• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泰国南部石笋记录的晚全新世早期水文气候变化研究

殷建军 许琦 SIRIPORNPIBUL Chaiporn SIRIPATTARAPUREENON Russarint 吴夏 唐伟 程海 宁有丰 秦正峰

殷建军,许 琦,SIRIPORNPIBUL Chaiporn,等. 泰国南部石笋记录的晚全新世早期水文气候变化研究[J]. 中国岩溶,2023,42(3):573-581 doi: 10.11932/karst20230307
引用本文: 殷建军,许 琦,SIRIPORNPIBUL Chaiporn,等. 泰国南部石笋记录的晚全新世早期水文气候变化研究[J]. 中国岩溶,2023,42(3):573-581 doi: 10.11932/karst20230307
YIN Jianjun, XU Qi, SIRIPORNPIBUL Chaiporn, SIRIPATTARAPUREENON Russarint, WU Xia, TANG Wei, CHENG Hai, NING Youfeng, QIN Zhengfeng. Hydroclimate variability in early stage of late Holocene recorded by stalagmite from Southern Thailand[J]. CARSOLOGICA SINICA, 2023, 42(3): 573-581. doi: 10.11932/karst20230307
Citation: YIN Jianjun, XU Qi, SIRIPORNPIBUL Chaiporn, SIRIPATTARAPUREENON Russarint, WU Xia, TANG Wei, CHENG Hai, NING Youfeng, QIN Zhengfeng. Hydroclimate variability in early stage of late Holocene recorded by stalagmite from Southern Thailand[J]. CARSOLOGICA SINICA, 2023, 42(3): 573-581. doi: 10.11932/karst20230307

泰国南部石笋记录的晚全新世早期水文气候变化研究

doi: 10.11932/karst20230307
基金项目: 中国地质调查局“一带一路”重点区岩溶地质调查与编图(DD20221808);中国地质科学院岩溶地质研究所基本科研业务费项目(2021002);中国地质调查局“一带一路”重点区岩溶地质环境对比与编图(DD20190452)
详细信息
    作者简介:

    殷建军(1985-),男,副研究员,博士。主要从事岩溶环境与全球变化研究。E-mail:jianjunyin@foxmail.com

    通讯作者:

    许琦(1984-),男,高级工程师,在读博士研究生。主要从事国际合作岩溶地质调查研究。E-mail:xuqi@mail.cgs.gov.cn

  • 中图分类号: P532

Hydroclimate variability in early stage of late Holocene recorded by stalagmite from Southern Thailand

  • 摘要: 中晚全新世气候转型期(4.2 ka事件)气候变化对全球多地古文明产生了重要影响,但该事件是否为一次全球性的气候事件,目前仍存在一定的争议。因此,针对该事件有必要开展全球范围的研究工作。文章以泰国南部洞穴石笋为研究对象,通过年代学研究、碳氧稳定同位素测试分析重建了该区域晚全新世早期水文气候变化历史。研究结果显示,该区域水文气候响应亚洲夏季风变化,晚全新世早期夏季风降水呈现逐渐减少的趋势。两次年代际干旱事件(距今3 850−3 840年和距今3 805−3 795年)主要受到太阳活动减弱和厄尔尼诺事件的影响。总体而言,该区域水文气候变化受到热带辐合带(ITCZ)位置南北移动的控制。

     

  • 图  1  泰国Phet洞及相关洞穴分布(蓝色流场线为1971-2010年夏季整层水汽通量流场线)

    Figure  1.  Location of Phet Cave and others in this study (The blue streamlines are integrated mean vapor flux from surface to 300 mb in June-July-August)

    图  2  D008-05石笋剖面及年代模式(年代模式基于StalAge年代模式建立)

    Figure  2.  Polished profile (upper panel) and Age model (lower panel) of stalagmite D008-05 (The age model was constructed based on StalAge)

    图  3  泰国南部Phet洞D008-05石笋δ18O和δ13C与伊拉克Kuna Ba洞石笋δ18O[16]、印度Mawmluh洞石笋δ18O[7]及中国董哥洞DA石笋δ18O[17]对比(红色虚线为各石笋记录δ18O/δ13C变化趋势线;黄色条带突出两个夏季风减弱时段)

    Figure  3.  Comparison of δ18O and δ13C records of stalagmite D008-05 from Phet Cave, Southern Thailand, δ18O records from Kuna Ba Cave, Iraq, Mawmluh Cave, India and Dongge Cave, China (Red dash lines represent the variation trend of δ18O/δ13C of stalagmite records; yellow bars highlight the weakening period of summer monsoon)

    图  4  泰国南部D008-05石笋δ18O记录(c)与太阳活动[19](a)、加勒比海Cariaco盆地Ti元素[18](b)对比(红色虚线为各石笋记录δ18O/δ13C变化趋势线;黄色条带突出两个夏季风减弱时段)

    Figure  4.  Comparison of δ18O record of stalagmite D008-05(c), solar activities[19](a) and Ti from Cariaco basin[18](b) (Red dash lines represent the variation trend of δ18O/δ13C of stalagmite records; yellow bars highlight the weakening period of summer monsoon)

    表  1  泰国南部Phet洞D008-05石笋230Th/U系定年结果表

    Table  1.   230Th/U series dating results of stalagmite D008-05 from Phet Cave, Southern Thailand

    样品
    编号
    采样深度
    距顶/mm
    238U
    /×10−9
    232Th
    /×10−12
    230Th/232Th
    /原子比×10−6
    δ234U*
    (测量值)
    230Th/238U
    (活度比)
    230Th
    年龄 (年)
    (未校正)
    230Th 年龄
    (年,距1950年)
    (已校正)
    δ234U初始值
    (校正值)
    D008-05-9131 983±846 066±1303 451±78158.2±2.30.039 7±0.000 33 800±323 723±32160±2
    D008-05-1426 679±2637 053±1632 484±58158.2±4.40.039 8±0.000 43 813±443 735±44160±4
    D008-05-101018 621±6610 433±2221 195±28159.4±2.70.040 6±0.000 43 886±433 800±44161±3
    D008-05-22123 685±1144 669±1383 405±110159.5±2.60.040 7±0.000 63 894±583 817±58161±3
    D008-05-33024 715±802 914±615 703±119161.7±2.40.040 8±0.000 23 895±173 821±17163±2
    D008-05-45326 429±1296 989±1772 529±75157.9±2.70.040 6±0.000 63 885±643 807±64160±3
    D008-05-59123 751±7124 290±492674±14157.4±2.00.041 8±0.000 14 008±163 912±24159±2
    D008-05-69734 097±861 339±3917 095±501158.3±2.20.0407±0.000 23 900±213 827±21160±2
    D008-05-712727 956±12013 042±2831 406±39156.5±2.7 0.039 8±0.00073 813±703 729±70158±3
    D008-05-1115827 320±811 449±6612 739±583155.3±1.80.041 0±0.000 33 934±313 861±31157±2
    注:衰变常数采用λ238 = 1.551 25×10−10 [14],λ234 = 2.822 06×10−6 [12]和λ230 = 9.170 5×10−6 [12]。δ234U = ([234U/238U]活度-1)×103。δ234U初始值的校正采用公式δ234U初始值 = δ234U测量值×eλ234×T,其中T为测试结果年龄。230Th年龄校正采用230Th/232Th初始值为4.4±2.2×10−6
    Note: The value of the decay constant is λ238 = 1.55125 ×10−10[14], λ234 = 2.82206 ×10−6 [12] and λ230 = 9.1705 ×10−6 [12]. δ234U = ([234U/238U] activity -1)× 103, the correction of δ234U initial value is based on δ234Uinitial value234Umeasured value×eλ234×T, in which T is the test result age. 230Th age adjustment was based on 230Th/232Th with the initial value of 4.4±2.2×10−6.
    下载: 导出CSV
  • [1] Carolin S A, Walker R T, Day C C, Ersek V, Sloan R A, Dee M W, Talebian M, Henderson G M. Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(1):67-72. doi: 10.1073/pnas.1808103115
    [2] Kathayat G, Cheng Hai, Sinha A, Yi Liang, Li Xianglei, Zhang Haiwei, Li Hanying, Ning Youfeng, Edwards R L. The Indian monsoon variability and civilization changes in the Indian subcontinent[J]. Science Advances, 2017, 3(12):e1701296. doi: 10.1126/sciadv.1701296
    [3] He Keyang, Lu Houyuan, Sun Guoping, Ji Xiang, Wang Yonglei, Yan Kaikai, Zuo Xinxin, Zhang Jiangping, Liu Bin, Wang Ningyuan. Multi-proxy evidence of environmental change related to collapse of the Liangzhu Culture in the Yangtze Delta, China[J]. Science China Earth Sciences, 2021, 64(6):890-905. doi: 10.1007/s11430-020-9767-5
    [4] Marshall M. Did a megadrought seed global chaos 4,200 years age?[J]. Nature, 2022, 601: 498-501.
    [5] Scroxton N, Burns S J, McGee D, Godfrey L R, Ranivoharimanana L, Faina P. Circum-Indian ocean hydroclimate at the mid to late Holocene transition: The double drought hypothesis and consequences for the Harappan[J]. Climate of the Past Discussions, 2020. https://doi.org/10.5194/cp-2020-138.
    [6] Scroxton N, Burns S J, McGee D, Godfrey L R, Ranivoharimanana L, Faina P. Possible expression of the 4.2 kyr event in Madagascar and the South-east African monsoon[J]. Climate of the Past Discussions, 2020. https://doi.org/10.5194/cp-2020-137.
    [7] Kathayat G, Cheng Hai, Sinha A, Berkelhammer M, Zhang Haiwei, Duan Pengzhen, Li Hanying, Li Xianglei, Ning Youfeng, Edwards R L. Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India[J]. Climate of the Past, 2018, 14(12):1869-1879. doi: 10.5194/cp-14-1869-2018
    [8] Chawchai S, Chabangborn A, Kylander M, Löwemark L, Mörth C-M, Blaauw M, Klubseang W, Reimer P J, Fritz S C, Wohlfarth B. Lake Kumphawapi—an archive of Holocene palaeoenvironmental and palaeoclimatic changes in Northeast Thailand[J]. Quaternary Science Reviews, 2013, 68:59-75. doi: 10.1016/j.quascirev.2013.01.030
    [9] Chawchai S, Chabangborn A, Fritz S, Väliranta M, Mörth C-M, Blaauw M, Reimer P J, Krusic P J, Löwemark L, Wohlfarth B. Hydroclimatic shifts in Northeast Thailand during the last two millennia: The record of Lake Pa Kho[J]. Quaternary Science Reviews, 2015, 111:62-71. doi: 10.1016/j.quascirev.2015.01.007
    [10] White J C. Emergence of cultural diversity in mainland Southeast Asia: A view from prehistory[M]//Enfield N J (Eds.). Dynamics of Human Diversity, Pacific Linguistics, 2011, 9-46.
    [11] Edwards R L, Chen J H, Wasserburg G J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years[J]. Earth and Planetary Science Letters, 1987, 81(2-3):175-192. doi: 10.1016/0012-821X(87)90154-3
    [12] Cheng Hai, Edwards R L, Shen Chuanchou, Polyak V J, Asmerom Y, Woodhead J, Hellstrom J, Wang Yongjin, Kong Xinggong, Spötl C. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372:82-91. doi: 10.1016/j.jpgl.2013.04.006
    [13] Scholz D, Hoffmann D L. StalAge-An algorithm designed for construction of speleothem age models[J]. Quaternary Geochronology, 2011, 6:369-382. doi: 10.1016/j.quageo.2011.02.002
    [14] Jaffey A H, Flynn K F, Glendenin L E, Bentley W T, Essling A M. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5): 1889-1906.
    [15] Wei Zhongwang, Lee Xuhui, Liu Zhongfang, Seeboonruang U, Koike M, Yoshimura K. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia[J]. Earth and Planetary Science Letters, 2018, 488:181-192. doi: 10.1016/j.jpgl.2018.02.015
    [16] Sinha A, Kathayat G, Weiss H, Li Hanying, Cheng Hai, Reuter J, Schneider A W, Berkelhammer M, Adali S F, Stott L D, Edwards R L. Role of climate in the rise and fall of the Neo-Assyrian Empire[J]. Science Advances, 2019, 5:eaax6656. doi: 10.1126/sciadv.aax6656
    [17] Wang Yongjin, Cheng Hai, Edwards R L, He Yaoqi, Kong Xinggong, An Zhisheng, Wu Jiangying, Kelly M J, Dykoski C A, Li Xiangdong. The Holocene Asian monsoon: Links to solar changes and North Atlantic Climate[J]. Science, 2005, 308(5723):854-857. doi: 10.1126/science.1106296
    [18] Haug G H, Hughen K A, Sigman D M, Peterson L C, Röhl U. Southward migration of the Intertropical Convergence Zone through the Holocene[J]. Science, 2001, 293:1304-1308. doi: 10.1126/science.1059725
    [19] Steinhilber F, Beer J, Fröhlich C. Total solar irradiance during the Holocene[J]. Geophysical Research Letters, 2009, 36(19):L19704. doi: 10.1029/2009GL040142
    [20] Zhang Yaze, Zong Yongqiang, Xiong Haixian, Li Tanghua, Fu Shuqing, Huang Guangqing, Zheng Zhuo. The middle-to-late Holocene relative sea-level history, highstand and levering effect on the east coast of Malay Peninsula[J]. Global and Planetary Change, 2021, 196:103369. doi: 10.1016/j.gloplacha.2020.103369
    [21] Ma Ting, Rolett B V, Zheng Zhuo, Zong Yongqiang. Holocene coastal evolution preceded the expansion of paddy field rice farming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39):24138-24143. doi: 10.1073/pnas.1919217117
    [22] White J C. Dating early Bronze at Ban Chiang, Thailand[C]//Pauteau J P, Coupey A S, Zeitoun V, Rambault E (Eds.). From Homo erectus to the living traditions: Choice of papers from the 11th international conference of the European Association of Southeast Asian Archaeologists, Bougon: 2006, 91-104.
    [23] White J C, Penny D, Kealhofer L, Maloney B. Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand[J]. Quaternary International, 2004, 113:111-132. doi: 10.1016/j.quaint.2003.09.001
    [24] 赵春光. 从泰国班考遗址看华南与大陆东南亚新石器时代文化的关系[J]. 江汉考古, 2021, 172:97-106.

    ZHAO Chunguang. Contacts of neolithic cultures in the Mainland Southeast Asia and South China: Evidence from the Ban Kao site in Thailand[J]. Jianghan Archaeology, 2021, 172:97-106.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  122
  • HTML浏览量:  39
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 录用日期:  2022-09-13
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回