system, and the permeability rate of the rock mass is controlled by the strength of karst development, the degree of structural development, the integrity of the rock mass, and the degree of weathering and unloading of the rock mass. There are significant differences in different parts, with a high risk of leakage. (3) The karst pipeline in a structure of the single-pipe shape is not subject to the development of large-scale karst ponds. The north-south karst pipeline is not developed, and there is a risk of pipeline leakage towards the southwest side of the upper reservoir. (4) The reservoir area has undergone at least three stages of denudation, and the current stage of dissolution is still ongoing. The development and evolution of deep karst can lead to deformation in the overlying strata. After the engineering water storage, it is necessary to prevent potential uneven settlement and karst collapse. By comprehensively analyzing and evaluating multi-information of the underground river system, people can accurately identify the boundary and structural characteristics of the karst water system in the reservoir area, providing a scientific basis for the project construction of the reservoir area as well as reference for the site selection of reservoir in other karst areas. -
Key words:
- karst /
- leakage in the reservoir area /
- underground river system /
- identification /
- multi-information
-
表 1 研究区主要岩溶泉或地下河出口发育特征表
Table 1. Development characteristics of main karst spring or underground river outlets in the study area
编号 类型 规模/m 洞口高
程/m高于附近河床
高度/m发育
层位宽 长 深 SK1 岩溶泉出口 0.8 2.5 不详 154.5 0 Є2-3l SK2 岩溶泉出口 − − − 170.0 0 O1n SK3 岩溶泉出口 0.4 0.5 不详 195.0 8 O1f SK4 岩溶泉出口 − − − 210.0 0 O1n+f+h SK6 岩溶泉出口 − − 不详 162.0 20 O1n+f+h SK8 水平溶洞出口 3.0 − 不详 228.0 25 O1f SK5 水平溶洞出口 2.0 2.5 不详 165.0 25 O1f+h SK10 水平溶洞出口 1.0 2.5 155.0 15 O1n SK9 地下河出口 3.0 − 不详 165.0 15 Є2-3l SK12 水平溶洞出口 2.3 − 不详 172.0 22 O1f 表 2 上库区及周边地段岩溶洼地基本特征一览表
Table 2. Development characteristics of karst depression in the upper reservoir area and its surrounding area
洼地
编号洼地底部
高程/m按底部高
程分级长轴
方向与背斜位置
关系L1 551 Ⅰ级 近EW向 核部 L2 552 Ⅰ级 近SN向 L3 578 Ⅰ级 近EW向 L12 414 Ⅱ级 近EW向 L4 585 Ⅰ级 近NW向 北翼 L5 528 Ⅰ级 近SN向 L10 537 Ⅰ级 近SN向 L6 553 Ⅰ级 近SN向 南翼 L7 482 Ⅰ级 近SN向 L8 558 Ⅰ级 近SN向 L9 548 Ⅰ级 近SN向 L11 453 Ⅰ级 近SW向 L13 338 Ⅱ级 近SW向 L14 290 Ⅱ级 近SW向 L15 302 Ⅱ级 近SW向 L16 272 Ⅱ级 近EW向 表 3 上库区及周边地段落水洞基本特征一览表
Table 3. Development characteristics of sinkholes in the upper reservoir area and its surrounding area
落水洞编号 洞口高程/m 分布位置 落水洞规模/m 发育条件 宽度 长度 深度 K1 551 L1洼地西侧底部 2~4 6~8 >4 受300°∠85°裂隙控制 K2 552 L2洼地东侧底部 1~2 2~3 >3 长轴方向60° K3 578 L3洼地南侧底部 0.6 5 >1 被填埋 K4 585 L4洼地南侧底部 − − >20 被填埋 K5 586 L4洼地北侧底部 2 3 >2 长轴方向20° K6 558 L8洼地东南侧底部 2 2 >1.5 长轴方向60° K12 457 L12洼地东侧底部 − − >2 被填埋 K31 414 L12洼地底部 2 − >6 − K32 449 L12洼地西北侧底部 5 − 8 受340°∠80°裂隙控制 K33 449 L12洼地西北侧底部 0.3 − 不详 − K36 302 L15洼地北侧 − − − − K37 295 L14洼地西侧底部 2.2 0.3 不详 沿317°∠15°岩层面发育 K38 290 L14洼地西侧底部 1.8 0.4 不详 裂隙控制 K44 530 L5洼地东北侧底部 3 − 10 − K46 556.6 L5洼地东北侧底部 2.5 1.3 5 受岩层面控制 K47 528 L5洼地北侧底部 1 4 >10 沿330°裂隙垂向发育 K48 534 L5洼地中部 1.8 3.8 不详 沿310°裂隙垂向发育 K49 543.1 L5洼地西侧底部 1.8 1.8 不详 沿290°裂隙垂向发育 表 4 上库区钻遇溶洞钻孔统计表
Table 4. Statistics of boreholes in karst caves in the upper reservoir area
位置 孔号 钻孔高程/m 孔深/m 溶洞距孔口深度/m 溶洞底部高程/m 1#副坝 YZK27 604.87 60.7 6.9~7.9 596.97 YZK29 606.01 81.8 9.4~15.5 590.51 18.0~23.5 582.51 29.7~34.5 571.51 43.8~46.0 560.01 2#副坝 YZK21 586.46 60.3 8.6~10.0 576.46 YZK22 564.67 50.8 4.4~7.0 557.67 7.6~9.2 555.47 10.4~13.5 551.17 15.2~18.8 545.87 21.1~27.4 537.27 3#副坝 YZK17 621.54 60.4 5.0~7.8 613.74 10.0~11.9 609.64 16.4~17.6 603.94 YZK18 609.76 50.2 3.7~5.0 604.76 16.0~21.1 588.66 30.4~31.0 578.76 32.3~33.3 576.46 34.8~37.3 572.46 库盆 YZK20 575.04 40.2 3.4~8.0 567.04 16.0~22.6 552.44 -
[1] 黄钰铃, 惠二青, 员学锋, 李靖. 西南地区水资源可持续开发与利用[J]. 水资源与水工程学报, 2005, 16(2):46-54.HUANG Yuling, HUI Erqing, YUAN Xuefeng, LI Jing. Sustainable exploitation and utilization of water resources in Southwest China[J]. Journal of Water Resources & Water Engineering, 2005, 16(2):46-54. [2] 赵瑞, 许模. 水库岩溶渗漏及防渗研究综述[J]. 地下水, 2011, 33(2):20-22. doi: 10.3969/j.issn.1004-1184.2011.02.009ZHAO Rui, XU Mo. Summary on reservoir karst seepage and anti-seepage research[J]. Ground Water, 2011, 33(2):20-22. doi: 10.3969/j.issn.1004-1184.2011.02.009 [3] 罗明明, 周宏, 郭绪磊, 陈乾龙, 齐凌轩, 况野. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6):246-254.LUO Mingming, ZHOU Hong, GUO Xulei, CHEN Qianlong, QI Lingxuan, KUANG Ye. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6):246-254. [4] 罗明明, 黄荷, 尹德超, 周宏, 陈植华. 基于水化学和氢氧同位素的峡口隧道涌水来源识别[J]. 水文地质工程地质, 2015, 42(1):7-13.LUO Mingming, HUANG He, YIN Dechao, ZHOU Hong, CHEN Zhihua. Source identification of water inrush in the Xiakou tunnel based on hydrochemistry and hydrogen-oxygen isotopes[J]. Hydrogeology & Engineering Geology, 2015, 42(1):7-13. [5] 颜慧明, 常威, 季怀松, 邓争荣, 郭绪磊, 陈林, 黄琨. 黄陵背斜东北翼岩溶水系统特征及其对引调水隧洞工程的影响[J]. 地质科技通报, 2022, 41(5):315-323.YAN Huiming, CHANG Wei, JI Huaisong, DENG Zhengrong, GUO Xulei, CHEN Lin, HUANG Kun. Characteristics of the karst water system on the northeast wing of the Huangling anticline and its impact on water diversion tunnel engineering[J]. Bulletin of Geological Science and Technology, 2022, 41(5):315-323. [6] 任亚楠, 万军伟, 黄琨, 何欣慧. 云南万寿山地区岩溶水系统特征及隧道选线研究[J]. 中国岩溶, 2020, 39(4):604-613.REN Yanan, WAN Junwei, HUANG Kun, HE Xinhui. Study on the characteristics of karst water system and tunnel route selection in Wanshoushan area, Yunnan Province[J]. Carsologica Sinica, 2020, 39(4):604-613. [7] 王泽君, 周宏, 齐凌轩, 王纪元, 燕子琪. 岩溶水系统结构和水文响应机制的定量识别方法:以三峡鱼迷岩溶水系统为例[J]. 地球科学, 2020, 45(12):4512-4523.WANG Zejun, ZHOU Hong, QI Lingxuan, WANG Jiyuan, YAN Ziqi. Method for characterizing structure and hydrological response in karst water systems: A case study in Y-M System in Three Gorges Area[J]. Earth Science, 2020, 45(12):4512-4523. [8] 于斯遥, 秦梓萱, 杨艳娜, 毛唯娜, 郝朝, 许模, 刘洋. 明月峡背斜南部张关–排花洞岩溶水系统地下水径流模式解析[J]. 中国岩溶, 2022, 41(4):599-609. doi: 10.11932/karst20220408YU Siyao, QIN Zixuan, YANG Yanna, MAO Weina, HAO Chao, XU Mo, LIU Yang. Analysis of groundwater runoff patterns in Zhangguan-Paihuadong karst water system in the south of the Mingyue gorge anticline[J]. Carsologica Sinica, 2022, 41(4):599-609. doi: 10.11932/karst20220408 [9] 颜慧明, 常威, 郭绪磊, 邓争荣, 黄琨. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用[J]. 地质科技通报, 2022, 41(1):127-136.YAN Huiming, CHANG Wei, GUO Xulei, DENG Zhengrong, HUANG Kun. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 41(1):127-136. [10] 翟虎威, 胡晓兵, 张凯, 马永明, 高旭波, 靳建红. 基于同位素指示的辛安泉域岩溶水系统识别[J/OL]. 中国岩溶, 1-13. https://kns.cnki.net/kcms/detail//45.1157.P.20230203.1754.001.html.ZHAI Huwei, HU Xiaobing, ZHANG Kai, MA Yongming, GAO Xubo, JIN Jianhong. Identification of karst water system in Xin'an Spring area by isotope method[J/OL]. Carsologica Sinica, 1-13. https://kns.cnki.net/kcms/detail//45.1157.P.20230203.1754.001.html. [11] 吴继文, 吴亮君, 吕勇, 王璞珺, 周嘉铭, 林宇, 潘明, 廖家飞, 孟庆鑫. 云南泸水市压扭性构造对银厂坪白云岩岩溶系统发育控制作用[J]. 中国岩溶, 2021, 40(5):793-804.WU Jiwen, WU Liangjun, LV Yong, WANG Pujun, ZHOU Jiaming, LIN Yu, PAN Ming, LIAO Jiafei, MENG Qingxin. Transpressional structure and its control on development of Yinchangping dolomite karst system in Lushui City, Yunnan[J]. Carsologica Sinica, 2021, 40(5):793-804. [12] 郭娣, 许模. 西南地区紧密背斜岩溶地下水赋存与运移特征[J]. 四川地质学报, 2009, 29(1):66-69.GUO Di, XU Mo. Characteristics of occurrence and migration of karst groundwater in tight anticline in Southwest China[J]. Sichuan Geological Journal, 2009, 29(1):66-69. [13] 王宇. 岩溶高原地下水径流系统垂向分带[J]. 中国岩溶, 2018, 37(1):1-8. doi: 10.11932/karst20180101WANG Yu. Vertical zoning of groundwater runoff system in karst plateau[J]. Carsologica Sinica, 2018, 37(1):1-8. doi: 10.11932/karst20180101 [14] 张海坦, 李庆华, 黄永泽, 邓书金, 姚万林. 歌乐山地区岩溶发育特征[J]. 地下空间与工程学报, 2015, 11(Supp.1):347-351.ZHANG Haitan, LI Qinghua, HUANG Yongze, DENG Shujin, YAO Wanlin. Characteristics of karst development in Gele mountain area, Chongqing[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(Supp.1):347-351. [15] 李芳涛, 李华明, 胡志平, 陈南南, 晏长根. 峨汉高速廖山隧道岩溶发育规律及其工程效应浅析[J]. 中国岩溶, 2020, 39(4):592-603.LI Fangtao, LI Huaming, HU Zhiping, CHEN Nannan, YAN Changgen. Features of karst development and geotechnical effects in the Liaoshan tunnel on the E-Han expressway[J]. Carsologica Sinica, 2020, 39(4):592-603. [16] 曹贤发, 刘玉康, 刘之葵, 张炳晖. 基于强溶蚀带特征的地基岩溶发育程度评价方法[J]. 中国岩溶, 2020, 39(4):577-583.CAO Xianfa, LIU Yukang, LIU Zhikui, ZHANG Binghui. Evaluation method of development degree based on features of intense dissolution layer[J]. Carsologica Sinica, 2020, 39(4):577-583. [17] 王宇, 王梓溦. 岩溶地下水富集的地貌组合形态[J]. 中国岩溶, 2015, 34(4):314-324.WANG Yu, WANG Ziwei. Patterns of karst geomorphologic combinations in areas with rich groundwater[J]. Carsologica Sinica, 2015, 34(4):314-324.