Several key issues in the application of MODFLOW-CFP software to the numerical simulation of karst water systems
-
摘要: MODFLOW-CFP软件很好地解决了管道流与含水层连续介质地下水渗流的耦合问题以及管道中水流运动的层流−紊流转换问题,为岩溶管道型地下水系统的定量研究提供了一个适用的数值模拟平台,近年来也在工程实际中得到了较多的应用。为了更好地利用和推广该软件在岩溶地下水系统定量平价和研究中的应用,避免新方法在实际应用中的盲目性,文章结合MODFLOW-CFP软件自身的特点、岩溶水系统常见的水循环特征及其在实际应用中存在的一些关键问题,从地下水数值模拟的基本要求出发,探讨如何通过一些有针对性且相对比较容易开展的野外岩溶水文地质调查、降雨−流量(水位)高分辨率监测、地下水示踪试验和综合分析研究等工作,提取MODFLOW-CFP模型所需的关键结构要素、水文地质参数以及模型识别的目标函数,进而提高复杂岩溶水系统地下水数值模型的仿真度和预测精度,推动岩溶地下水定量研究的发展。
-
关键词:
- 岩溶水系统 /
- 数值模拟 /
- MODFLOW-CFP /
- 模型识别 /
- 仿真度
Abstract:The MODFLOW-CFP software effectively addresses the coupling issue between pipe flow and groundwater seepage in porous media, as well as the transition from laminar to turbulent flow in pipe water movement. It provides a valuable numerical simulation platform for the quantitative study of karst conduit groundwater systems and has been applied in practical engineering by some researchers in recent years. However, due to limitations in survey methods, particularly for linear projects such as railways, highways, and water conservancy, the survey accuracy is relatively low. It is challenging to accurately characterize the structure of karst conduit systems in the presence of fractures and dissolution channels in karst aquifers, and the simulation results are often unsatisfactory. To better utilize and promote the application of this software in the quantitative evaluation and study of karst groundwater systems, and to avoid the blind use of new methods in practical applications and improve the simulation accuracy and prediction precision of numerical models for complex karst water systems, further development of quantitative hydrogeological research in karst geology is needed. Based on an analysis of the basic principles of MODFLOW-CFP simulation software and the authors' extensive experience in karst hydrogeology, this study conducts an in-depth analysis in various aspects. These include determining the model scope and boundary conditions, quantifying karst conduit structures, acquiring hydrogeological parameters, and selecting objective functions. Additionally, this study discusses key technical issues and possible solutions in the simulation process, taking the Daiye cave karst groundwater system in Yongshun county, Hunan Province, as a case. The research results indicate as follows. ① Detailed investigations of karst hydrogeology, including groundwater tracing, drilling, and geophysical exploration, are essential for understanding the hydrogeological conditions, finely partitioning the karst water system, and establishing accurate conceptual hydrogeological models as the basis for numerical simulations. ② For the determination of the model scope, we should first consider selecting a complete groundwater system based on engineering requirements. In terms of the boundary conditions, we should then consider the changes in groundwater system equilibrium caused by the engineering activities, especially for soft boundaries such as watersheds. ③ Conducting groundwater tracing test, obtaining breakthrough curves of tracer concentration, and using the Qtracer2 model can effectively characterize the conduit structures and acquire the relevant parameters required by the CFP module. ④ Comprehensive and long-term monitoring data on rainfall, flow rate, water level, water chemistry, temperature, etc. are crucial to accurately obtain hydrogeological parameters, select appropriate objective functions, and improve the simulation accuracy of the model. ⑤ Currently, model identification mostly relies on the groundwater flow rate or the groundwater level as the sole objective function. Incorporating multiple conditions simultaneously as objective functions for model identification is less common but requires further research to improve the predictive accuracy of models. -
Key words:
- karst water system /
- numerical simulation /
- MODFLOW-CFP /
- model identification /
- simulation degree
-
表 1 水箱模型参数
Table 1. Water tank model parameters
参数 壤中流水箱
出口高度
h1/mm地面径流水箱
出口高度
h2/mm壤中流
出流系数
a1地面径流
出流系数
a2地下水面状
入渗系数
b拟合精度
R2取值 13.15 22.79 0.132 0.634 0.100 0.79 -
[1] 陈崇希. 岩溶管道–裂隙–空隙三重空隙介质地下水流模型及模拟方法研究[J]. 地球科学, 1995, 20(4):361-366.CHEN Chongxi. Groundwater flow model and simulation method in triple media of karstic tube-fissure-pore[J]. Earth Science, 1995, 20(4):361-366. [2] 成建梅, 陈崇希. 广西北山岩溶管道–裂隙–孔隙地下水流数值模拟初探[J]. 水文地质工程地质, 1998, 25(4):50-54.CHENG Jianmei, CHEN Chongxi. Preliminary probe on numerical simulation of groundwater flow in karst tube-fissure-pore triple media model in Beishan, Guangxi[J]. Hydrogeology & Engineering Geology, 1998, 25(4):50-54. [3] 陈崇希, 万军伟, 詹红兵, 沈仲智. “渗流–管流耦合模型”的物理模拟及其数值模拟[J]. 水文地质工程地质, 2004, 31(1):1-8. doi: 10.3969/j.issn.1000-3665.2004.01.001CHEN Chongxi, WAN Junwei, ZHAN Hongbing, SHEN Zhongzhi. Physical and numerical simulation of seepage-pipe coupling model[J]. Hydrogeology & Engineering Geology, 2004, 31(1):1-8. doi: 10.3969/j.issn.1000-3665.2004.01.001 [4] 陈崇希, 胡立堂, 王旭升. 地下水流模拟系统PGMS(1.0版)简介[J]. 水文地质工程地质, 2007, 34(6):129-130. [5] W Barclay Shoemaker, Eve L Kuniansky, Steffen Birk, Sebastian Bauer, Eric D Swain. Documentation of a conduit flow process (CFP) for MODFLOW-2005[J]. Techniques and Methods, 2007, 6(A24): 50. [6] Tomas Reimann, Melissa E Hill. MODFLOW-CFP: A new conduit flow process for MODFLOW–2005[J]. Groundwater, 2009, 47(3):321-325. doi: 10.1111/j.1745-6584.2009.00561.x [7] Hill M E, Stewart M T, Martin A. Evaluation of the MODFLOW-2005 conduit flow process[J]. Groundwater, 2010, 48(4):549-559. doi: 10.1111/j.1745-6584.2009.00673.x [8] Gallegos J J, Hu B X, Davis H. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP[J]. Hydrogeology Journal, 2013, 21(8):1749-1760. doi: 10.1007/s10040-013-1046-4 [9] Reimann T, Giese M, Geyer T, Liedl R, Maréchal J C, Shoemaker W B. Representation of water abstraction from a karst conduit with numerical discrete-continuum models[J]. Hydrology and Earth System Sciences, 2014, 18(1):227-241. doi: 10.5194/hess-18-227-2014 [10] 杨杨, 唐建生, 苏春田, 潘晓东, 赵良杰. 岩溶区多重介质水流模型研究进展[J]. 中国岩溶, 2014, 33(4):419-424. doi: 10.11932/karst20140405YANG Yang, TANG Jiansheng, SU Chuntian, PAN Xiaodong, ZHAO Liangjie. Research advances on multi-medium flow model for karst aquifers[J]. Carsologica Sinica, 2014, 33(4):419-424. doi: 10.11932/karst20140405 [11] 秦就国, 蒋亚萍. CFP管道流数值模拟方法综述[J]. 地下水, 2014, 36(3):98-100.QIN Jiuguo, JIANG Yaping. A survey of numerical simulation methods for CFP pipeline flow[J]. Ground Water, 2014, 36(3):98-100. [12] 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015.HAN Xingrui. Karst Hydrogeology[M]. Beijing: Science Press, 2015. [13] 赵良杰, 夏日元, 杨杨, 邵景力, 曹建文, 樊连杰. 基于CFP的岩溶管道流数值模拟研究:以桂林寨底地下河子系统为例[J]. 地球学报, 2018, 39(2):225-232.ZHAO Liangjie, XIA Riyuan, YANG Yang, SHAO Jingli, CAO Jianwen, FAN Lianjie. Research on numerical simulation of karst conduit media based on CFP: A case study of Zhaidi karst underground river subsystem of Guilin[J]. Acta Geoscientica Sinica, 2018, 39(2):225-232. [14] 杨杨, 赵良杰, 苏春田, 夏日元. 基于CFP的岩溶管道流溶质迁移数值模拟研究[J]. 水文地质工程地质, 2019, 46(4):51-57.YANG Yang, ZHAO Liangjie, SU Chuntian, XIA Riyuan. A study of the solute transport model for karst conduits based on CFP[J]. Hydrogeology & Engineering Geology, 2019, 46(4):51-57. [15] 焦友军, 潘晓东. 岩溶管道结构影响泉流量变化的数值模拟研究[J]. 中国岩溶, 2017, 36(5):736-742.JIAO Youjun, PAN Xiaodong. Numerical modeling of the influence of karst-conduit structure on variation of spring flow[J]. Carsologica Sinica, 2017, 36(5):736-742. [16] 杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究:以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1):111-123.YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J]. Carsologica Sinica, 2022, 41(1):111-123. [17] 郑小康, 杨志兵. 岩溶含水层饱和–非饱和流动与污染物运移数值模拟[J]. 地质科技通报, 2022, 41(5):357-366.ZHENG Xiaokang, YANG Zhibing. Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer[J]. Bulletin of Geological Science and Technology, 2022, 41(5):357-366. [18] 蔡伍田, 戴爱德, 袁钢坤, 赵草著, P 比多. 应用多种示踪剂研究岩溶泉系统的补给边界[J]. 中国岩溶, 1988, 7(4): 378-383.CAI Wutian, DAI Aide, YUAN Gangkun, ZHAO Caozhu, PASCAL Bidaux. Study the recharge boundary of a karst spring system by means of tracers[J]. Carsologica Sinica, 1988, 7(4): 378-383. [19] 吴泓瑶, 杨艳娜, 曾宪明. 基于水动力量化因子的岩溶强发育深度研究[J]. 地质科技通报, 2022, 41(1):319-327.WU Hongyao, YANG Yanna, ZENG Xianming. Depth of strong development of karst based on quantitative factors of hydrodynamic conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(1):319-327. [20] 邓振平, 周小红, 何师意, 罗英. 西南岩溶石山地区岩溶地下水示踪试验与分析: 以湖南湘西大龙洞为例[J]. 中国岩溶, 2007, 26(2): 163-169.DENG Zhenping, ZHOU Xiaohong, HE Shiyi, LUO Ying. Analysis and tracing-test to karst groundwater in Southwest China karst rocky mountain area: A case study in Dalongdong, western Hunan[J]. Carsologica Sinica, 2007, 26(2): 163-169. [21] 鲁程鹏, 束龙仓, 苑利波, 张蓉蓉, 黄币娟, 王彬彬. 基于示踪试验求解岩溶含水层水文地质参数[J]. 吉林大学学报(地球科学版), 2009, 39(4): 717-721.LU Chengpeng, SHU Longcang, YUAN Libo, ZHANG Rongrong, HUANG Bijuan, WANG Binbin. Determination of hydrogeologic parameters of karst aquifer based on tracer test[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 717-721. [22] 何师意, L Michele, 章程, 汪进良, 李强. 高精度地下水示踪技术及其应用:以毛村地下河流域为例[J]. 地球学报, 2009, 30(5):673-678.HE Shiyi, L Michele, ZHANG Cheng, WANG Jinliang, LI Qiang. A high precision underground water tracing test technique and lts applications: A case study in Maocun karst system, Guilin, Guanxi[J]. Acta Geoscientica Sinica, 2009, 30(5):673-678. [23] 张志强, 张强, 班兆玉, 胡元进. 基于示踪试验的岩溶管道及水力参数定量解析[J]. 人民长江, 2015, 46(11): 80-83.ZHANG Zhiqiang, ZHANG Qiang, BAN Zhaoyu, HU Yuanjin. Quantitative analysis of karst conduit and its hydraulic parameters based on tracer test[J]. Yangtze River, 2015, 46(11): 80-83. [24] 於开炳, 徐蔓, 严竞雄, 李剑. 地下水示踪试验在岩溶隧道勘察中的应用: 以利万高速齐岳山隧道为例[J]. 工程勘察, 2017, 45(10): 46-51.YU Kaibing, XU Man, YAN Jingxiong, LI Jian. Application of groundwater tracer tests for karst tunnel investigation: Taking Qiyueshan tunnel of Lichuan-Wanzhou expressway as the example[J]. Geotechnical Investigation & Surveying, 2017, 45(10): 46-51. [25] 赵一, 李衍青, 覃星铭, 洪涛, 程瑞瑞, 蓝芙宁. 南洞地下河岩溶管道展布及结构特征的示踪试验解析[J]. 中国岩溶, 2017, 36(2): 226-233.ZHAO Yi, LI Yanqing, QIN Xingming, HONG Tao, CHEN Ruirui, LAN Funing. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage[J]. Carsologica Sinica, 2017, 36(2): 226-233. [26] Parise M, Ravbar N, Živanović V, Mikszewski A, Kresic N, Mádl Szőnyi J, Kukurić N. Hazards in karst and managing water resources quality[J]. Karst aquifers—Characterization and Engineering, 2015: 601-687. [27] 常威, 谭家华, 黄琨, 程烯, 黄镇, 万军伟. 地下水多元示踪试验在岩溶隧道水害预测中的应用: 以张吉怀高铁兰花隧道为例[J]. 中国岩溶, 2020, 39(3): 400-408.CHANG Wei, TAN Jiahua, HUANG Kun, CHENG Xi, HUANG Zhen, WAN Junwei. Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway[J]. Carsologica Sinica, 2020, 39(3): 400-408. [28] 陈崇希, 成建梅. 地下水溶质运移理论与水质模型[M]. 北京: 科学出版社, 2021.CHEN Chongxi, CHENG Jianmei. Theory and applied modeling of solute transport in subsurface flow[M]. Beijing: Science Press, 2021. [29] Field M S. QTRACER2 program for tracer-breakthrough curve analysis for karst aquifers and other hydrologic systems[R]. The United States Environmental Protection Agency, 2002. [30] 杨平恒, 袁道先, 蓝家程, 陈雪彬, 张笑微. 基于在线高分辨率监测和定量计算的岩溶地下水示踪试验[J]. 西南大学学报(自然科学版), 2013, 35(2):103-108.YANG Pingheng, YUAN Daoxian, LAN Jiacheng, CHEN Xuebin, ZHANG Xiaowei. Tracing test of a karst aquifer based on online, high-resolution monitoring and quantitative calculation[J]. Journal of Southwest University (Natural Science Edition), 2013, 35(2):103-108. [31] 罗明明, 周宏, 郭绪磊, 陈乾龙, 齐凌轩, 况野. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6):246-254.LUO Mingming, ZHOU Hong, GUO Xulei, CHEN Qianlong, QI Lingxuan, KUANG Ye. Processes and sources identification of intermittent karst water inrush in Xiakou tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6):246-254. [32] Sutton J E, Screaton E J, Martin J B. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling[J]. Hydrogeology Journal, 2015, 23(2):305. doi: 10.1007/s10040-014-1213-2 [33] Boersma Q, Prabhakaran R, Bezerra F H, Bertotti G. Linking natural fractures to karst cave development: a case study combining drone imagery, a natural cave network and numerical modelling[J]. Petroleum Geoscience, 2019, 25(4):454-469. doi: 10.1144/petgeo2018-151 [34] 尹德超, 罗明明, 张亮, 周宏, 陈植华, 史婷婷. 基于流量衰减分析的次降水入渗补给系数计算方法[J]. 水文地质工程地质, 2016, 43(3):11-16.YIN Dechao, LUO Mingming, ZHANG Liang, ZHOU Hong, CHEN Zhihua, SHI Tingting. Methods of calculating recharge coefficient of precipitation event based on spring recession analyses[J]. Hydrogeology & Engineering Geology, 2016, 43(3):11-16. [35] 刘仙, 蒋勇军, 叶明阳, 杨平恒, 扈志勇, 李元庆. 典型岩溶槽谷区地下河水文动态响应研究: 以重庆青木关地下河为例[J]. 中国岩溶, 2009, 28(2): 149-154.LIU Xian, JIANG Yongjun, YE Mingyang, YANG Pingheng, HU Zhiyong, LI Yuanqing. Study on hydrologic regime of underground river in typical karst valley: A case study on the Qingmuguan subterranean stream in Chongqing[J]. Carsologica Sinica, 2009, 28(2): 149-154.