• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶塌陷机理研究进展

蒋小珍 冯涛 郑志文 雷明堂 张伟 马骁 伊小娟

蒋小珍,冯 涛,郑志文,等. 岩溶塌陷机理研究进展[J]. 中国岩溶,2023,42(3):517-527 doi: 10.11932/karst20230304
引用本文: 蒋小珍,冯 涛,郑志文,等. 岩溶塌陷机理研究进展[J]. 中国岩溶,2023,42(3):517-527 doi: 10.11932/karst20230304
JIANG Xiaozhen, FENG Tao, ZHENG Zhiwen, LEI Mingtang, ZHANG Wei, MA Xiao, YI Xiaojuan. A review of karst collapse mechanisms[J]. CARSOLOGICA SINICA, 2023, 42(3): 517-527. doi: 10.11932/karst20230304
Citation: JIANG Xiaozhen, FENG Tao, ZHENG Zhiwen, LEI Mingtang, ZHANG Wei, MA Xiao, YI Xiaojuan. A review of karst collapse mechanisms[J]. CARSOLOGICA SINICA, 2023, 42(3): 517-527. doi: 10.11932/karst20230304

岩溶塌陷机理研究进展

doi: 10.11932/karst20230304
基金项目: 国家自然科学基金项目(42077273);中国地质科学院岩溶地质研究所基本科研业务费项目(2021003)
详细信息
    作者简介:

    蒋小珍(1970-),女,博士,研究员,博士研究生导师,主要从事岩溶地质灾害防治研究。E-mail:511036641@qq.com

  • 中图分类号: P642.25

A review of karst collapse mechanisms

  • 摘要: 岩溶塌陷机理是开展岩溶塌陷监测、预警、防控及治理工作的基础。长期以来,岩溶塌陷机理研究都是以事后调查的定性推测为主,缺乏必要的科学观测数据支持,导致目前的岩溶塌陷机理仍然处于假设阶段,并成为岩溶塌陷灾害监测预警与防治方面的理论瓶颈问题。文章总结了近年来国内外岩溶塌陷机理的最新研究进展,提出目前的岩溶塌陷机理都可以归结为土岩体的渗透变形,但其临界或破坏指标还需进一步探讨,此外指出随着高频采样的水压力、 加速度计及声波等传感器的实用化,塌陷机理研究将面临着从静水压力到动水压力方面的挑战,并且压力脉动造成的气蚀破坏、共振破坏也将是下步探究的重点。

     

  • 图  1  不同密封、开放条件下的水位下降,岩溶空腔水气压力变化图(频率变化0.98-2.88Hz,突然的压力变小腔体会发生振动)

    Figure  1.  Water level decrease under different sealing and opening conditions and water-gas pressure variation in karst cavity (frequency change: 0.98-2.88Hz, vibration of cavity with a sudden decrease in pressure)

    表  1  文献中塌陷致塌机理类型

    Table  1.   Types of collapse mechanisms in previous studies

    致灾机理类型描述理论
    潜蚀论 覆盖岩溶地区,在地下水流的渗流作用下,渗透压力或水力梯度较大时,产生管涌、流土,引起土层破坏,产生土洞,最后发生塌陷 水力学→达西定律→渗透变形破坏
    真空吸蚀论 密封条件比较好的岩溶空腔中,过水断面由小变大或地下水位突然下降都会产生负压吸蚀作用,空腔上覆土体不断剥落,最终发生塌陷 水力学→达西定律→渗透变形破坏
    压力(压强)差效应 地下水位的变动在封闭的岩溶空腔中引起足够的压力差时,会对覆盖层产生气蚀和潜蚀作用,多种压力作用下,土体遭到破坏,产生地面塌陷 水力学→达西定律→渗透变形破坏
    水力劈裂论 地下水位的快速上升下降、气爆产生的荷载将会增大土体中的瞬时孔隙水压力,导致土体裂纹的扩展与闭合,进而裂隙不断扩大或土洞壁发生片状脱落形成地面塌陷 水力学→达西定律→渗透变形破坏
    气爆论 落水洞被封堵后,雨季地下河水位瞬猛上涨,对覆盖层产生向上的正压顶托力,顶托力较大时,会击破堵体产生塌陷。或人为的爆破、地震或极端气候,使溶洞顶板坍塌,塌陷岩土体堵塞岩溶管道,在岩溶管道中产生高压气团,在岩溶覆盖层土体强度较弱的地方产生冲爆作用与水击作用,降低覆盖层内聚力,导致塌陷发生 土力学→极限平衡理论、流体力学、地震学→渗透变形破坏
    化学溶蚀论 人为排放的酸碱溶液或地下水的溶蚀使岩溶空洞扩大或周围土体强度降低,当土体自重力大于土洞顶板的承重力时,发生塌陷 化学
    共振论 轨道交通位于覆盖型岩溶上方或者地下水面波动作用于覆盖层,当波动频率与覆盖层固有频率相同时引发塌陷 物理学
    液化论或振动论 外力振动或地震作用于土体,导致岩溶地区饱水砂土产生液化、软化效应,抗剪强度瞬间降为零,上覆土体流入岩溶空腔,产生塌陷 地震学
    下载: 导出CSV
  • [1] 雷明堂, 戴建玲, 等. 湘西鄂东皖北地区岩溶塌陷1∶5万环境地质调查报告[R]. 中国地质科学院岩溶地质研究所, 2018.
    [2] 徐卫国. 试论岩溶矿区地面塌陷的真空吸蚀作用[J]. 地质论评, 1981, 27(2):174-180.

    XU Weiguo. The implication of suction action for ground subsidence in karst mining area[J]. Geological Review, 1981, 27(2):174-180.
    [3] 陈国亮. 岩溶地面塌陷的成因与防治[M]. 北京: 中国铁道出版社, 1994.

    CHEN Guoliang. Cause and prevention of karst collapse[M]. Beijing: China Railway Publishing House, 1994.
    [4] 苏建三. 岩溶水管道流的气、水压力问题[A]//中国地质学会第二届岩溶学术会议论文选集[C]. 科学出版社, 1982: 241.

    SU Jiansan. Discussions on the groundwater-air pressure in karst system[A]//Proc. 2nd Conference on karst, Geological Society of China[C]. Science Press, 1982: 241.
    [5] J R Little. Relationship of modern sinkhole development to large-scale photolinear features, Proc[A]//1st multidisciplinary conference on sinkholes and the engineering and environmental impacts of karst[C]. Balkema, Rottererdam, 1984, 189-196.
    [6] 康彦仁. 论岩溶塌陷形成的致塌模式[J]. 水文地质工程地质, 1992(4):32-34.

    KANG Yanren. Collapse causing models in karstic collapse process[J]. Hydrogeology and Engineering Geology, 1992(4):32-34.
    [7] 高宗军. 岩溶地面塌陷形成机理与成因模式研究:以山东泰安-莱芜为例[J]. 中国工程科学, 2008, 10(4):38-43.

    GAO Zongjun. Study on the mechanism and cause mode of the karst collapse: Taking Tai'an-Laiwu for example[J]. China Engineering Science, 2008, 10(4):38-43.
    [8] Thomas M Tharp. Mechanics of upward propagation of cover-collapse sinkhole[J]. Engineering Geology, 1999, 52:23-33. doi: 10.1016/S0013-7952(98)00051-9
    [9] 王军玺, 陈金淑, 陶虎, 石喜. 土质心墙坝水力劈裂试验研究进展[J]. 应用基础与工程科学学报, 2018, 26(1):132-144.

    WANG Junxi, CHEN Jinshu, TAO Hu, SHI Xi. Advances in experimental research on hydraulic fracturing in earth-and-rockfill dam with central soil core[J]. Journal of Basic Science and Engineering, 2018, 26(1):132-144.
    [10] 牛起飞, 侯瑜京, 梁建辉, 彭翀. 坝肩变坡引起心墙裂缝和水力劈裂的离心模型试验研究[J]. 岩土工程学报, 2010, 32(12):1935-1941.

    NIU Qifei, HOU Yujing, LIANG Jianhui, PENG Chong. Centrifuge modeling of cracking and hydraulic fracturing in core dams induced by abrupt change of bank slope[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12):1935-1941.
    [11] 章定文, 刘松玉. 土体中水力劈裂研究进展[J]. 水利水运工程学报, 2006(2):71-78. doi: 10.3969/j.issn.1009-640X.2006.02.015

    ZHANG Dingwen, LIU Songyu. State of hydraulic fracturing in soils[J]. Hydro-Science and Engineering, 2006(2):71-78. doi: 10.3969/j.issn.1009-640X.2006.02.015
    [12] 刘得潭, 沈振中, 徐力群, 邱莉婷, 江婷. 岩体水力劈裂临界水压力影响因素及机理研究[J]. 水利水运工程学报, 2018, 4(4):30-37.

    LIU Detan, SHEN Zhenzhong, XU Liqun, QIU Liting, JIANG Ting. Experimental studies on influence factors and mechanism of critical water pressure of hydraulic splitting in rock mass[J]. Hydro-Science and Engineering, 2018, 4(4):30-37.
    [13] 谢兴华, 速宝玉. 裂隙岩体水力劈裂研究综述[J]. 岩土力学, 2004(2):330-336.

    XIE Xinghua, SU Baoyu. A review of fracture rock hydraulic fracturing research[J]. Rock and Soil Mechanics, 2004(2):330-336.
    [14] 何宇彬, 徐超. 论喀斯特塌陷的水动力因素[J]. 水文地质工程地质, 1993(5):39-42.

    HE Yubin, XU Chao. Discussions on the hydrodynamics of karst collapse[J]. Hydrogeology and Engineering Geology, 1993(5):39-42.
    [15] 姜伏伟, 雷明堂, 管正德, 吴远斌. 土洞发育水动力判据及应用研究[C]. 全国工程地质学术年会, 2014.

    JIANG Fuwei, LEI Mingtang, GUAN Zhengde, WU Yuanbin. Hydrodynamic criterion and application of karst soil cavities[C]. National Annual Conference on Engineering Geology, 2014.
    [16] 雷明堂, 李瑜, 蒋小珍, 甘伏平, 蒙彦. 岩溶塌陷灾害监测预报技术与方法初步研究:以桂林市柘木村岩溶塌陷监测为例[J]. 中国地质灾害与防治学报, 2004(Supp.1):148-152.

    LEI Mingtang, LI Yu, JIANG Xiaozhen, GAN Fuping, MENG Yan. Preliminary study on the technology and method of sinkhole collapse monitoring and prediction: As an example of sinkhole collapse monitoring station in Zhemu village, Guilin City[J]. The Chinese Journal of Geological Hazard and Control, 2004(Supp.1):148-152.
    [17] 蒋小珍, 雷明堂. 岩溶塌陷灾害的岩溶地下水气压力监测技术及应用[J]. 中国岩溶, 2018, 37(5):786-791.

    JIANG Xiaozhen, LEI Mingtang. Monitoring technique and its application of karst groundwater-air pressure in karst collapse[J]. Carsologica Sinica, 2018, 37(5):786-791.
    [18] JIANG Xiaozhen, LEI Mingtang. Formation mechanism of large sinkhole collapses in Laibin, Guangxi[J]. Environmental Earth Sciences, 2017, 76(24):1-13.
    [19] JIANG Xiaozhen, LEI Mingtang, GAO Yongli. New karst sinkhole formation mechanism discovered in a mine dewatering area in Hunan, China[J]. Mine Water and the Environment, 2018, 37(3):625-635. doi: 10.1007/s10230-017-0486-9
    [20] PAN Zongyuan, JIANG Xiaozhen. Mechanism of sinkhole formation during groundwater-level recovery in karst mining area, Dachengqiao, Hunan Province, China[J]. Environmental Earth Sciences, 2018, 77(24):799-812. doi: 10.1007/s12665-018-7987-0
    [21] 李瑜, 朱平, 雷明堂, 蒋小珍, 戴建玲, 蒙彦. 岩溶地面塌陷监测技术与方法[J]. 中国岩溶, 2005,24(2):103-108. doi: 10.3969/j.issn.1001-4810.2005.02.003

    LI Yu, ZHU Ping, LEI Mingtang, JIANG Xiaozhen, DAI Jianling, MENG Yan. Monitoring technology for karst collapse[J]. Carsologica Sinica, 2005,24(2):103-108. doi: 10.3969/j.issn.1001-4810.2005.02.003
    [22] 张丽芬, 曾夏生, 姚运生, 廖武林. 我国岩溶塌陷研究综述[J]. 中国地质灾害与防治学报, 2007(3):126-130.

    ZHANG Lifen, ZENG Xiasheng, YAO Yunsheng, LIAO Wulin. Summary of karst sinkhole in China[J]. The Chinese Journal of Geological Hazard and Control, 2007(3):126-130.
    [23] 杨荣山, 曹世豪, 谢露, 刘学毅, 江晓禹. 列车荷载与水耦合作用下的无砟轨道水力劈裂机理分析[J]. 铁道学报, 2017, 39(6):95-103.

    YANG Rongshan, CAO Shihao, XIE Lu, LIU Xueyi, JIANG Xiaoyu. Hydraulic fracturing mechanism of slab track under coupling effect of train load and water[J]. Journal of the China Railway Society, 2017, 39(6):95-103.
    [24] 曹细冲, 蒋小珍. 矿井疏干区岩溶塌陷的水击气爆作用研究[D]. 北京: 中国地质大学(北京), 2017.

    CAO Xichong, JIANG Xiaozhen. Water hammer and gas explosion of karst collapse in mine drainage area[D]. Beijing: China University of Geosciences (Beijing), 2017.
    [25] 马骁, 蒋小珍. 岩溶空腔水气压力脉动效应的发现及意义[J]. 中国岩溶, 2019, 38(3):404-410.

    MA Xiao, JIANG Xiaozhen. Discovery and significance of water-gas pressure pulsation effect within karst cavity[J]. Carsologica Sinica, 2019, 38(3):404-410.
    [26] 杨建东, 胡金弘, 曾威, 杨桀彬. 原型混流式水泵水轮机过渡过程中的压力脉动[J]. 水利学报, 2016, 47(7):858-864.

    YANG Jiandong, HU Jinhong, ZENG Wei, YANG Jiebin. Transient pressure pulsations of prototype francis pump-turbines[J]. Journal of Hydraulic Engineering, 2016, 47(7):858-864.
    [27] 钱忠东, 陆杰, 郭志伟, 张建军. 水泵水轮机在水轮机工况下压力脉动特性[J]. 排灌机械工程学报, 2016, 34(8):672-678.

    QIAN Zhongdong, LU Jie, GUO Zhiwei, ZHANG Jianjun. Characteristics of pressure fluctuation in pump-turbine under turbine mode[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(8):672-678.
    [28] 李琪飞, 刘超, 王源凯, 权辉. 异常低水头下水泵水轮机压力脉动特性分析[J]. 兰州理工大学学报, 2017, 43(2):59-64.

    LI Qifei, LIU Chao, WANG Yuankai, QUAN Hui. Analysis of pressure fluctuation characteristics of pump-turbine under abnormally low head[J]. Journal of Lanzhou University of Technology, 2017, 43(2):59-64.
    [29] 宋希杰, 刘超, 杨帆, 查智力, 严天序, 黄佳卫. 水泵进水池底部压力脉动特性试验[J]. 农业机械学报, 2017, 48(11):196-203. doi: 10.6041/j.issn.1000-1298.2017.11.024

    SONG Xijie, LIU Chao, YANG Fan, ZHA Zhili, YAN Tianxu, HUANG Jiawei. Experiment on characteristics of pressure fluctuation at bottom of pumping suction passage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11):196-203. doi: 10.6041/j.issn.1000-1298.2017.11.024
    [30] 郑源, 汪宝罗, 屈波. 混流式水轮机尾水管压力脉动研究综述[J]. 水力发电, 2007(2):66-69. doi: 10.3969/j.issn.0559-9342.2007.02.022

    ZHENG Yuan, WANG Baoluo, QU Bo. Study on the pressure pulse in the draft tube of francis turbine[J]. Hydro Power, 2007(2):66-69. doi: 10.3969/j.issn.0559-9342.2007.02.022
    [31] 孙淑清. 调压井水位波动会引起机组振动:天生桥水电厂机组振动试验结果与经验教训[J]. 水电站机电技术, 1997(4):68.

    SUN Shuqing. Flucturation of water level in surge shaft cause unit vibration–Results and lessons from vibration test of units in Tianshenqiao Hydropower Station[J]. Electromechanical Technology of Hydropower Station, 1997(4):68.
    [32] Yeon-Whan Kim, Young-Shin Lee. Damage prevention design of the branch pipe under pressure pulsation transmitted from main steam header[J]. Journal of Mechanical Science and Technology, 2008, 22(4): 647-652.
    [33] 李昕, 陈婧, 马震岳. 混凝土蜗壳结构在脉动压力作用下的疲劳破坏[J]. 黑龙江大学工程学报, 2018, 9(2):7-12, 51.

    LI Xin, CHEN Jing, MA Zhenyue. Fatigue failure on concrete spiral case structure under pulsation pressure[J]. Journal of Engineering of Heilongjiang University, 2018, 9(2):7-12, 51.
    [34] 李爱华, 朱江, 李成华. 缝隙中脉动压力传播模型的进一步探讨[J]. 水利学报, 2015, 46(5):626-630.

    LI Aihua, ZHU Jiang, LI Chenghua. Further discussion on propagation model of fluctuating pressure within cracks[J]. Journal of Hydraulic Engineering, 2015, 46(5):626-630.
    [35] 寇攀高, 邓磊, 刘平, 吴长利. 基于频域分段-时域反演法的抽水蓄能机组大波动过渡过程水压脉动信号分析[J]. 大电机技术, 2016(6):41-47.

    KOU Pangao, DENG Lei, LIU Ping, WU Changli. The pressure fluctuation signal analysis of pump hydraulic turbine based on segment in frequency domain and peak analysis in time domain[J]. Large Electric Machine and Hydraulic Turbine, 2016(6):41-47.
    [36] 杨雯, 欧阳于蓝, 宋子明, 孙亚全. 长距离多支线重力原水输水管道关阀水锤分析及防护措施[J]. 净水技术, 2018, 37(3):87-94.

    YANG Wen, OUYANG Yulan, SONG Ziming, SUN Yaquan. Analysis and prevention measures of valve-closure water hammer for gravity raw water pipelines system with long-distance and multi-branches[J]. Water Purification Technology, 2018, 37(3):87-94.
    [37] Sadanand T S D. Hydraulic transient analysis of kolar water pipeline using bently hammer V8i–A case study[J]. International Journal of Engineering Research & Technology, 2014, 3(9).
    [38] 王玉林, 刘元成. Bentley Hammer软件在泵站水锤防护中的应用[J]. 中国水运(下半月), 2012, 12(9):86-87.

    WANG Yulin, LIU Yuancheng. The application of bentley hammer software in water hammer protection of pump station[J]. China Water Transport (The second half of the month), 2012, 12(9):86-87.
    [39] 王琰, 康雅, 李政帅, 苏喆, 沈磊, 赵慧君, 巫京京. 基于Bentley Hammer V8i的长距离输水管道停泵水锤模拟分析[J]. 给水排水, 2013, 49(4):114-117.

    WANG Yan, KANG Ya, LI Zhengshuai, SU Zhe, SHEN Lei, ZHAO Huijun, WU Jingjing. Simulation analysis on water hammer caused by pump failure in long distance water transmission pipe line based on Bentley Hammer V8i[J]. Water & Wastewater Engineering, 2013, 49(4):114-117.
    [40] 史淑娟, 周浩洋, 陈二锋, 谷良贤, 赵涛. 输送管路低频压力脉动研究[J]. 强度与环境, 2014, 41(3):8-14. doi: 10.3969/j.issn.1006-3919.2014.03.002

    SHI Shujuan, ZHOU Haoyang, CHEN Erfeng, GU Liangxian, ZHAO Tao. Research on pressure fluctuation of low frequency phenomenon in rocket[J]. Structure & Environment Engineering, 2014, 41(3):8-14. doi: 10.3969/j.issn.1006-3919.2014.03.002
    [41] 黄继汤. 空化与空蚀的原理及应用[M]. 北京: 清华大学出版社, 1991.

    HUANG Jitang. Principle and application of cavitation and cavitation erosion[M]. Beijing: Tsinghua University Press, 1991
    [42] 王勇. 泵汽蚀研究现状及展望[J]. 水泵技术, 2018(1):1-10.

    WANG Yong. Research status and prospect of pump cavitaion[J]. Pump Technology, 2018(1):1-10.
    [43] 马富银, 杨国平, 吴伟蔚. 泵的空化现象研究进展[J]. 流体机械, 2011, 39(4):30-34.

    MA Fuyin, YANG Guoping, WU Weiwei. Development of cavitation study on pump[J]. Fluid Machinery, 2011, 39(4):30-34.
    [44] 刘凯, 杜润, 柯坚. 气蚀的CFD 评价方法[J]. 液压气动与密封, 2011(5):32-35. doi: 10.3969/j.issn.1008-0813.2011.05.010

    LIU Kai, DU Run, KE Jian. Evaluation method of cavitation erosion with CFD[J]. Hydraulics Pneumatics & Seals, 2011(5):32-35. doi: 10.3969/j.issn.1008-0813.2011.05.010
    [45] 秦耀东, 杜德军, 张海林. 垂直饱和流阶跃输入下稳态-瞬态-稳态过程研究: 均匀饱和土柱中水击现象分析[J]. 水利学报, 2001(9):28-34. doi: 10.3321/j.issn:0559-9350.2001.09.005

    QIN Yaodong, DU Dejun, ZHANG Hailin. Analysis of water hammer in an uniform saturated soil column[J]. Journal of Hydraulic Engineering, 2001(9):28-34. doi: 10.3321/j.issn:0559-9350.2001.09.005
    [46] 蒋明, 赵赋. 槽头式野战管线水击波速测量研究[J]. 后勤工程学院学报, 2004(4):21-25. doi: 10.3969/j.issn.1672-7843.2004.04.006

    JIANG Ming, ZHAO Fu. Study on measurement of water hammer wave velocity in field pipeline with slot head[J]. Journal of Logistical Engineering University, 2004(4):21-25. doi: 10.3969/j.issn.1672-7843.2004.04.006
    [47] Cameron Stanley, Gary Rosengarten, Brian Milton, Tracie Barber. Investigation of cavitation in a large-scale transparent nozzle[S]. F2008-SC-001, 2008.
    [48] A W Momber. Aggregate liberation from concrete by flow cavitation[J]. International Journal of Mineral, 2004, 74:177-187.
    [49] 吴道虎, 李朝晖. 基于声学的水轮机状态监测技术研究[D]. 武汉: 华中科技大学, 2006.

    WU Daohu, LI Zhaohui. Study on acoustics based condition monitoring technique of hydro turbines[D]. Wuhan: Huazhong University of Science and Technology, 2006.
    [50] 董志勇, 吕阳泉, 居文杰, 蔡新明, 丁春生. 高速水流空化区和空蚀区掺气特性的试验研究[J]. 水力发电学报, 2006, 25(4):63-65.

    DONG Zhiyong, LYU Yangquan, JU Wenjie, CHAI Xinming, DING Chunsheng. Experimental study of aerated characteristics in cavitation region of high velocity flow[J]. Journal of Hydroelectric Engineering, 2006, 25(4):63-65.
    [51] 马洪琪. 水力式新型升船机关键技术研究[J]. 水利学报, 2018, 49(4):446-455.

    MA Hongqi. Research on the key technologies of hydraulic new type ship lift[J]. Journal of Hydraulic Engineering, 2018, 49(4):446-455.
    [52] 王国玉. 通气对空蚀的影响及高速摄影观察[J]. 水力发电学报, 2001(1):48-57.

    WANG Guoyu. Ventilation effects on cavitation erosion around a hollow-jet valve[J]. Journal of Hydroelectric Engineering, 2001(1):48-57.
    [53] 赵云秀. 过水建筑物通风掺气设计[J]. 云南水力发电, 2016, 32(6):96-100.

    ZHAO Yunxiu. The ventilation and aeration design of overflow structures[J]. Yunnan Water Power, 2016, 32(6):96-100.
    [54] 熊水应, 关兴旺, 金锥. 多处水柱分离与断流弥合水锤综合防护问题及设计实例[J]. 给水排水, 2003, 29(7):1-6.

    XIONG Shuiying, GUAN Xingwang, JIN Zhui. Problems and design example of comprehensive protection for water hammer due to cavities collapsing with water column separation at multi-points[J]. Water & Wastewater Engineering, 2003, 29(7):1-6.
    [55] Caupin F, Herbert E. Cavitation in water: A review[J]. Comptes Rendus Physique, 2006(7):1000-1017.
    [56] K J McManus, R O Davis. Dilation-induced pore fluid cavitation in sands[J]. Geotechnique, 1997, 47(1):173-177. doi: 10.1680/geot.1997.47.1.173
    [57] Dariusz Gawin, Lorenzo Sanavia. Simulation of cavitation in water saturated porous media considering effects of dissolved air[J]. Transport in Porous Media, 2010, 81(1):141-160. doi: 10.1007/s11242-009-9391-4
    [58] Newman T G, Ghail R C, Skipper J A. Deoxygenated gas occurrences in the lambeth group of central London[J]. Quarterly Journal of Engineering Geology and Hydrology, 2013, 46:176-177.
    [59] J Standing, R Ghail, D Coyne. Gas generation and accumulation by aquifer drawdown and recharge in the London Basin[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2013, 46:293-302. doi: 10.1144/qjegh2013-030
    [60] 夏禾, 郭薇薇, 张楠. 车桥系统共振机理和共振条件分析[J]. 铁道学报, 2006(5):52-58. doi: 10.3321/j.issn:1001-8360.2006.05.010

    XIA He, GUO Weiwei, ZHANG Nan. Analysis of resonance mechanism and conditions of train-bridge system[J]. Journal of the China Railway Society, 2006(5):52-58. doi: 10.3321/j.issn:1001-8360.2006.05.010
    [61] 周勇政. 高速铁路共振问题相关标准研究[J]. 铁道标准设计, 2018, 62(9):182-186.

    ZHOU Yongzheng. Study on specifications of high speed railway resonance[J]. Railway Standard Design, 2018, 62(9):182-186.
    [62] 李光旭, 李万平, 李环. 充液直圆管道水体固有频率分析[J]. 水动力学研究与进展(A辑), 2008(2):134-140.

    LI Guangxu, LI Wanping, LI Huan. Analysis of the inherent frequency of water in an cylinder pipe[J]. Chinese Journal of Hydrodynamics, 2008(2):134-140.
    [63] 郝励. 基于Bentley Autopipe的往复压缩机管线模拟及振动原因分析[J]. 机械研究与应用, 2017, 30(1):52-55.

    HAO Li. Pipeline simulation and vibration analysis of reciprocating compressor based on Autopipe Bentley[J]. Mechanical Research & Application, 2017, 30(1):52-55.
    [64] 罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2):171-178.

    LUO Xiaojie, LUO Cheng. Three-Mechanism Theory (TMT) of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2):171-178.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  196
  • HTML浏览量:  56
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-10
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回